Serum Oxidative and Nitrosative Stress Markers in Clear Cell Renal Cell Carcinoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Ethical Issues
2.2. Study Group
2.3. Materials
2.4. Blood Sampling
2.5. Blood Analysis
2.6. Biochemical Procedures
2.6.1. Protein Assay
2.6.2. AOPP Assay
2.6.3. Thiol Group Assay
2.6.4. Characterization of Amadori Product via the NBT Assay
2.6.5. Albumin Cobalt Binding (ACB) Assay
2.6.6. 3-Nitrotyrosine Assay
2.6.7. Nitrate/Nitrite Assay
2.6.8. Total Antioxidant Capacity (TAC) Measured using the Method with ABTS and FRAP
2.6.9. MDA Assay
2.6.10. 4-HNE Assay
2.7. Statistical Data Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Makino, T.; Kadomoto, S.; Izumi, K.; Mizokami, A. Epidemiology and Prevention of Renal Cell Carcinoma. Cancers 2022, 14, 4059. [Google Scholar] [CrossRef]
- Padala, S.A.; Barsouk, A.; Thandra, K.C.; Saginala, K.; Mohammed, A.; Vakiti, A.; Rawla, P.; Barsouk, A. Epidemiology of Renal Cell Carcinoma. World J. Oncol. 2020, 11, 79–87. [Google Scholar] [CrossRef]
- Alzubaidi, A.N.; Sekoulopoulos, S.; Pham, J.; Walter, V.; Fuletra, J.G.; Raman, J.D. Incidence and Distribution of New Renal Cell Carcinoma Cases: 27-Year Trends from a Statewide Cancer Registry. J. Kidney Cancer VHL 2022, 9, 7–12. [Google Scholar] [CrossRef] [PubMed]
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Dyba, T.; Randi, G.; Bettio, M.; Gavin, A.; Visser, O.; Bray, F. Cancer Incidence and Mortality Patterns in Europe: Estimates for 40 Countries and 25 Major Cancers in 2018. Eur. J. Cancer 2018, 103, 356–387. [Google Scholar] [CrossRef] [PubMed]
- Capitanio, U.; Bensalah, K.; Bex, A.; Boorjian, S.A.; Bray, F.; Coleman, J.; Gore, J.L.; Sun, M.; Wood, C.; Russo, P. Epidemiology of Renal Cell Carcinoma. Eur. Urol. 2019, 75, 74–84. [Google Scholar] [CrossRef]
- Escudier, B.; Porta, C.; Schmidinger, M.; Algaba, F.; Patard, J.J.; Khoo, V.; Eisen, T.; Horwich, A. Renal Cell Carcinoma: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2014, 25, iii49–iii56. [Google Scholar] [CrossRef] [PubMed]
- Tahbaz, R.; Schmid, M.; Merseburger, A.S. Prevention of Kidney Cancer Incidence and Recurrence: Lifestyle, Medication and Nutrition. Curr. Opin. Urol. 2018, 28, 62–79. [Google Scholar] [CrossRef]
- Cumberbatch, M.G.; Rota, M.; Catto, J.W.F.; La Vecchia, C. The Role of Tobacco Smoke in Bladder and Kidney Carcinogenesis: A Comparison of Exposures and Meta-Analysis of Incidence and Mortality Risks. Eur. Urol. 2016, 70, 458–466. [Google Scholar] [CrossRef] [Green Version]
- WHO. Classification of Tumours Online. Available online: https://tumourclassification.iarc.who.int/welcome/ (accessed on 29 March 2023).
- Tretiakova, M. What’s new in kidney tumor pathology 2022: WHO 5th edition updates. J. Pathol. Transl. Med. 2022, 56, 383–384. [Google Scholar] [CrossRef]
- Testa, U.; Pelosi, E.; Castelli, G. Genetic Alterations in Renal Cancers: Identification of The Mechanisms Underlying Cancer Initiation and Progression and of Therapeutic Targets. Medicines 2020, 7, 44. [Google Scholar] [CrossRef]
- Haake, S.M.; Weyandt, J.D.; Rathmell, W.K. Insights into the Genetic Basis of the Renal Cell Carcinomas from The Cancer Genome Atlas. Mol. Cancer Res. 2016, 14, 589–598. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, R.; Jia, Z.; Trush, M.A. Defining ROS in Biology and Medicine. React. Oxyg. Species 2016, 1, 9–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Martemucci, G.; Costagliola, C.; Mariano, M.; D’andrea, L.; Napolitano, P.; D’Alessandro, A.G. Free Radical Properties, Source and Targets, Antioxidant Consumption and Health. Oxygen 2022, 2, 48–78. [Google Scholar] [CrossRef]
- Aggarwal, V.; Tuli, H.S.; Varol, A.; Thakral, F.; Yerer, M.B.; Sak, K.; Varol, M.; Jain, A.; Khan, M.d.A.; Sethi, G. Role of Reactive Oxygen Species in Cancer Progression: Molecular Mechanisms and Recent Advancements. Biomolecules 2019, 9, 735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rodic, S.; Vincent, M.D. Reactive Oxygen Species (ROS) Are a Key Determinant of Cancer’s Metabolic Phenotype. Int. J. Cancer 2018, 142, 440–448. [Google Scholar] [CrossRef] [Green Version]
- Galiniak, S.; Mołoń, M.; Biesiadecki, M.; Mokrzyńska, A.; Balawender, K. Oxidative Stress Markers in Urine and Serum of Patients with Bladder Cancer. Antioxidants 2023, 12, 277. [Google Scholar] [CrossRef]
- Tan, B.L.; Norhaizan, M.E. Oxidative Stress, Diet and Prostate Cancer. World J. Men’s Health 2021, 39, 195–207. [Google Scholar] [CrossRef]
- Wigner, P.; Szymańska, B.; Bijak, M.; Sawicka, E.; Kowal, P.; Marchewka, Z.; Saluk-Bijak, J. Oxidative Stress Parameters as Biomarkers of Bladder Cancer Development and Progression. Sci. Rep. 2021, 11, 15134. [Google Scholar] [CrossRef]
- Pavlović, I.; Pejić, S.; Radojević-Škodrić, S.; Todorović, A.; Stojiljković, V.; Gavrilović, L.; Popović, N.; Basta-Jovanović, G.; Džamić, Z.; Pajović, S.B. The Effect of Antioxidant Status on Overall Survival in Renal Cell Carcinoma. Arch. Med. Sci. 2019, 16, 94–101. [Google Scholar] [CrossRef]
- Ratliff, B.B.; Abdulmahdi, W.; Pawar, R.; Wolin, M.S. Oxidant Mechanisms in Renal Injury and Disease. Antioxid. Redox Signal. 2016, 25, 119–146. [Google Scholar] [CrossRef] [Green Version]
- Mahalingaiah, P.K.; Ponnusamy, L.; Singh, K.P. Oxidative stress-induced epigenetic changes associated with malignant transformation of human kidney epithelial cells. Oncotarget 2017, 8, 11127–11143. [Google Scholar] [CrossRef] [PubMed]
- UICC. 8th Edition of the UICC TNM Classification of Malignant Tumors Published. Available online: https://www.uicc.org/news/8th-edition-uicc-tnm-classification-malignant-tumors-published (accessed on 10 January 2023).
- Warren, A.Y.; Harrison, D. WHO/ISUP classification, grading and pathological staging of renal cell carcinoma: Standards and controversies. World J. Urol. 2018, 36, 1913–1926. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lowry, O.H.; Rosebrough, N.J.; Farr, A.L.; Randall, R.J. Protein Measurement with the Folin Phenol Reagent. J. Biol. Chem. 1951, 193, 265–275. [Google Scholar] [CrossRef] [PubMed]
- Witko-Sarsat, V.; Friedlander, M.; Khoa, T.N.; Capeillère-Blandin, C.; Nguyen, A.T.; Canteloup, S.; Dayer, J.-M.; Jungers, P.; Drüeke, T.; Descamps-Latscha, B. Advanced Oxidation Protein Products as Novel Mediators of Inflammation and Monocyte Activation in Chronic Renal Failure. J. Immunol. 1998, 161, 2524–2532. [Google Scholar] [CrossRef]
- Ellman, G.L. Tissue Sulfhydryl Groups. Arch. Biochem. Biophys. 1959, 82, 70–77. [Google Scholar] [CrossRef]
- Johnson, R.N.; Metcalf, P.A.; Baker, J.R. Fructosamine: A New Approach to the Estimation of Serum Glycosylprotein. An Index of Diabetic Control. Clin. Chim. Acta 1983, 127, 87–95. [Google Scholar] [CrossRef]
- Mironova, R.; Niwa, T.; Handzhiyski, Y.; Sredovska, A.; Ivanov, I. Evidence for Non-Enzymatic Glycosylation of Escherichia Coli Chromosomal DNA. Mol. Microbiol. 2005, 55, 1801–1811. [Google Scholar] [CrossRef]
- Bar-Or, D.; Lau, E.; Winkler, J.V. A Novel Assay for Cobalt-Albumin Binding and Its Potential as a Marker for Myocardial Ischemia-a Preliminary Report. J. Emerg. Med. 2000, 19, 311–315. [Google Scholar] [CrossRef] [PubMed]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant Activity Applying an Improved ABTS Radical Cation Decolorization Assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Benzie, I.F.; Strain, J.J. The Ferric Reducing Ability of Plasma (FRAP) as a Measure of “Antioxidant Power”: The FRAP Assay. Anal. Biochem. 1996, 239, 70–76. [Google Scholar] [CrossRef] [Green Version]
- Yagi, K. Assay for Blood Plasma or Serum. Methods Enzymol. 1984, 105, 328–331. [Google Scholar] [CrossRef] [PubMed]
- Arfin, S.; Jha, N.K.; Jha, S.K.; Kesari, K.K.; Ruokolainen, J.; Roychoudhury, S.; Rathi, B.; Kumar, D. Oxidative Stress in Cancer Cell Metabolism. Antioxidants 2021, 10, 642. [Google Scholar] [CrossRef]
- Hayes, J.D.; Dinkova-Kostova, A.T.; Tew, K.D. Oxidative Stress in Cancer. Cancer Cell 2020, 38, 167–197. [Google Scholar] [CrossRef]
- Tang, Y.; Zhang, Z.; Chen, Y.; Qin, S.; Zhou, L.; Gao, W.; Shen, Z. Metabolic Adaptation-Mediated Cancer Survival and Progression in Oxidative Stress. Antioxidants 2022, 11, 1324. [Google Scholar] [CrossRef] [PubMed]
- Kucukhuseyin, O.; Yanar, K.; Hakan, M.T.; Verim, A.; Suoglu, Y.; Atukeren, P.; Aydin, S.; Cakatay, U.; Yılmaz Aydogan, H.; Yaylim, I. Evaluation of Advanced Protein Oxidation and RAGE Gene Variants in the Risk of Laryngeal Cancer. Biotechnol. Biotechnol. Equip. 2022, 36, 256–267. [Google Scholar] [CrossRef]
- Kosova, F.; Cetin, B.; Akinci, M.; Aslan, S.; Ari, Z.; Sepici, A.; Altan, N.; Çetin, A. Advanced Oxidation Protein Products, Ferrous Oxidation in Xylenol Orange, and Malondialdehyde Levels in Thyroid Cancer. Ann. Surg. Oncol. 2007, 14, 2616–2620. [Google Scholar] [CrossRef] [PubMed]
- Zińczuk, J.; Zaręba, K.; Kamińska, J.; Koper-Lenkiewicz, O.M.; Dymicka-Piekarska, V.; Pryczynicz, A.; Guzińska-Ustymowicz, K.; Kędra, B.; Matowicka-Karna, J.; Żendzian-Piotrowska, M.; et al. Association of Tumour Microenvironment with Protein Glycooxidation, DNA Damage, and Nitrosative Stress in Colorectal Cancer. CMAR 2021, 13, 6329–6348. [Google Scholar] [CrossRef]
- Ene, C.D.; Penescu, M.N.; Georgescu, S.R.; Tampa, M.; Nicolae, I. Posttranslational Modifications Pattern in Clear Cell Renal Cell Carcinoma. Metabolites 2020, 11, 10. [Google Scholar] [CrossRef]
- Aldemir, M.; Karaguzel, E.; Okulu, E.; Gudeloglu, A.; Ener, K.; Ozayar, A.; Erel, O. Evaluation of Oxidative Stress Status and Antioxidant Capacity in Patients with Renal Cell Carcinoma. Cent. Eur. J. Urol. 2015, 68, 415–420. [Google Scholar] [CrossRef] [Green Version]
- Ganesamoni, R.; Bhattacharyya, S.; Kumar, S.; Chauhan, A.; Mete, U.K.; Agarwal, M.M.; Mavuduru, R.; Kaushik, G.; Mandal, A.K.; Singh, S.K. Status of Oxidative Stress in Patients with Renal Cell Carcinoma. J. Urol. 2012, 187, 1172–1176. [Google Scholar] [CrossRef]
- Qi, X.; Li, Q.; Che, X.; Wang, Q.; Wu, G. The Uniqueness of Clear Cell Renal Cell Carcinoma: Summary of the Process and Abnormality of Glucose Metabolism and Lipid Metabolism in CcRCC. Front. Oncol. 2021, 11, 727778. [Google Scholar] [CrossRef] [PubMed]
- Ansari, N.A.; Dash, D. Amadori Glycated Proteins: Role in Production of Autoantibodies in Diabetes Mellitus and Effect of Inhibitors on Non-Enzymatic Glycation. Aging Dis. 2012, 4, 50–56. [Google Scholar] [PubMed]
- Sant, S.; Wang, D.; Agarwal, R.; Dillender, S.; Ferrell, N. Glycation Alters the Mechanical Behavior of Kidney Extracellular Matrix. Matrix Biol. Plus 2020, 8, 100035. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Zhang, H.-C.; Xue, S.; Zheng, J.-H. Receptors for Advanced Glycation End Products Is Associated with Autophagy in the Clear Cell Renal Cell Carcinoma. J. Cancer Res. Ther. 2019, 15, 317–323. [Google Scholar] [CrossRef] [PubMed]
- Nam, H.-K.; Jeong, S.-R.; Pyo, M.C.; Ha, S.-K.; Nam, M.-H.; Lee, K.-W. Methylglyoxal-Derived Advanced Glycation End Products (AGE4) Promote Cell Proliferation and Survival in Renal Cell Carcinoma Cells through the RAGE/Akt/ERK Signaling Pathways. Biol. Pharm. Bull. 2021, 44, 1697–1706. [Google Scholar] [CrossRef] [PubMed]
- Nishad, R.; Tahaseen, V.; Kavvuri, R.; Motrapu, M.; Singh, A.K.; Peddi, K.; Pasupulati, A.K. Advanced-Glycation End-Products Induce Podocyte Injury and Contribute to Proteinuria. Front. Med. 2021, 8, 685447. [Google Scholar] [CrossRef]
- Pathak, C.; Vaidya, F.U.; Waghela, B.N.; Chhipa, A.S.; Tiwari, B.S.; Ranjan, K. Advanced Glycation End Products-Mediated Oxidative Stress and Regulated Cell Death Signaling in Cancer. In Handbook of Oxidative Stress in Cancer: Mechanistic Aspects; Chakraborti, S., Ray, B.K., Roychoudhury, S., Eds.; Springer Nature: Singapore, 2022; pp. 535–550. ISBN 9789811594113. [Google Scholar]
- Shevtsova, A.; Gordiienko, I.; Tkachenko, V.; Ushakova, G. Ischemia-Modified Albumin: Origins and Clinical Implications. Dis. Markers 2021, 2021, 9945424. [Google Scholar] [CrossRef]
- Jena, I.; Nayak, S.R.; Behera, S.; Singh, B.; Ray, S.; Jena, D.; Singh, S.; Sahoo, S.K. Evaluation of Ischemia-Modified Albumin, Oxidative Stress, and Antioxidant Status in Acute Ischemic Stroke Patients. J. Nat. Sci. Biol. Med. 2017, 8, 110–113. [Google Scholar] [CrossRef] [Green Version]
- Soini, Y.; Kallio, J.P.; Hirvikoski, P.; Helin, H.; Kellokumpu-Lehtinen, P.; Kang, S.W.; Tammela, T.L.J.; Peltoniemi, M.; Martikainen, P.M.; Kinnula, V.L. Oxidative/Nitrosative Stress and Peroxiredoxin 2 Are Associated with Grade and Prognosis of Human Renal Carcinoma. APMIS 2006, 114, 329–337. [Google Scholar] [CrossRef]
- Soini, Y.; Kallio, J.P.; Hirvikoski, P.; Helin, H.; Kellokumpu-Lehtinen, P.; Tammela, T.L.J.; Peltoniemi, M.; Martikainen, P.M.; Kinnula, L.V. Antioxidant Enzymes in Renal Cell Carcinoma. Histol. Histopathol. 2006, 21, 157–165. [Google Scholar] [CrossRef]
- Renaudin, K.; Denis, M.G.; Karam, G.; Vallette, G.; Buzelin, F.; Laboisse, C.L.; Jarry, A. Loss of NOS1 Expression in High-Grade Renal Cell Carcinoma Associated with a Shift of NO Signalling. Br. J. Cancer 2004, 90, 2364–2369. [Google Scholar] [CrossRef] [Green Version]
- Sözen, S.; Coskun, U.; Sancak, B.; Bukan, N.; Günel, N.; Tunc, L.; Bozkirli, I. Serum Levels of Interleukin-18 and Nitrite+nitrate in Renal Cell Carcinoma Patients with Different Tumor Stage and Grade. Neoplasma 2004, 51, 25–29. [Google Scholar]
- Cecchini, S.; Fazio, F. Assessment of Total Antioxidant Capacity in Serum of Heathy and Stressed Hens. Animals 2020, 10, 2019. [Google Scholar] [CrossRef] [PubMed]
- Gago-Dominguez, M.; Castelao, J.E. Lipid Peroxidation and Renal Cell Carcinoma: Further Supportive Evidence and New Mechanistic Insights. Free Radic. Biol. Med. 2006, 40, 721–733. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Meierhofer, D. Glutathione Metabolism in Renal Cell Carcinoma Progression and Implications for Therapies. Int. J. Mol. Sci. 2019, 20, 3672. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pljesa-Ercegovac, M.; Mimic-Oka, J.; Dragicevic, D.; Savic-Radojevic, A.; Opacic, M.; Pljesa, S.; Radosavljevic, R.; Simic, T. Altered Antioxidant Capacity in Human Renal Cell Carcinoma: Role of Glutathione Associated Enzymes. Urol. Oncol. 2008, 26, 175–181. [Google Scholar] [CrossRef] [PubMed]
- Thyagarajan, A.; Sahu, R.P. Potential Contributions of Antioxidants to Cancer Therapy: Immunomodulation and Radiosensitization. Integr. Cancer Ther. 2018, 17, 210–216. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Healthy Controls | ccRCC Group | p | ||
---|---|---|---|---|
n | 30 | 48 | ||
F/M | 10/20 | 18/30 | ||
Age (years) | mean ± SD | 67.07 ± 7.32 | 68.11 ± 9.4 | 0.677 |
range | 54–80 | 50–82 | ||
BMI (kg/m2) | mean ± SD | 25.97 ± 2.73 | 27.23 ± 2.81 | 0.056 |
range | 19.05–29.7 | 20.57–29.96 | ||
Complete blood count | ||||
WBC (103/µL) | mean ± SD | 7.45 ± 1.56 | 7.21 ± 2.14 | 0.770 |
range | 4.9–10 | 3.8–11.4 | ||
LYM (%) | mean ± SD | 29.19 ± 4.43 | 24.74 ± 8.97 | 0.087 |
range | 25.1–38.9 | 12.6–41.7 | ||
MONO (%) | mean ± SD | 7.46 ± 1.6 | 8.58 ± 3.01 | 0.170 |
range | 4.2–10 | 4.3–17.8 | ||
NEU (%) | mean ± SD | 63.66 ± 5.75 | 64.3 ± 9.24 | 0.438 |
range | 50.4–70 | 45.9–78 | ||
EOS (%) | mean ± SD | 2.06 ± 1.25 | 1.56 ± 1.01 | 0.241 |
range | 1–4.9 | 0.5–4.5 | ||
BASO (%) | mean ± SD | 0.49 ± 0.23 | 0.5 ± 0.25 | 0.603 |
range | 0.2–1.2 | 0.04–1.1 | ||
Coagulological determinations | ||||
Prothrombin time (s) | mean ± SD | 11.75 ± 0.57 | 12.01 ± 0.86 | 0.717 |
range | 10.4–12.5 | 10.7–14.5 | ||
Prothrombin time (%) | mean ± SD | 94.77 ± 11.18 | 95.11 ± 9.77 | 0.899 |
range | 80–119 | 72–113 | ||
INR | mean ± SD | 1.04 ± 0.09 | 1.03 ± 0.07 | 0.645 |
range | 0.9–1.2 | 0.9–1.2 | ||
APTT (s) | mean ± SD | 30.11 ± 3.56 | 32.53 ± 5.16 | 0.275 |
range | 25.4–36.8 | 25.1–43.9 | ||
Serum analysis | ||||
Creatinine (mg/dL) | mean ± SD | 0.91 ± 0.15 | 1.19 ± 0.8 | 0.603 |
range | 0.63–1.15 | 0.56–3.44 | ||
Glucose (mg/dL) | mean ± SD | 98.62 ± 6.64 | 102.57 ± 7.76 | 0.179 |
range | 89–106 | 89–110 | ||
Urea (mg/dL) | mean ± SD | 33.25 ± 8.69 | 44.5 ± 17.89 | 0.032 |
range | 20–49 | 22–85 | ||
K+ (mmol/L) | mean ± SD | 4.37 ± 0.29 | 4.48 ± 0.55 | 0.702 |
range | 3.7–5 | 3.5–6 | ||
Urine pH | mean ± SD | 5.24 ± 0.6 | 5.47 ± 0.8 | 0.631 |
range | 5–7 | 5–7 | ||
Pathologic staging (TNM) | ||||
T1 | n (%) | – | 20 (41.7) | – |
T2 | n (%) | – | 15 (31.3) | – |
T3 | n (%) | – | 13 (27) | – |
Histological grading | ||||
G1 | n (%) | – | 13 (27) | – |
G2 | n (%) | – | 23 (48) | – |
G3 | n (%) | – | 12 (25) | – |
Angioinvasion | n (%) | – | 14 (29.2) | – |
Healthy Controls | ccRCC | p | |
---|---|---|---|
AOPP (nmol/mg protein) | 272.12 ± 134.5 | 300.28 ± 166.9 | 0.485 |
ACB (ABSU) | 0.432 ± 0.07 | 0.44 ± 0.06 | 0.968 |
TAC (ABTS•, μmol TE/L) | 284.65 ± 16.5 | 269.29 ± 11.7 | 0.0005 |
TAC (FRAP, μmol TE/L) | 207.19 ± 45.9 | 210.56 ± 36.4 | 0.625 |
MDA (μmol/L) | 3.28 ± 0.35 | 3.54 ± 0.54 | 0.096 |
4-HNE (pg/mL) | 397.35 ± 159.36 | 445.11 ± 168.21 | 0.441 |
T1 | T2 | T3 | p | |
---|---|---|---|---|
AOPP (nmol/mg protein) | 214.31 ± 55.1 | 253.88 ± 60.9 | 449.61 ± 216 | 0.013 |
Thiol groups (mmol/L) | 645.51 ± 87.6 | 533.43 ± 80.3 | 441.99 ± 81.7 | 0.004 |
Amadori products (nmol/mg protein) | 2204.91 ± 298.5 | 2557.43 ± 415.2 | 2576.35 ± 689.4 | 0.015 |
ACB (ABSU) | 0.42 ± 0.01 | 0.43 ± 0.03 | 0.43 ± 0.06 | 0.638 |
3-nitrotyrosine (nmol/mg protein) | 0.19 ± 0.012 | 0.2 ± 0.021 | 0.24 ± 0.037 | 0.017 |
Nitrate/nitrite (μM) | 46.63 ± 11.2 | 63.76 ± 15.8 | 76.5 ± 21.5 | 0.07 |
TAC (ABTS•, μmol TE/L) | 277.93 ± 6.8 | 265.02 ± 6.7 | 255.19 ± 5.2 | <0.001 |
TAC (FRAP, μmol TE/L) | 222.17 ± 35.4 | 219.19 ± 31 | 189.89 ± 33.9 | 0.204 |
MDA (μmol/L) | 3.34 ± 0.5 | 3.71 ± 0.4 | 3.69 ± 0.7 | 0.178 |
4-HNE (pg/mL) | 362.11 ± 138.8 | 404.88 ± 176.8 | 483.65 ± 142.1 | 0.081 |
G1 | G2 | G3 | p | |
---|---|---|---|---|
AOPP (nmol/mg protein) | 224.75 ± 54.9 | 314.86 ± 179.8 | 423.05 ± 253.1 | 0.296 |
Thiol groups (mmol/L) | 599 ± 110 | 522.53 ± 55.2 | 403.36 ± 54.4 | 0.003 |
Amadori products (nmol/mg protein) | 2343.24 ± 291.9 | 2355.72 ± 492.9 | 2663.3 ± 555.4 | 0.525 |
ACB (ABSU) | 0.42 ± 0.04 | 0.44 ± 0.05 | 0.44 ± 0.04 | 0.946 |
3-nitrotyrosine (nmol/mg protein) | 0.21 ± 0.027 | 0.2 ± 0.024 | 0.24 ± 0.046 | 0.149 |
Nitrate/nitrite (μM) | 51.9 ± 18.4 | 65.74 ± 18.7 | 74.66 ± 22.7 | 0.218 |
TAC (ABTS•, μmol TE/L) | 276.92 ± 9.7 | 267.52 ± 11.7 | 257.99 ± 5.5 | 0.051 |
TAC (FRAP, μmol TE/L) | 215.63 ± 37.7 | 215.49 ± 38.2 | 180.67 ± 11.5 | 0.189 |
MDA (μmol/L) | 3.28 ± 0.3 | 3.29 ± 0.3 | 4.18 ± 0.5 | 0.008 |
4-HNE (pg/mL) | 394.26 ± 101.1 | 383.15 ± 166.4 | 485.99 ± 192.7 | 0.657 |
ccRCC with Angioinvasion | ccRCC without Angioinvasion | p | |
---|---|---|---|
AOPP (nmol/mg protein) | 345.02 ± 190.6 | 282.38 ± 160 | 0.228 |
Thiol groups (mmol/L) | 467.9 ± 95.9 | 536.04 ± 118.2 | 0.33 |
Amadori products (nmol/mg protein) | 2504.86 ± 422.5 | 2351.75 ± 448.6 | 0.726 |
ACB (ABSU) | 0.43 ± 0.06 | 0.43 ± 0.03 | 0.459 |
3-nitrotyrosine (nmol/mg protein) | 0.22 ± 0.04 | 0.2 ± 0.022 | 0.483 |
Nitrate/nitrite (μM) | 83.95 ± 17 | 58.09 ± 18.4 | 0.012 |
TAC (ABTS•, μmol TE/L) | 255.54 ± 4.5 | 274.24 ± 8.7 | <0.001 |
TAC (FRAP, μmol TE/L) | 208.51 ± 39.8 | 211.38 ± 36.4 | 0.668 |
MDA (μmol/L) | 4.28 ± 0.5 | 3.48 ± 0.3 | 0.002 |
4-HNE (pg/mL) | 540.05 ± 185.2 | 404.42 ± 149.1 | 0.149 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Galiniak, S.; Biesiadecki, M.; Mołoń, M.; Olech, P.; Balawender, K. Serum Oxidative and Nitrosative Stress Markers in Clear Cell Renal Cell Carcinoma. Cancers 2023, 15, 3995. https://doi.org/10.3390/cancers15153995
Galiniak S, Biesiadecki M, Mołoń M, Olech P, Balawender K. Serum Oxidative and Nitrosative Stress Markers in Clear Cell Renal Cell Carcinoma. Cancers. 2023; 15(15):3995. https://doi.org/10.3390/cancers15153995
Chicago/Turabian StyleGaliniak, Sabina, Marek Biesiadecki, Mateusz Mołoń, Patrycja Olech, and Krzysztof Balawender. 2023. "Serum Oxidative and Nitrosative Stress Markers in Clear Cell Renal Cell Carcinoma" Cancers 15, no. 15: 3995. https://doi.org/10.3390/cancers15153995
APA StyleGaliniak, S., Biesiadecki, M., Mołoń, M., Olech, P., & Balawender, K. (2023). Serum Oxidative and Nitrosative Stress Markers in Clear Cell Renal Cell Carcinoma. Cancers, 15(15), 3995. https://doi.org/10.3390/cancers15153995