The Long Non-Coding RNA ANRIL in Cancers
Abstract
:Simple Summary
Abstract
1. LncRNAs and Cancers
2. ANRIL and the 9p21 Locus
2.1. Discovery of the 9p21 Locus as a Region of High Interest
2.2. The lncRNA ANRIL and the Genes of the 9p21 Locus
3. ANRIL Expression and Abundance
4. ANRIL Phylogeny, Evolution and Transposable Elements
5. ANRIL Exons and Isoforms
6. ANRIL and Cancer
6.1. ANRIL Expression in Cancer
Cancers | ANRIL Expression | Tissues | Cell Lines | ANRIL Detection RTqPCR (Fw_Rv), RNAseq, Microarrays | Detected Isoforms | References |
---|---|---|---|---|---|---|
LC | Up | 1/87 NSCLC tissues, 2/TNM I stage LUAD | A549, H460, H1299, H1975, SPC-A1, H1650 | Ex17_Ex18, Ex1_Ex2, Ex20_Ex20, Ex12_Ex16 | 1, 2, 4, 5, 7, 8, 9, 10, 11, 12, 13, 17, 19, 20, 21, 22, 23, 25, 26, 27 | [48,66,85,86,87] |
Down | 24 IPF | Ex6_Ex7 | 3, 9, 11, 13, 15, 16, 19, 21, 22, 24, 28 | [88] | ||
GC | Up | 1/20 paired GC, 2/19,317 GC patients and Lymph nodes, 3/83GC, 4/120GC | AGS, BGC823, MGC80–3, MKN-45, SGC-7901, HGC-27, HSC-39, FU97 | Ex1/2_Ex2, Ex1_Ex2, Ex11/12_Ex13, Ex1_Ex1, Ex14_Ex15, RNAseq | 4, 6, 7, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 | [93,94,95,96,97,98] |
BC | Up | 1/787 early BC patients, 2/37 TNBC | MCF10A, MCF7, T47D, MDA-MB-231, BT549, HS578T, SKBR3, BT474, BT20 | Ex12-Ex15, Ex12_16, Ex5_Ex6/7, Ex3_Ex4, Ex1_Ex1, Ex17/18_Ex18, Hs01390879_m1 (Ex1_Ex2), RNAseq | 1, 3, 4, 6, 7, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 | [31,99,100,101,102,103,104] |
OC | Up | 1/18 OC, 2/86 OC, 3/102 EOC tissues, including 68 SOC tissues | SKOV3, OVCAR3, HO-8910, SKOV3, A2780, Hey, OVCA429, OVCA433 | Ex21_Ex21, Ex1_Ex2, Ex4_Ex5 | 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 17, 18, 19, 20, 21, 22, 23, 25, 26, 27 | [105,106,107,108] |
CC | Up | 41 high-grade squamous intraepithelial lesions (HSILs), and 75 cervical cancer tissues | CaSki, SiHa | Divergent Ex2_Ex4 | CircRNA | [91] |
Up | 53CC | HeLa, CaSki, SiHa, ME-180, H1299 | Ex1_Ex2 | 4, 7, 9, 11, 13, 17, 25, 26, 27 | [86,109] | |
CRC | Up | 20 from CRC, 20 from adenomatous polyp patient, 172CC | Ex1_Ex1, Ex3_Ex4 | 4, 6, 7, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 | [67,110] | |
Down | Meta-Analysis from 10 sets of RNAseq, 40 patients with CC (with 10 patients each in stages I, II, III and IV) | Caco2 | Ex1_Ex1, RNASeq | 4, 6, 7, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 | [111,112] | |
BladC | Up | 1/30 BC, 2/51 BC | EJ | Ex1_Ex1, Ex1_Ex2 | 4, 6, 7, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 | [113,114] |
No misregulation | 85 NMIBC | 97-1, 97-7, MGH-U3, MGH-U4, RT112, RT 4, UMU-UC5, UMU-UC7, VM-CUB1, 5637 | Ex17/18_Ex18 | 1, 9, 10, 11, 21, 25 | [115] | |
TC | Up | 510TC, 502TC | TPC-1, HTH83, FTC-133 | Ex2_Ex3, RNAseq | 4, 7, 9, 13 (+RNAseq) | [116,117] |
BrC | Up | 1/15G, 2/142G, 3/10 all stages each, 4/19G | A172, LN18, T98G, U251, LN229, U87 | Ex9_Ex12, Ex1_Ex2, Ex13_Ex13, RNAseq/uArray | 4, 7, 9, 11, 13, 14, 15, 16, 17, 24, 25, 26, 27 (+uArray and RNAseq) | [118,119,120,121,122] |
OS | Up | 1/56OS, 2/19OS (IIB, III), 3/30OS, 4/57OS, 5/53OS | SW1353, MG-63, SAOS2, HOS, U2OS | Ex2_Ex3, Ex1_Ex1/5, Ex12_Ex13, Ex5_Ex6, Ex1_Ex2 | 3, 4, 7, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 | [123,124,125,126,127,128,129] |
MM | Up | 1/80MM, 2/70MM | U266, MM.1S, NCI-H929 | Ex3/4_Ex4, Ex12_Ex15 | 9, 13 | [130,131] |
PC | Up | 10PC | LNCap, PC3, DU145 | Ex12_Ex15, Ex17/18_Ex18, Ex6_Ex6/7 | 1, 3, 9, 10, 11, 13, 15, 16, 19, 21, 22, 24, 25, 28 | [132] |
ATL/AML | Up | 1/178AML, 2/100AML, 3/109AML, 4/6ATL, 5/27T-ALL | MOLM-13, HL-60, MT-2, MT-4, C8166, MT-1, HPB-ATL-2, HPB-ATL-T, ED, TL-Om1, MOLT4s, CCRF-CEM, KOPT-K1 | Ex1_Ex2, Ex1_Ex1, Ex17/18_Ex18 | 1, 4, 6, 7, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 | [133,134,135,136,137] |
Melanoma | Up | NZM, OM431, A375 | Ex1_Ex1, Ex5_Ex6 | 1, 3, 4, 6, 7, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 | [138] | |
Up | NZM | Outward facing primers targeted against exons 2, 4, 6, 8, 14 and 16 | CirRNA: More than 30 isoforms differentially expressed in melanoma cells | [78] | ||
Fusion MTAP | 174 cell lines included in this study were derived from metastasized tumors of 134 melanoma patients | [139,140] | ||||
EC | Up | 1/87EC, 2/20EC, 3/Transcriptome data from 552UC, 575UC | HEC-1A, RL95-2 | Ex1_Ex2, Ex1_Ex1, Ex6_Ex6 | 3, 4, 6, 7, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 | [141,142,143,144] |
iCCA | Up | 39iCCA | Ex19_Ex20 | 1, 5, 8, 9, 10, 11, 21, 22, 23, 25 | [145] | |
RC | Up | 1/42KIRC, 2/108ccRCC | 769-P, ACHN, 786-O, Caki-1, Caki-2, ACHN | Ex1_Ex1, Ex5_Ex6, Hs03300540_m1, HCR and RNaseq | 3, 4, 6, 7, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 | [69,146] |
RB | Up | 28RB | HXO-RB44, Y79 | Ex1_Ex2, Ex11_Ex15 | 4, 7, 9, 11, 13, 17, 25, 26, 27 | [56,147] |
HNSCC/LSCC | Up | 1/60LSCC, 2/54LSCC, 3/28LSCC, 4/35NPC, 5/522HNSCC | Tu177, HN4, AMC-HN-8, NP69, FaDu, CAL27, CNE1, CNE2, S18, HONE1, 5–8F, AMC-HN-8, SNU-899, HNEC | Ex2_Ex3, Ex21_Ex21, Ex1_Ex1, Ex1_Ex2, Ex1/5_Ex6, uArray, RNAseq | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 | [148,149,150,151,152,153,154] |
HCC | Up | 1/30HCC, 2/34LC, 3/100HCC, 4/85HCC, 5/50Cirrhosis, 6/130HCC, 7/77HCC, 8/317HCC | Huh7, Hep3B, Sk-Hep1, MHCC97H, SMMC-7721, HepG2 | Ex21_Ex21, Ex1_Ex1, Ex14_Ex15, Ex15_Ex16, Ex1_Ex2, Ex12_Ex15, RNAseq | 1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28 | [64,155,156,157,158,159,160,161,162] |
6.2. MTAP-ANRIL Fusion in Cancer
6.3. Polymorphisms of ANRIL in Cancer
7. ANRIL Activities
7.1. Cytoplasmic Activities of ANRIL
7.2. Nuclear Activities of ANRIL
7.2.1. -cis Activity
7.2.2. -trans Activity of ANRIL
ANRIL Regulation of Genes Located Outside the 9p21 Locus
Role of ANRIL in Modulating the Alternative Splicing
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Statello, L.; Guo, C.-J.; Chen, L.-L.; Huarte, M. Gene Regulation by Long Non-Coding RNAs and Its Biological Functions. Nat. Rev. Mol. Cell. Biol. 2021, 22, 96–118. [Google Scholar] [CrossRef] [PubMed]
- Uszczynska-Ratajczak, B.; Lagarde, J.; Frankish, A.; Guigó, R.; Johnson, R. Towards a Complete Map of the Human Long Non-Coding RNA Transcriptome. Nat. Rev. Genet. 2018, 19, 535–548. [Google Scholar] [CrossRef] [PubMed]
- Fang, S.; Zhang, L.; Guo, J.; Niu, Y.; Wu, Y.; Li, H.; Zhao, L.; Li, X.; Teng, X.; Sun, X.; et al. NONCODEV5: A Comprehensive Annotation Database for Long Non-Coding RNAs. Nucleic Acids Res. 2018, 46, D308–D314. [Google Scholar] [CrossRef] [PubMed]
- Bao, Z.; Yang, Z.; Huang, Z.; Zhou, Y.; Cui, Q.; Dong, D. LncRNADisease 2.0: An Updated Database of Long Non-Coding RNA-Associated Diseases. Nucleic Acids Res. 2019, 47, D1034–D1037. [Google Scholar] [CrossRef]
- Ransohoff, J.D.; Wei, Y.; Khavari, P.A. The Functions and Unique Features of Long Intergenic Non-Coding RNA. Nat. Rev. Mol. Cell Biol. 2018, 19, 143–157. [Google Scholar] [CrossRef]
- Achour, C.; Aguilo, F. Long Non-Coding RNA and Polycomb: An Intricate Partnership in Cancer Biology. Front. Biosci. 2018, 23, 2106–2132. [Google Scholar] [CrossRef]
- Rinn, J.L.; Chang, H.Y. Genome Regulation by Long Noncoding RNAs. Annu. Rev. Biochem. 2012, 81, 145–166. [Google Scholar] [CrossRef]
- Herman, A.B.; Tsitsipatis, D.; Gorospe, M. Integrated LncRNA Function upon Genomic and Epigenomic Regulation. Mol. Cell 2022, 82, 2252–2266. [Google Scholar] [CrossRef]
- Clark, M.B.; Mattick, J.S. Long Noncoding RNAs in Cell Biology. Semin. Cell. Dev. Biol. 2011, 22, 366–376. [Google Scholar] [CrossRef]
- Batista, P.J.; Chang, H.Y. Long Noncoding RNAs: Cellular Address Codes in Development and Disease. Cell 2013, 152, 1298–1307. [Google Scholar] [CrossRef]
- Qian, Y.; Shi, L.; Luo, Z. Long Non-Coding RNAs in Cancer: Implications for Diagnosis, Prognosis, and Therapy. Front. Med. 2020, 7, 612393. [Google Scholar] [CrossRef] [PubMed]
- Lemos, A.E.G.; da Matos, A.R.; Ferreira, L.B.; Gimba, E.R.P. The Long Non-Coding RNA PCA3: An Update of Its Functions and Clinical Applications as a Biomarker in Prostate Cancer. Oncotarget 2019, 10, 6589–6603. [Google Scholar] [CrossRef]
- Arun, G.; Diermeier, S.D.; Spector, D.L. Therapeutic Targeting of Long Non-Coding RNAs in Cancer. Trends Mol. Med. 2018, 24, 257–277. [Google Scholar] [CrossRef] [PubMed]
- McCabe, E.M.; Rasmussen, T.P. LncRNA Involvement in Cancer Stem Cell Function and Epithelial-Mesenchymal Transitions. Semin. Cancer Biol. 2021, 75, 38–48. [Google Scholar] [CrossRef] [PubMed]
- Climente-González, H.; Porta-Pardo, E.; Godzik, A.; Eyras, E. The Functional Impact of Alternative Splicing in Cancer. Cell. Rep. 2017, 20, 2215–2226. [Google Scholar] [CrossRef]
- Chen, L.; Qian, X.; Wang, Z.; Zhou, X. The HOTAIR LncRNA: A Remarkable Oncogenic Promoter in Human Cancer Metastasis. Oncol. Lett. 2021, 21, 302. [Google Scholar] [CrossRef]
- Lin, G.; Wu, T.; Gao, X.; He, Z.; Nong, W. Research Progress of Long Non-Coding RNA GAS5 in Malignant Tumors. Front. Oncol. 2022, 12, 846497. [Google Scholar] [CrossRef]
- Jarinova, O.; Stewart, A.F.R.; Roberts, R.; Wells, G.; Lau, P.; Naing, T.; Buerki, C.; McLean, B.W.; Cook, R.C.; Parker, J.S.; et al. Functional Analysis of the Chromosome 9p21.3 Coronary Artery Disease Risk Locus. Arter. Thromb. Vasc. Biol. 2009, 29, 1671–1677. [Google Scholar] [CrossRef]
- Holdt, L.M.; Hoffmann, S.; Sass, K.; Langenberger, D.; Scholz, M.; Krohn, K.; Finstermeier, K.; Stahringer, A.; Wilfert, W.; Beutner, F.; et al. Alu Elements in ANRIL Non-Coding RNA at Chromosome 9p21 Modulate Atherogenic Cell Functions through Trans-Regulation of Gene Networks. PLoS Genet. 2013, 9, e1003588. [Google Scholar] [CrossRef]
- Alfeghaly, C.; Sanchez, A.; Rouget, R.; Thuillier, Q.; Igel-Bourguignon, V.; Marchand, V.; Branlant, C.; Motorin, Y.; Behm-Ansmant, I.; Maenner, S. Implication of Repeat Insertion Domains in the Trans-Activity of the Long Non-Coding RNA ANRIL. Nucleic Acids Res. 2021, 49, 4954–4970. [Google Scholar] [CrossRef]
- Razeghian-Jahromi, I.; Karimi Akhormeh, A.; Zibaeenezhad, M.J. The Role of ANRIL in Atherosclerosis. Dis. Markers 2022, 2022, 8859677. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.; Hsieh, C.-H.; Alonso, L.C. ANRIL: A LncRNA at the CDKN2A/B Locus with Roles in Cancer and Metabolic Disease. Front. Endocrinol. 2018, 9, 405. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.-M.; Ju, H.-Y.; Wu, Y.-T.; Guo, W.; Mao, L.; Ma, H.-L.; Xia, W.-Y.; Hu, J.-Z.; Ren, G.-X. Long Non-Coding RNA ANRIL Promotes Tumorgenesis through Regulation of FGFR1 Expression by Sponging MiR-125a-3p in Head and Neck Squamous Cell Carcinoma. Am. J. Cancer Res. 2018, 8, 2296–2310. [Google Scholar] [PubMed]
- Holdt, L.M.; Stahringer, A.; Sass, K.; Pichler, G.; Kulak, N.A.; Wilfert, W.; Kohlmaier, A.; Herbst, A.; Northoff, B.H.; Nicolaou, A.; et al. Circular Non-Coding RNA ANRIL Modulates Ribosomal RNA Maturation and Atherosclerosis in Humans. Nat. Commun. 2016, 7, 12429. [Google Scholar] [CrossRef]
- Yap, K.L.; Li, S.; Muñoz-Cabello, A.M.; Raguz, S.; Zeng, L.; Mujtaba, S.; Gil, J.; Walsh, M.J.; Zhou, M.-M. Molecular Interplay of the Noncoding RNA ANRIL and Methylated Histone H3 Lysine 27 by Polycomb CBX7 in Transcriptional Silencing of INK4a. Mol. Cell. 2010, 38, 662–674. [Google Scholar] [CrossRef]
- Zhou, X.; Han, X.; Wittfeldt, A.; Sun, J.; Liu, C.; Wang, X.; Gan, L.-M.; Cao, H.; Liang, Z. Long Non-Coding RNA ANRIL Regulates Inflammatory Responses as a Novel Component of NF-ΚB Pathway. RNA Biol. 2016, 13, 98–108. [Google Scholar] [CrossRef]
- Wufuer, A.; Luohemanjiang, X.; Du, L.; Lei, J.; Shabier, M.; Han, D.F.; Ma, J. ANRIL Overexpression Globally Induces Expression and Alternative Splicing of Genes Involved in Inflammation in HUVECs. Mol. Med. Rep. 2023, 27, 27. [Google Scholar] [CrossRef]
- Farooq, U.; Notani, D. Transcriptional Regulation of INK4/ARF Locus by Cis and Trans Mechanisms. Front. Cell. Dev. Biol. 2022, 10, 948351. [Google Scholar] [CrossRef]
- Sherr, C.J.; Roberts, J.M. CDK Inhibitors: Positive and Negative Regulators of G1-Phase Progression. Genes Dev. 1999, 13, 1501–1512. [Google Scholar] [CrossRef]
- Pacifico, A.; Leone, G. Role of P53 and CDKN2A Inactivation in Human Squamous Cell Carcinomas. J. Biomed. Biotechnol. 2007, 2007, 43418. [Google Scholar] [CrossRef]
- Pasmant, E.; Laurendeau, I.; Héron, D.; Vidaud, M.; Vidaud, D.; Bièche, I. Characterization of a Germ-Line Deletion, Including the Entire INK4/ARF Locus, in a Melanoma-Neural System Tumor Family: Identification of ANRIL, an Antisense Noncoding RNA Whose Expression Coclusters with ARF. Cancer Res. 2007, 67, 3963–3969. [Google Scholar] [CrossRef] [PubMed]
- Akbari, M.; Hussen, B.M.; Eslami, S.; Neishabouri, S.M.; Ghafouri-Fard, S. Association between ANRIL Polymorphisms and Risk of Obsessive-Compulsive Disorder. Heliyon 2023, 9, e14081. [Google Scholar] [CrossRef] [PubMed]
- AbdAllah, N.B.; Al Ageeli, E.; Shbeer, A.; Abdulhakim, J.A.; Toraih, E.A.; Salman, D.O.; Fawzy, M.S.; Nassar, S.S. Long Non-Coding RNAs ANRIL and HOTAIR Upregulation Is Associated with Survival in Neonates with Sepsis in a Neonatal Intensive Care Unit. Int. J. Gen. Med. 2022, 15, 6237–6247. [Google Scholar] [CrossRef]
- Huang, G.; Liang, D.; Luo, L.; Lan, C.; Luo, C.; Xu, H.; Lai, J. Significance of the LncRNAs MALAT1 and ANRIL in Occurrence and Development of Glaucoma. J. Clin. Lab. Anal. 2022, 36, e24215. [Google Scholar] [CrossRef] [PubMed]
- Mirzajani, S.; Ghafouri-Fard, S.; Habibabadi, J.M.; Glassy, M.C.; Sayad, A.; Taheri, M. Altered ANRIL Methylation in Epileptic Patients. J. Mol. Neurosci. 2021, 71, 193–199. [Google Scholar] [CrossRef] [PubMed]
- Ghafouri-Fard, S.; Safari, M.; Taheri, M.; Samadian, M. Expression of Linear and Circular LncRNAs in Alzheimer’s Disease. J. Mol. Neurosci. 2022, 72, 187–200. [Google Scholar] [CrossRef]
- Abd-Elmawla, M.A.; Fawzy, M.W.; Rizk, S.M.; Shaheen, A.A. Role of Long Non-Coding RNAs Expression (ANRIL, NOS3-AS, and APOA1-AS) in Development of Atherosclerosis in Egyptian Systemic Lupus Erythematosus Patients. Clin. Rheumatol. 2018, 37, 3319–3328. [Google Scholar] [CrossRef]
- Thomas, A.A.; Feng, B.; Chakrabarti, S. ANRIL: A Regulator of VEGF in Diabetic Retinopathy. Investig. Ophthalmol. Vis. Sci. 2017, 58, 470–480. [Google Scholar] [CrossRef]
- Hannou, S.A.; Wouters, K.; Paumelle, R.; Staels, B. Functional Genomics of the CDKN2A/B Locus in Cardiovascular and Metabolic Disease: What Have We Learned from GWASs? Trends Endocrinol. Metab. 2015, 26, 176–184. [Google Scholar] [CrossRef]
- Sato, K.; Nakagawa, H.; Tajima, A.; Yoshida, K.; Inoue, I. ANRIL Is Implicated in the Regulation of Nucleus and Potential Transcriptional Target of E2F1. Oncol. Rep. 2010, 24, 701–707. [Google Scholar] [CrossRef]
- Wan, G.; Mathur, R.; Hu, X.; Liu, Y.; Zhang, X.; Peng, G.; Lu, X. Long Non-Coding RNA ANRIL (CDKN2B-AS) Is Induced by the ATM-E2F1 Signaling Pathway. Cell. Signal. 2013, 25, 1086–1095. [Google Scholar] [CrossRef] [PubMed]
- Taheri, M.; Ghafouri-Fard, S. Antisense Non-Coding RNA in the INK4 Locus (ANRIL) in Human Cancers. Int. J. Cancer Manag. 2018, 11, e67864. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiong, Y.; Yarbrough, W.G. ARF Promotes MDM2 Degradation and Stabilizes P53: ARF-INK4a Locus Deletion Impairs Both the Rb and P53 Tumor Suppression Pathways. Cell 1998, 92, 725–734. [Google Scholar] [CrossRef] [PubMed]
- Folkersen, L.; Kyriakou, T.; Goel, A.; Peden, J.; Mälarstig, A.; Paulsson-Berne, G.; Hamsten, A.; Watkins, H.; Franco-Cereceda, A.; Gabrielsen, A.; et al. Relationship between CAD Risk Genotype in the Chromosome 9p21 Locus and Gene Expression. Identification of Eight New ANRIL Splice Variants. PLoS ONE 2009, 4, e7677. [Google Scholar] [CrossRef] [PubMed]
- Burd, C.E.; Jeck, W.R.; Liu, Y.; Sanoff, H.K.; Wang, Z.; Sharpless, N.E. Expression of Linear and Novel Circular Forms of an INK4/ARF-Associated Non-Coding RNA Correlates with Atherosclerosis Risk. PLoS Genet. 2010, 6, e1001233. [Google Scholar] [CrossRef]
- GTEx Consortium Human Genomics. The Genotype-Tissue Expression (GTEx) Pilot Analysis: Multitissue Gene Regulation in Humans. Science 2015, 348, 648–660. [Google Scholar] [CrossRef]
- Cardoso-Moreira, M.; Halbert, J.; Valloton, D.; Velten, B.; Chen, C.; Shao, Y.; Liechti, A.; Ascenção, K.; Rummel, C.; Ovchinnikova, S.; et al. Gene Expression across Mammalian Organ Development. Nature 2019, 571, 505–509. [Google Scholar] [CrossRef]
- Lin, L.; Gu, Z.-T.; Chen, W.-H.; Cao, K.-J. Increased Expression of the Long Non-Coding RNA ANRIL Promotes Lung Cancer Cell Metastasis and Correlates with Poor Prognosis. Diagn. Pathol. 2015, 10, 14. [Google Scholar] [CrossRef]
- Sun, Y.; Zheng, Z.-P.; Li, H.; Zhang, H.-Q.; Ma, F.-Q. ANRIL Is Associated with the Survival Rate of Patients with Colorectal Cancer, and Affects Cell Migration and Invasion in Vitro. Mol. Med. Rep. 2016, 14, 1714–1720. [Google Scholar] [CrossRef]
- Hirosue, A.; Ishihara, K.; Tokunaga, K.; Watanabe, T.; Saitoh, N.; Nakamoto, M.; Chandra, T.; Narita, M.; Shinohara, M.; Nakao, M. Quantitative Assessment of Higher-Order Chromatin Structure of the INK4/ARF Locus in Human Senescent Cells. Aging Cell. 2012, 11, 553–556. [Google Scholar] [CrossRef]
- Rao, S.S.P.; Huntley, M.H.; Durand, N.C.; Stamenova, E.K.; Bochkov, I.D.; Robinson, J.T.; Sanborn, A.L.; Machol, I.; Omer, A.D.; Lander, E.S.; et al. A 3D Map of the Human Genome at Kilobase Resolution Reveals Principles of Chromatin Looping. Cell 2014, 159, 1665–1680. [Google Scholar] [CrossRef] [PubMed]
- Harismendy, O.; Notani, D.; Song, X.; Rahim, N.G.; Tanasa, B.; Heintzman, N.; Ren, B.; Fu, X.-D.; Topol, E.J.; Rosenfeld, M.G.; et al. 9p21 DNA Variants Associated with Coronary Artery Disease Impair Interferon-γ Signalling Response. Nature 2011, 470, 264–268. [Google Scholar] [CrossRef] [PubMed]
- Gan, Y.; Ma, W.; Wang, X.; Qiao, J.; Zhang, B.; Cui, C.; Liu, Z.; Deng, D. Coordinated Transcription of ANRIL and P16 Genes Is Silenced by P16 DNA Methylation. Chin. J. Cancer Res. 2018, 30, 93–103. [Google Scholar] [CrossRef] [PubMed]
- Islam, Z.; Saravanan, B.; Walavalkar, K.; Farooq, U.; Singh, A.K.; Radhakrishnan, S.; Thakur, J.; Pandit, A.; Henikoff, S.; Notani, D. Active Enhancers Strengthen Insulation by RNA-Mediated CTCF Binding at Chromatin Domain Boundaries. Genome Res. 2023, 33, 1–17. [Google Scholar] [CrossRef]
- Özgür, E.; Mert, U.; Isin, M.; Okutan, M.; Dalay, N.; Gezer, U. Differential Expression of Long Non-Coding RNAs during Genotoxic Stress-Induced Apoptosis in HeLa and MCF-7 Cells. Clin. Exp. Med. 2013, 13, 119–126. [Google Scholar] [CrossRef]
- Yin, X.; Liao, Y.; Xiong, W.; Zhang, Y.; Zhou, Y.; Yang, Y. Hypoxia-Induced LncRNA ANRIL Promotes Cisplatin Resistance in Retinoblastoma Cells through Regulating ABCG2 Expression. Clin. Exp. Pharmacol. Physiol. 2020, 47, 1049–1057. [Google Scholar] [CrossRef]
- Rodriguez, C.; Borgel, J.; Court, F.; Cathala, G.; Forné, T.; Piette, J. CTCF Is a DNA Methylation-Sensitive Positive Regulator of the INK/ARF Locus. Biochem. Biophys. Res. Commun. 2010, 392, 129–134. [Google Scholar] [CrossRef]
- Rahme, G.J.; Javed, N.M.; Puorro, K.L.; Xin, S.; Hovestadt, V.; Johnstone, S.E.; Bernstein, B.E. Modeling Epigenetic Lesions That Cause Gliomas. Cell 2023, 186, 3674–3685.e14. [Google Scholar] [CrossRef]
- Lillycrop, K.; Murray, R.; Cheong, C.; Teh, A.L.; Clarke-Harris, R.; Barton, S.; Costello, P.; Garratt, E.; Cook, E.; Titcombe, P.; et al. ANRIL Promoter DNA Methylation: A Perinatal Marker for Later Adiposity. EBioMedicine 2017, 19, 60–72. [Google Scholar] [CrossRef]
- Curtis, E.M.; Murray, R.; Titcombe, P.; Cook, E.; Clarke-Harris, R.; Costello, P.; Garratt, E.; Holbrook, J.D.; Barton, S.; Inskip, H.; et al. Perinatal DNA Methylation at CDKN2A Is Associated with Offspring Bone Mass: Findings From the Southampton Women’s Survey. J. Bone Min. Res. 2017, 32, 2030–2040. [Google Scholar] [CrossRef]
- Deng, W.; Wang, J.; Zhang, J.; Cai, J.; Bai, Z.; Zhang, Z. TET2 Regulates LncRNA-ANRIL Expression and Inhibits the Growth of Human Gastric Cancer Cells. IUBMB Life 2016, 68, 355–364. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Zhou, X.; Xu, L.; Rong, C.; Shen, C.; Bian, W. Long Noncoding RNA ANRIL Could Be Transactivated by C-Myc and Promote Tumor Progression of Non-Small-Cell Lung Cancer. Onco. Targets Ther. 2016, 9, 3077–3084. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.-H.; Tang, J.-M.; Li, J.; Li, X.-W. Upregulation of SOX2-Activated LncRNA ANRIL Promotes Nasopharyngeal Carcinoma Cell Growth. Sci. Rep. 2018, 8, 3333. [Google Scholar] [CrossRef] [PubMed]
- Huang, M.; Chen, W.; Qi, F.; Xia, R.; Sun, M.; Xu, T.; Yin, L.; Zhang, E.; De, W.; Shu, Y. Long Non-Coding RNA ANRIL Is Upregulated in Hepatocellular Carcinoma and Regulates Cell Apoptosis by Epigenetic Silencing of KLF2. J. Hematol. Oncol. 2015, 8, 50. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Song, J.; Qu, M.; Gao, X.; Zhang, W.; Wang, Z.; Zhao, L.; Wang, Y.; Li, B.; Li, J.; et al. Integrative Epigenome Map of the Normal Human Prostate Provides Insights into Prostate Cancer Predisposition. Front. Cell. Dev. Biol. 2021, 9, 723676. [Google Scholar] [CrossRef] [PubMed]
- Kang, Y.-H.; Kim, D.; Jin, E.-J. Down-Regulation of Phospholipase D Stimulates Death of Lung Cancer Cells Involving Up-Regulation of the Long NcRNA ANRIL. Anticancer Res. 2015, 35, 2795–2803. [Google Scholar]
- Zhang, L.; Liu, J.; Lin, S.; Tan, J.; Huang, B.; Lin, J. Qingjie Fuzheng Granule Inhibited the Migration and Invasion of Colorectal Cancer Cells by Regulating the LncRNA ANRIL/Let-7a/TGF-Β1/Smad Axis. Evid. Based Complement. Altern. Med. 2020, 2020, 5264651. [Google Scholar] [CrossRef]
- Ma, W.; Qiao, J.; Zhou, J.; Gu, L.; Deng, D. Characterization of Novel LncRNA P14AS as a Protector of ANRIL through AUF1 Binding in Human Cells. Mol. Cancer 2020, 19, 42. [Google Scholar] [CrossRef]
- Xie, X.; Lin, J.; Fan, X.; Zhong, Y.; Chen, Y.; Liu, K.; Ren, Y.; Chen, X.; Lai, D.; Li, X.; et al. LncRNA CDKN2B-AS1 Stabilized by IGF2BP3 Drives the Malignancy of Renal Clear Cell Carcinoma through Epigenetically Activating NUF2 Transcription. Cell Death Dis. 2021, 12, 201. [Google Scholar] [CrossRef]
- He, S.; Gu, W.; Li, Y.; Zhu, H. ANRIL/CDKN2B-AS Shows Two-Stage Clade-Specific Evolution and Becomes Conserved after Transposon Insertions in Simians. BMC Evol. Biol. 2013, 13, 247. [Google Scholar] [CrossRef]
- Bourque, G.; Burns, K.H.; Gehring, M.; Gorbunova, V.; Seluanov, A.; Hammell, M.; Imbeault, M.; Izsvák, Z.; Levin, H.L.; Macfarlan, T.S.; et al. Ten Things You Should Know about Transposable Elements. Genome Biol. 2018, 19, 199. [Google Scholar] [CrossRef]
- Kapusta, A.; Kronenberg, Z.; Lynch, V.J.; Zhuo, X.; Ramsay, L.; Bourque, G.; Yandell, M.; Feschotte, C. Transposable Elements Are Major Contributors to the Origin, Diversification, and Regulation of Vertebrate Long Noncoding RNAs. PLoS Genet. 2013, 9, e1003470. [Google Scholar] [CrossRef] [PubMed]
- Kapusta, A.; Feschotte, C. Volatile Evolution of Long Noncoding RNA Repertoires: Mechanisms and Biological Implications. Trends Genet. 2014, 30, 439–452. [Google Scholar] [CrossRef] [PubMed]
- Palazzo, A.F.; Koonin, E.V. Functional Long Non-Coding RNAs Evolve from Junk Transcripts. Cell 2020, 183, 1151–1161. [Google Scholar] [CrossRef] [PubMed]
- Johnson, R.; Guigó, R. The RIDL Hypothesis: Transposable Elements as Functional Domains of Long Noncoding RNAs. RNA 2014, 20, 959–976. [Google Scholar] [CrossRef] [PubMed]
- Cunningham, F.; Allen, J.E.; Allen, J.; Alvarez-Jarreta, J.; Amode, M.R.; Armean, I.M.; Austine-Orimoloye, O.; Azov, A.G.; Barnes, I.; Bennett, R.; et al. Ensembl 2022. Nucleic Acids Res. 2022, 50, D988–D995. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.-W.; Pan, J.-J.; Hu, J.-F.; Zhang, J.-Q.; Huang, L.; Huang, Y.; Liao, C.-Y.; Yang, C.; Chen, Z.-W.; Wang, Y.-D.; et al. SRSF3-Mediated Regulation of N6-Methyladenosine Modification-Related LncRNA ANRIL Splicing Promotes Resistance of Pancreatic Cancer to Gemcitabine. Cell. Rep. 2022, 39, 110813. [Google Scholar] [CrossRef]
- Sarkar, D.; Oghabian, A.; Bodiyabadu, P.K.; Joseph, W.R.; Leung, E.Y.; Finlay, G.J.; Baguley, B.C.; Askarian-Amiri, M.E. Multiple Isoforms of ANRIL in Melanoma Cells: Structural Complexity Suggests Variations in Processing. Int. J. Mol. Sci. 2017, 18, 1378. [Google Scholar] [CrossRef]
- Zhao, J.; Jin, W.; Yi, K.; Wang, Q.; Zhou, J.; Tan, Y.; Xu, C.; Xiao, M.; Hong, B.; Xu, F.; et al. Combination LSD1 and HOTAIR-EZH2 Inhibition Disrupts Cell Cycle Processes and Induces Apoptosis in Glioblastoma Cells. Pharmacol. Res. 2021, 171, 105764. [Google Scholar] [CrossRef]
- Cho, H.; Li, Y.; Archacki, S.; Wang, F.; Yu, G.; Chakrabarti, S.; Guo, Y.; Chen, Q.; Wang, Q.K. Splice Variants of LncRNA RNA ANRIL Exert Opposing Effects on Endothelial Cell Activities Associated with Coronary Artery Disease. RNA Biol. 2020, 17, 1391–1401. [Google Scholar] [CrossRef]
- Chen, L.-L.; Yang, L. Regulation of CircRNA Biogenesis. RNA Biol. 2015, 12, 381–388. [Google Scholar] [CrossRef] [PubMed]
- Zang, J.; Lu, D.; Xu, A. The Interaction of CircRNAs and RNA Binding Proteins: An Important Part of CircRNA Maintenance and Function. J. Neurosci. Res. 2020, 98, 87–97. [Google Scholar] [CrossRef] [PubMed]
- Razeghian-Jahromi, I.; Zibaeenezhad, M.J.; Karimi Akhormeh, A.; Dara, M. Expression Ratio of Circular to Linear ANRIL in Hypertensive Patients with Coronary Artery Disease. Sci. Rep. 2022, 12, 1802. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhu, L.; Zhao, W.; Zhou, Y.; Shao, S. High Expression of ANRIL Correlated with the Poor Prognosis in Patients with Cancer: A Meta-Analysis. Medicine 2022, 101, e30531. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Chen, Y.; Huang, Y.; Cao, K.; Liu, T.; Shen, H.; Cui, J.; Li, B.; Cai, J.; Gao, F.; et al. Long Non-Coding RNA ANRIL Promotes Homologous Recombination-Mediated DNA Repair by Maintaining ATR Protein Stability to Enhance Cancer Resistance. Mol. Cancer 2021, 20, 94. [Google Scholar] [CrossRef] [PubMed]
- Naemura, M.; Murasaki, C.; Inoue, Y.; Okamoto, H.; Kotake, Y. Long Noncoding RNA ANRIL Regulates Proliferation of Non-Small Cell Lung Cancer and Cervical Cancer Cells. Anticancer Res. 2015, 35, 5377–5382. [Google Scholar]
- Tian, Z.; Wen, S.; Zhang, Y.; Shi, X.; Zhu, Y.; Xu, Y.; Lv, H.; Wang, G. Identification of Dysregulated Long Non-Coding RNAs/MicroRNAs/MRNAs in TNM I Stage Lung Adenocarcinoma. Oncotarget 2017, 8, 51703–51718. [Google Scholar] [CrossRef]
- Du, Y.; Hao, X.; Liu, X. Low Expression of Long Noncoding RNA CDKN2B-AS1 in Patients with Idiopathic Pulmonary Fibrosis Predicts Lung Cancer by Regulating the P53-Signaling Pathway. Oncol. Lett. 2018, 15, 4912–4918. [Google Scholar] [CrossRef]
- Kato, E.; Takayanagi, N.; Takaku, Y.; Kagiyama, N.; Kanauchi, T.; Ishiguro, T.; Sugita, Y. Incidence and Predictive Factors of Lung Cancer in Patients with Idiopathic Pulmonary Fibrosis. ERJ Open Res. 2018, 4, 00111–02016. [Google Scholar] [CrossRef]
- Artinian, V.; Kvale, P.A. Cancer and Interstitial Lung Disease. Curr. Opin. Pulm. Med. 2004, 10, 425–434. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhao, L.; Yang, S.; Cen, Y.; Zhu, T.; Wang, L.; Xia, L.; Liu, Y.; Zou, J.; Xu, J.; et al. CircCDKN2B-AS1 Interacts with IMP3 to Stabilize Hexokinase 2 MRNA and Facilitate Cervical Squamous Cell Carcinoma Aerobic Glycolysis Progression. J. Exp. Clin. Cancer Res. 2020, 39, 281. [Google Scholar] [CrossRef]
- MacMillan, H.J.; Kong, Y.; Calvo-Roitberg, E.; Alonso, L.C.; Pai, A.A. High-Throughput Analysis of ANRIL CircRNA Isoforms in Human Pancreatic Islets. Sci. Rep. 2022, 12, 7745. [Google Scholar] [CrossRef] [PubMed]
- Guan, J.; Guan, B.; Shang, H.; Peng, J.; Yang, H.; Lin, J. Babao Dan Inhibits Lymphangiogenesis of Gastric Cancer in Vitro and in Vivo via LncRNA-ANRIL/VEGF-C/VEGFR-3 Signaling Axis. Biomed. Pharmacother. 2022, 154, 113630. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Zhang, M.; Niu, Q.; Zhang, F.; Yang, Y.; Jiang, X. Knockdown of Long Non-Coding RNA ANRIL Inhibits Tumorigenesis in Human Gastric Cancer Cells via MicroRNA-99a-Mediated down-Regulation of BMI1. Braz. J. Med. Biol. Res. 2018, 51, e6839. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Lin, D.; Yu, Z.; Li, H.; Zhao, S.; Hainisayimu, T.; Liu, L.; Wang, K. A Nomogram Model Based on the Number of Examined Lymph Nodes-Related Signature to Predict Prognosis and Guide Clinical Therapy in Gastric Cancer. Front. Immunol. 2022, 13, 947802. [Google Scholar] [CrossRef]
- Hu, X.; Lou, T.; Yuan, C.; Wang, Y.; Tu, X.; Wang, Y.; Zhang, T. Effects of LncRNA ANRIL-Knockdown on the Proliferation, Apoptosis and Cell Cycle of Gastric Cancer Cells. Oncol. Lett. 2021, 22, 621. [Google Scholar] [CrossRef]
- Lan, W.-G.; Xu, D.-H.; Xu, C.; Ding, C.-L.; Ning, F.-L.; Zhou, Y.-L.; Ma, L.-B.; Liu, C.-M.; Han, X. Silencing of Long Non-Coding RNA ANRIL Inhibits the Development of Multidrug Resistance in Gastric Cancer Cells. Oncol. Rep. 2016, 36, 263–270. [Google Scholar] [CrossRef]
- Zhang, E.; Kong, R.; Yin, D.; You, L.; Sun, M.; Han, L.; Xu, T.; Xia, R.; Yang, J.; De, W.; et al. Long Noncoding RNA ANRIL Indicates a Poor Prognosis of Gastric Cancer and Promotes Tumor Growth by Epigenetically Silencing of MiR-99a/MiR-449a. Oncotarget 2014, 5, 2276–2292. [Google Scholar] [CrossRef]
- Ma, J.; Zhao, W.; Zhang, H.; Chu, Z.; Liu, H.; Fang, X.; Tang, D. Long Non-Coding RNA ANRIL Promotes Chemoresistance in Triple-Negative Breast Cancer via Enhancing Aerobic Glycolysis. Life Sci. 2022, 306, 120810. [Google Scholar] [CrossRef]
- Luo, Z.-B.; Lai, G.-E.; Jiang, T.; Cao, C.-L.; Peng, T.; Liu, F.-E. A Competing Endogenous RNA Network Reveals Novel LncRNA, MiRNA and MRNA Biomarkers With Diagnostic and Prognostic Value for Early Breast Cancer. Technol. Cancer Res. Treat. 2020, 19, 1533033820983293. [Google Scholar] [CrossRef]
- Xu, S.-T.; Xu, J.-H.; Zheng, Z.-R.; Zhao, Q.-Q.; Zeng, X.-S.; Cheng, S.-X.; Liang, Y.-H.; Hu, Q.-F. Long Non-Coding RNA ANRIL Promotes Carcinogenesis via Sponging MiR-199a in Triple-Negative Breast Cancer. Biomed. Pharmacother. 2017, 96, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Jung, J.H.; Chae, Y.S.; Park, H.Y.; Kim, W.W.; Lee, S.J.; Jeong, J.-H.; Kang, S.H. Long Noncoding RNA SnaR Regulates Proliferation, Migration and Invasion of Triple-Negative Breast Cancer Cells. Anticancer Res. 2016, 36, 6289–6295. [Google Scholar] [CrossRef] [PubMed]
- Deng, N.; Chen, K.; Fan, H.; Jin, F. The Synergistic Effect of CDKN2B-AS1 and SPC25 on Triple-Negative Breast Cancer. Ann. Transl. Med. 2022, 10, 783. [Google Scholar] [CrossRef]
- Mehta-Mujoo, P.M.; Cunliffe, H.E.; Hung, N.A.; Slatter, T.L. Long Non-Coding RNA ANRIL in the Nucleus Associates with Periostin Expression in Breast Cancer. Front. Oncol. 2019, 9, 885. [Google Scholar] [CrossRef] [PubMed]
- Xu, C.; Zhai, J.; Fu, Y. LncRNA CDKN2B-AS1 Promotes the Progression of Ovarian Cancer by MiR-143-3p/SMAD3 Axis and Predicts a Poor Prognosis. Neoplasma 2020, 67, 782–793. [Google Scholar] [CrossRef]
- Miao, J.-T.; Gao, J.-H.; Chen, Y.-Q.; Chen, H.; Meng, H.-Y.; Lou, G. LncRNA ANRIL Affects the Sensitivity of Ovarian Cancer to Cisplatin via Regulation of Let-7a/HMGA2 Axis. Biosci. Rep. 2019, 39, BSR20182101. [Google Scholar] [CrossRef]
- Qiu, J.-J.; Wang, Y.; Liu, Y.-L.; Zhang, Y.; Ding, J.-X.; Hua, K.-Q. The Long Non-Coding RNA ANRIL Promotes Proliferation and Cell Cycle Progression and Inhibits Apoptosis and Senescence in Epithelial Ovarian Cancer. Oncotarget 2016, 7, 32478–32492. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, Y.; Liu, H.; Su, D.; Luo, F.; Zhou, F. Long Noncoding RNA CDKN2B-AS1 Interacts with MiR-411-3p to Regulate Ovarian Cancer in Vitro and in Vivo through HIF-1a/VEGF/P38 Pathway. Biochem. Biophys. Res. Commun. 2019, 514, 44–50. [Google Scholar] [CrossRef]
- Zhang, D.; Sun, G.; Zhang, H.; Tian, J.; Li, Y. Long Non-Coding RNA ANRIL Indicates a Poor Prognosis of Cervical Cancer and Promotes Carcinogenesis via PI3K/Akt Pathways. Biomed. Pharmacother. 2017, 85, 511–516. [Google Scholar] [CrossRef]
- Sadri, S.; Rejali, L.; Hadizadeh, M.; Aghdaei, H.A.; Young, C.; Nazemalhosseini-Mojarad, E.; Zali, M.R.; Bonab, M.A. ANRIL as a Prognostic Biomarker in Colon Pre-Cancerous Lesion Detection via Non-Invasive Sampling. Genes Genet. Syst. 2022, 96, 285–292. [Google Scholar] [CrossRef]
- Akbari, F.; Peymani, M.; Salehzadeh, A.; Ghaedi, K. Integrative in Silico and in Vitro Transcriptomics Analysis Revealed New LncRNAs Related to Intrinsic Apoptotic Genes in Colorectal Cancer. Cancer Cell Int. 2020, 20, 546. [Google Scholar] [CrossRef] [PubMed]
- Wu, M.; Li, W.; Huang, F.; Sun, J.; Li, K.P.; Shi, J.; Yang, J.; Li, J.; Li, Y.; Hu, N.; et al. Comprehensive Analysis of the Expression Profiles of Long Non-Coding RNAs with Associated CeRNA Network Involved in the Colon Cancer Staging and Progression. Sci. Rep. 2019, 9, 16910. [Google Scholar] [CrossRef] [PubMed]
- Abbastabar, M.; Sarfi, M.; Golestani, A.; Karimi, A.; Pourmand, G.; Khalili, E. Tumor-Derived Urinary Exosomal Long Non-Coding RNAs as Diagnostic Biomarkers for Bladder Cancer. EXCLI J. 2020, 19, 301–310. [Google Scholar] [CrossRef]
- Zhu, H.; Li, X.; Song, Y.; Zhang, P.; Xiao, Y.; Xing, Y. Long Non-Coding RNA ANRIL Is up-Regulated in Bladder Cancer and Regulates Bladder Cancer Cell Proliferation and Apoptosis through the Intrinsic Pathway. Biochem. Biophys. Res. Commun. 2015, 467, 223–228. [Google Scholar] [CrossRef]
- Martínez-Fernández, M.; Feber, A.; Dueñas, M.; Segovia, C.; Rubio, C.; Fernandez, M.; Villacampa, F.; Duarte, J.; López-Calderón, F.F.; Gómez-Rodriguez, M.J.; et al. Analysis of the Polycomb-Related LncRNAs HOTAIR and ANRIL in Bladder Cancer. Clin. Epigenet. 2015, 7, 109. [Google Scholar] [CrossRef]
- Wu, Q.; He, Y.; Liu, X.; Luo, F.; Jiang, Y.; Xiang, M.; Zhao, R. Cancer Stem Cell-like Cells-Derived Exosomal LncRNA CDKN2B-AS1 Promotes Biological Characteristics in Thyroid Cancer via MiR-122-5p/P4HA1 Axis. Regen. Ther. 2023, 22, 19–29. [Google Scholar] [CrossRef] [PubMed]
- Xue, C.; Yi, C.; Lin, H.; Zhao, J.; Yuan, J.; Chen, Y.; Chen, H.; Lin, L.; Zhao, Y. LncRNA CDKN2B-AS1 Could Be an Indicator to Identify Prognosis and Status of Immune Microenvironment in Thyroid Cancer. Dis. Markers 2022, 2022, 4317480. [Google Scholar] [CrossRef] [PubMed]
- Lu, J.; Chen, Y.; Wen, L.; Zhou, Q.; Yan, S. LncRNA CDKN2B-AS1 Contributes to Glioma Development by Regulating the MiR-199a-5p/DDR1 Axis. J. Gene Med. 2022, 24, e3389. [Google Scholar] [CrossRef]
- Sun, Y.; Jing, Y.; Zhang, Y. Serum LncRNA-ANRIL and SOX9 Expression Levels in Glioma Patients and Their Relationship with Poor Prognosis. World J. Surg. Oncol. 2021, 19, 287. [Google Scholar] [CrossRef]
- Gao, Y.; Ma, H.; Hou, D. Sevoflurane Represses Proliferation and Migration of Glioma Cells by Regulating the ANRIL/Let-7b-5p Axis. Cancer Biother. Radiopharm. 2020. [Google Scholar] [CrossRef]
- Dai, W.; Tian, C.; Jin, S. Effect of LncRNA ANRIL Silencing on Anoikis and Cell Cycle in Human Glioma via MicroRNA-203a. Onco. Targets Ther. 2018, 11, 5103–5109. [Google Scholar] [CrossRef] [PubMed]
- Paul, Y.; Thomas, S.; Patil, V.; Kumar, N.; Mondal, B.; Hegde, A.S.; Arivazhagan, A.; Santosh, V.; Mahalingam, K.; Somasundaram, K. Genetic Landscape of Long Noncoding RNA (LncRNAs) in Glioblastoma: Identification of Complex LncRNA Regulatory Networks and Clinically Relevant LncRNAs in Glioblastoma. Oncotarget 2018, 9, 29548–29564. [Google Scholar] [CrossRef]
- Lee, A.M.; Ferdjallah, A.; Moore, E.; Kim, D.C.; Nath, A.; Greengard, E.; Huang, R.S. Long Non-Coding RNA ANRIL as a Potential Biomarker of Chemosensitivity and Clinical Outcomes in Osteosarcoma. Int. J. Mol. Sci. 2021, 22, 11168. [Google Scholar] [CrossRef] [PubMed]
- Luo, Y.; Tao, H.; Jin, L.; Xiang, W.; Guo, W. CDKN2B-AS1 Exerts Oncogenic Role in Osteosarcoma by Promoting Cell Proliferation and Epithelial to Mesenchymal Transition. Cancer Biother. Radiopharm. 2020, 35, 58–65. [Google Scholar] [CrossRef]
- Li, G.; Zhu, Y. Effect of LncRNA ANRIL Knockdown on Proliferation and Cisplatin Chemoresistance of Osteosarcoma Cells in Vitro. Pathol. Res. Pract. 2019, 215, 931–938. [Google Scholar] [CrossRef]
- Cheng, S.; Huang, T.; Li, P.; Zhang, W.; Wang, Z.; Chen, Y. Long Non-Coding RNA ANRIL Promotes the Proliferation, Migration and Invasion of Human Osteosarcoma Cells. Exp. Ther. Med. 2017, 14, 5121–5125. [Google Scholar] [CrossRef]
- Guan, H.; Mei, Y.; Mi, Y.; Li, C.; Sun, X.; Zhao, X.; Liu, J.; Cao, W.; Li, Y.; Wang, Y. Downregulation of LncRNA ANRIL Suppresses Growth and Metastasis in Human Osteosarcoma Cells. Onco. Targets Ther. 2018, 11, 4893–4899. [Google Scholar] [CrossRef] [PubMed]
- Yu, G.; Liu, G.; Yuan, D.; Dai, J.; Cui, Y.; Tang, X. Long Non-Coding RNA ANRIL Is Associated with a Poor Prognosis of Osteosarcoma and Promotes Tumorigenesis via PI3K/Akt Pathway. J. Bone Oncol. 2018, 11, 51–55. [Google Scholar] [CrossRef]
- Abula, A.; Saimaiti, G.; Maimaiti, X.; Wuqikun, W.; Abulaiti, A.; Ren, P.; Yusufu, A. The Stimulative Function of Long Noncoding RNA CDKN2B-AS1 in Osteosarcoma by Targeting the MicroRNA-122/CCNG1 Axis. J. Recept. Signal. Transduct. Res. 2022, 42, 71–79. [Google Scholar] [CrossRef]
- Yang, L.-H.; Du, P.; Liu, W.; An, L.-K.; Li, J.; Zhu, W.-Y.; Yuan, S.; Wang, L.; Zang, L. LncRNA ANRIL Promotes Multiple Myeloma Progression and Bortezomib Resistance by EZH2-Mediated Epigenetically Silencing of PTEN. Neoplasma 2021, 68, 788–797. [Google Scholar] [CrossRef]
- Wang, M.; Zhao, H.-Y.; Zhang, J.-L.; Wan, D.-M.; Li, Y.-M.; Jiang, Z.-X. Dysregulation of LncRNA ANRIL Mediated by MiR-411-3p Inhibits the Malignant Proliferation and Tumor Stem Cell like Property of Multiple Myeloma via Hypoxia-Inducible Factor 1α. Exp. Cell. Res. 2020, 396, 112280. [Google Scholar] [CrossRef] [PubMed]
- Drak Alsibai, K.; Vacher, S.; Meseure, D.; Nicolas, A.; Lae, M.; Schnitzler, A.; Chemlali, W.; Cros, J.; Longchampt, E.; Cacheux, W.; et al. High Positive Correlations between ANRIL and P16-CDKN2A/P15-CDKN2B/P14-ARF Gene Cluster Overexpression in Multi-Tumor Types Suggest Deregulated Activation of an ANRIL-ARF Bidirectional Promoter. Noncoding RNA 2019, 5, 44. [Google Scholar] [CrossRef] [PubMed]
- Tan, Z.; Zhu, K.; Yin, Y.; Luo, Z. Long Non-coding RNA ANRIL Is a Potential Indicator of Disease Progression and Poor Prognosis in Acute Myeloid Leukemia. Mol. Med. Rep. 2021, 23, 112. [Google Scholar] [CrossRef] [PubMed]
- Gamaleldin, M.A.; Ghallab, O.; Abo Elwafa, R.A. Prognostic Significance of Long Non Coding RNA ANRIL and SNHG14 in Acute Myeloid Leukemia. Asian Pac. J. Cancer Prev. 2021, 22, 3763–3771. [Google Scholar] [CrossRef]
- Sun, L.-Y.; Li, X.-J.; Sun, Y.-M.; Huang, W.; Fang, K.; Han, C.; Chen, Z.-H.; Luo, X.-Q.; Chen, Y.-Q.; Wang, W.-T. LncRNA ANRIL Regulates AML Development through Modulating the Glucose Metabolism Pathway of AdipoR1/AMPK/SIRT1. Mol. Cancer 2018, 17, 127. [Google Scholar] [CrossRef] [PubMed]
- Song, Z.; Wu, W.; Chen, M.; Cheng, W.; Yu, J.; Fang, J.; Xu, L.; Yasunaga, J.-I.; Matsuoka, M.; Zhao, T. Long Noncoding RNA ANRIL Supports Proliferation of Adult T-Cell Leukemia Cells through Cooperation with EZH2. J. Virol. 2018, 92, e00909–e00918. [Google Scholar] [CrossRef]
- Li, G.; Gao, L.; Zhao, J.; Liu, D.; Li, H.; Hu, M. LncRNA ANRIL/MiR-7-5p/TCF4 Axis Contributes to the Progression of T Cell Acute Lymphoblastic Leukemia. Cancer Cell. Int. 2020, 20, 335. [Google Scholar] [CrossRef]
- Xu, S.; Wang, H.; Pan, H.; Shi, Y.; Li, T.; Ge, S.; Jia, R.; Zhang, H.; Fan, X. ANRIL LncRNA Triggers Efficient Therapeutic Efficacy by Reprogramming the Aberrant INK4-Hub in Melanoma. Cancer Lett. 2016, 381, 41–48. [Google Scholar] [CrossRef]
- Xie, H.; Rachakonda, P.S.; Heidenreich, B.; Nagore, E.; Sucker, A.; Hemminki, K.; Schadendorf, D.; Kumar, R. Mapping of Deletion Breakpoints at the CDKN2A Locus in Melanoma: Detection of MTAP-ANRIL Fusion Transcripts. Oncotarget 2016, 7, 16490–16504. [Google Scholar] [CrossRef]
- Lin, Z.; Lei, Y.; Wen, M.; He, Q.; Tian, D.; Xie, H. MTAP-ANRIL Gene Fusion Promotes Melanoma Epithelial-Mesenchymal Transition-like Process by Activating the JNK and P38 Signaling Pathways. Sci. Rep. 2023, 13, 9073. [Google Scholar] [CrossRef]
- Shang, C.; Ao, C.N.; Cheong, C.C.; Meng, L. Long Non-Coding RNA CDKN2B Antisense RNA 1 Gene Contributes to Paclitaxel Resistance in Endometrial Carcinoma. Front. Oncol. 2019, 9, 27. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Ma, J.; Ma, X.-X. CDKN2B-AS1 Promotes Malignancy as a Novel Prognosis-Related Molecular Marker in the Endometrial Cancer Immune Microenvironment. Front. Cell. Dev. Biol. 2021, 9, 721676. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Zhang, H.; Duan, Y.; Zhu, J.; Dai, H. M6A-Related Long Noncoding RNAs Predict Prognosis and Indicate Therapeutic Response in Endometrial Carcinoma. J. Clin. Lab. Anal. 2023, 37, e24813. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Fan, W.; Sui, X.; Wang, J.; Zhao, J. Necroptosis-Related LncRNA Signatures for Prognostic Prediction in Uterine Corpora Endometrial Cancer. Reprod. Sci. 2023, 30, 576–589. [Google Scholar] [CrossRef] [PubMed]
- Angenard, G.; Merdrignac, A.; Louis, C.; Edeline, J.; Coulouarn, C. Expression of Long Non-Coding RNA ANRIL Predicts a Poor Prognosis in Intrahepatic Cholangiocarcinoma. Dig. Liver Dis. 2019, 51, 1337–1343. [Google Scholar] [CrossRef]
- Dasgupta, P.; Kulkarni, P.; Majid, S.; Hashimoto, Y.; Shiina, M.; Shahryari, V.; Bhat, N.S.; Tabatabai, L.; Yamamura, S.; Saini, S.; et al. LncRNA CDKN2B-AS1/MiR-141/Cyclin D Network Regulates Tumor Progression and Metastasis of Renal Cell Carcinoma. Cell Death Dis. 2020, 11, 660. [Google Scholar] [CrossRef]
- Ren, H.; Guo, X.; Li, F.; Xia, Q.; Chen, Z.; Xing, Y. Four Autophagy-Related Long Noncoding RNAs Provide Coexpression and CeRNA Mechanisms in Retinoblastoma through Bioinformatics and Experimental Evidence. ACS Omega 2021, 6, 33976–33984. [Google Scholar] [CrossRef]
- Liu, F.; Xiao, Y.; Ma, L.; Wang, J. Regulating of Cell Cycle Progression by the LncRNA CDKN2B-AS1/MiR-324-5p/ROCK1 Axis in Laryngeal Squamous Cell Cancer. Int. J. Biol. Markers 2020, 35, 47–56. [Google Scholar] [CrossRef]
- Chen, H.; Xin, Y.; Zhou, L.; Huang, J.; Tao, L.; Cheng, L.; Tian, J. Cisplatin and Paclitaxel Target Significant Long Noncoding RNAs in Laryngeal Squamous Cell Carcinoma. Med. Oncol. 2014, 31, 246. [Google Scholar] [CrossRef]
- Matsunaga, N.; Wakasaki, T.; Yasumatsu, R.; Kotake, Y. Long Noncoding RNA, ANRIL, Regulates the Proliferation of Head and Neck Squamous Cell Carcinoma. Anticancer Res. 2019, 39, 4073–4077. [Google Scholar] [CrossRef]
- Wang, Y.; Cheng, N.; Luo, J. Downregulation of LncRNA ANRIL Represses Tumorigenicity and Enhances Cisplatin-Induced Cytotoxicity via Regulating MicroRNA Let-7a in Nasopharyngeal Carcinoma. J. Biochem. Mol. Toxicol. 2017, 31, e21904. [Google Scholar] [CrossRef] [PubMed]
- Hao, Y.-R.; Zhang, D.-J.; Fu, Z.-M.; Guo, Y.-Y.; Guan, G.-F. Long Non-Coding RNA ANRIL Promotes Proliferation, Clonogenicity, Invasion and Migration of Laryngeal Squamous Cell Carcinoma by Regulating MiR-181a/Snai2 Axis. Regen. Ther. 2019, 11, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.-W.; Hu, Z.-L.; Li, H.; Tan, Q.-F.; Tong, J.; Zhang, Y.-Q. Knockdown of LncRNA ANRIL Suppresses the Production of Inflammatory Cytokines and Mucin 5AC in Nasal Epithelial Cells via the MiR-15a-5p/JAK2 Axis. Mol. Med. Rep. 2021, 23, 145. [Google Scholar] [CrossRef] [PubMed]
- Kopczyńska, M.; Kolenda, T.; Guglas, K.; Sobocińska, J.; Teresiak, A.; Bliźniak, R.; Mackiewicz, A.; Mackiewicz, J.; Lamperska, K. PRINS LncRNA Is a New Biomarker Candidate for HPV Infection and Prognosis of Head and Neck Squamous Cell Carcinomas. Diagnostics 2020, 10, 762. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Li, Y.; He, F.; Kong, J. LncRNA CDKN2B-AS1 Promotes Cell Viability, Migration, and Invasion of Hepatocellular Carcinoma via Sponging MiR-424-5p. Cancer Manag. Res. 2020, 12, 6807–6819. [Google Scholar] [CrossRef]
- Xu, L.; Wu, H.; Pan, J.; Chen, Z.; Du, L. Significance of LncRNA CDKN2B-AS1 in Interventional Therapy of Liver Cancer and the Mechanism under Its Participation in Tumour Cell Growth via MiR-199a-5p. J. Oncol. 2022, 2022, 2313416. [Google Scholar] [CrossRef]
- Huang, Y.; Xiang, B.; Liu, Y.; Wang, Y.; Kan, H. LncRNA CDKN2B-AS1 Promotes Tumor Growth and Metastasis of Human Hepatocellular Carcinoma by Targeting Let-7c-5p/NAP1L1 Axis. Cancer Lett. 2018, 437, 56–66. [Google Scholar] [CrossRef]
- Li, K.; Zhao, B.; Wei, D.; Cui, Y.; Qian, L.; Wang, W.; Liu, G. Long Non-Coding RNA ANRIL Enhances Mitochondrial Function of Hepatocellular Carcinoma by Regulating the MiR-199a-5p/ARL2 Axis. Environ. Toxicol. 2020, 35, 313–321. [Google Scholar] [CrossRef]
- Han, W.; Wang, Q.; Zheng, L.; Hong, H.; Yan, B.; Ma, Y.; Li, X.; Zhou, D. The Role of LncRNA ANRIL in the Progression of Hepatocellular Carcinoma. J. Pharm. Pharmacol. 2021, 73, 1033–1038. [Google Scholar] [CrossRef]
- Sabry, H.S.; Tayel, S.I.; Enar, M.E.; Elabd, N.S. Differential Expression of Long Noncoding RNA in Hepatocellular Carcinoma on Top of Chronic HCV and HBV Infections. Clin. Exp. Hepatol. 2021, 7, 337–350. [Google Scholar] [CrossRef]
- Hua, L.; Wang, C.-Y.; Yao, K.-H.; Chen, J.-T.; Zhang, J.-J.; Ma, W.-L. High Expression of Long Non-Coding RNA ANRIL Is Associated with Poor Prognosis in Hepatocellular Carcinoma. Int. J. Clin. Exp. Pathol. 2015, 8, 3076–3082. [Google Scholar] [PubMed]
- Sui, J.; Miao, Y.; Han, J.; Nan, H.; Shen, B.; Zhang, X.; Zhang, Y.; Wu, Y.; Wu, W.; Liu, T.; et al. Systematic Analyses of a Novel LncRNA-Associated Signature as the Prognostic Biomarker for Hepatocellular Carcinoma. Cancer Med. 2018, 7, 3240–3256. [Google Scholar] [CrossRef] [PubMed]
- Cunnington, M.S.; Santibanez Koref, M.; Mayosi, B.M.; Burn, J.; Keavney, B. Chromosome 9p21 SNPs Associated with Multiple Disease Phenotypes Correlate with ANRIL Expression. PLoS Genet. 2010, 6, e1000899. [Google Scholar] [CrossRef]
- Aguilo, F.; Di Cecilia, S.; Walsh, M.J. Long Non-Coding RNA ANRIL and Polycomb in Human Cancers and Cardiovascular Disease. Curr. Top. Microbiol. Immunol. 2016, 394, 29–39. [Google Scholar] [CrossRef] [PubMed]
- Ghobadi, N.; Mehramiz, M.; ShahidSales, S.; Rezaei Brojerdi, A.; Anvari, K.; Khazaei, M.; Rezayi, M.; Sadegh Khorrami, M.; Joudi-Mashhad, M.; Ramshini, H.; et al. A Genetic Variant in CDKN2A/2B Locus Was Associated with Poor Prognosis in Patients with Esophageal Squamous Cell Carcinoma. J. Cell. Physiol. 2019, 234, 5070–5076. [Google Scholar] [CrossRef]
- Maruei-Milan, R.; Heidari, Z.; Aryan, A.; Asadi-Tarani, M.; Salimi, S. Long Non-Coding RNA ANRIL Polymorphisms in Papillary Thyroid Cancer and Its Severity. Br. J. Biomed. Sci. 2021, 78, 58–62. [Google Scholar] [CrossRef]
- Zhang, H.; Mao, J.-S.; Hu, W.-F. Functional Genetic Single-Nucleotide Polymorphisms (SNPs) in Cyclin-Dependent Kinase Inhibitor 2A/B (CDKN2A/B) Locus Are Associated with Risk and Prognosis of Osteosarcoma in Chinese Populations. Med. Sci. Monit. 2019, 25, 1307–1313. [Google Scholar] [CrossRef]
- Barbieri, R.B.; Bufalo, N.E.; Secolin, R.; Assumpção, L.V.M.; Maciel, R.M.B.; Cerutti, J.M.; Ward, L.S. Polymorphisms of Cell Cycle Control Genes Influence the Development of Sporadic Medullary Thyroid Carcinoma. Eur. J. Endocrinol. 2014, 171, 761–767. [Google Scholar] [CrossRef]
- Lv, X.; Cui, Z.; Li, H.; Li, J.; Yang, Z.; Bi, Y.; Gao, M.; Zhang, Z.; Wang, S.; Zhou, B.; et al. Association between Polymorphism in CDKN2B-AS1 Gene and Its Interaction with Smoking on the Risk of Lung Cancer in a Chinese Population. Hum. Genom. 2019, 13, 58. [Google Scholar] [CrossRef]
- Tritto, V.; Ferrari, L.; Esposito, S.; Zuccotti, P.; Bianchessi, D.; Natacci, F.; Saletti, V.; Eoli, M.; Riva, P. Non-Coding RNA and Tumor Development in Neurofibromatosis Type 1: ANRIL Rs2151280 Is Associated with Optic Glioma Development and a Mild Phenotype in Neurofibromatosis Type 1 Patients. Genes 2019, 10, 892. [Google Scholar] [CrossRef]
- Deng, Y.; Zhou, L.; Li, N.; Wang, M.; Yao, L.; Dong, S.; Zhang, M.; Yang, P.; Hao, Q.; Wu, Y.; et al. Impact of Four LncRNA Polymorphisms (Rs2151280, Rs7763881, Rs1136410, and Rs3787016) on Glioma Risk and Prognosis: A Case-Control Study. Mol. Carcinog. 2019, 58, 2218–2229. [Google Scholar] [CrossRef] [PubMed]
- Poi, M.J.; Li, J.; Sborov, D.W.; VanGundy, Z.; Cho, Y.K.; Lamprecht, M.; Pichiorri, F.; Phelps, M.A.; Hofmeister, C.C. Polymorphism in ANRIL Is Associated with Relapse in Patients with Multiple Myeloma after Autologous Stem Cell Transplant. Mol. Carcinog. 2017, 56, 1722–1732. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Seligson, N.; Zhang, X.; Johnson, J.; Vangundy, Z.; Wang, D.; Phelps, M.; Hofmeister, C.; Sadee, W.; Poi, M.J. Association of ANRIL Polymorphism with Overall Survival in Adult Patients with Hematologic Malignancies After Allogeneic Hematopoietic Stem Cell Transplantation. Anticancer Res. 2020, 40, 5707–5713. [Google Scholar] [CrossRef] [PubMed]
- Stacey, S.N.; Sulem, P.; Masson, G.; Gudjonsson, S.A.; Thorleifsson, G.; Jakobsdottir, M.; Sigurdsson, A.; Gudbjartsson, D.F.; Sigurgeirsson, B.; Benediktsdottir, K.R.; et al. New Common Variants Affecting Susceptibility to Basal Cell Carcinoma. Nat. Genet. 2009, 41, 909–914. [Google Scholar] [CrossRef] [PubMed]
- Petkevicius, V.; Streleckiene, G.; Balciute, K.; Link, A.; Leja, M.; Malfertheiner, P.; Skieceviciene, J.; Kupcinskas, J. Association of Long Non-Coding RNA Polymorphisms with Gastric Cancer and Atrophic Gastritis. Genes 2020, 11, 1505. [Google Scholar] [CrossRef] [PubMed]
- Taheri, M.; Pouresmaeili, F.; Omrani, M.D.; Habibi, M.; Sarrafzadeh, S.; Noroozi, R.; Rakhshan, A.; Sayad, A.; Ghafouri-Fard, S. Association of ANRIL Gene Polymorphisms with Prostate Cancer and Benign Prostatic Hyperplasia in an Iranian Population. Biomark. Med. 2017, 11, 413–422. [Google Scholar] [CrossRef] [PubMed]
- Huang, X.; Zhang, W.; Shao, Z. Association between Long Non-Coding RNA Polymorphisms and Cancer Risk: A Meta-Analysis. Biosci. Rep. 2018, 38, BSR20180365. [Google Scholar] [CrossRef]
- Sun, Q.; Chong, F.; Jiang, X.; Wang, Y.; Xu, K.; Zou, Y.; Song, C. Association Study of SNPs in LncRNA CDKN2B-AS1 with Breast Cancer Susceptibility in Chinese Han Population. Int. J. Biochem. Cell. Biol. 2022, 143, 106139. [Google Scholar] [CrossRef]
- Lee, J.-Y.; Kim, J.; Kim, S.-W.; Park, S.K.; Ahn, S.H.; Lee, M.H.; Suh, Y.J.; Noh, D.-Y.; Son, B.H.; Cho, Y.U.; et al. BRCA1/2-Negative, High-Risk Breast Cancers (BRCAX) for Asian Women: Genetic Susceptibility Loci and Their Potential Impacts. Sci. Rep. 2018, 8, 15263. [Google Scholar] [CrossRef]
- Timofeeva, M.N.; Hung, R.J.; Rafnar, T.; Christiani, D.C.; Field, J.K.; Bickeböller, H.; Risch, A.; McKay, J.D.; Wang, Y.; Dai, J.; et al. Influence of Common Genetic Variation on Lung Cancer Risk: Meta-Analysis of 14,900 Cases and 29,485 Controls. Hum. Mol. Genet. 2012, 21, 4980–4995. [Google Scholar] [CrossRef]
- Omrani, M.D.; Mohammad-Rahimi, H.; Basiri, A.; Fallahian, M.; Noroozi, R.; Taheri, M.; Ghafouri-Fard, S. Discrimination of Patients with Prostate Cancer from Healthy Persons Using a Set of Single Nucleotide Polymorphisms. Urol. J. 2021, 18, 639–645. [Google Scholar] [CrossRef] [PubMed]
- Fehringer, G.; Kraft, P.; Pharoah, P.D.; Eeles, R.A.; Chatterjee, N.; Schumacher, F.R.; Schildkraut, J.M.; Lindström, S.; Brennan, P.; Bickeböller, H.; et al. Cross-Cancer Genome-Wide Analysis of Lung, Ovary, Breast, Prostate, and Colorectal Cancer Reveals Novel Pleiotropic Associations. Cancer. Res. 2016, 76, 5103–5114. [Google Scholar] [CrossRef] [PubMed]
- Campa, D.; Barrdahl, M.; Gaudet, M.M.; Black, A.; Chanock, S.J.; Diver, W.R.; Gapstur, S.M.; Haiman, C.; Hankinson, S.; Hazra, A.; et al. Genetic Risk Variants Associated with in Situ Breast Cancer. Breast Cancer Res. 2015, 17, 82. [Google Scholar] [CrossRef]
- Long, J.; Zhang, B.; Signorello, L.B.; Cai, Q.; Deming-Halverson, S.; Shrubsole, M.J.; Sanderson, M.; Dennis, J.; Michailidou, K.; Easton, D.F.; et al. Evaluating Genome-Wide Association Study-Identified Breast Cancer Risk Variants in African-American Women. PLoS ONE 2013, 8, e58350. [Google Scholar] [CrossRef] [PubMed]
- Silvestri, V.; Rizzolo, P.; Scarnò, M.; Chillemi, G.; Navazio, A.S.; Valentini, V.; Zelli, V.; Zanna, I.; Saieva, C.; Masala, G.; et al. Novel and Known Genetic Variants for Male Breast Cancer Risk at 8q24.21, 9p21.3, 11q13.3 and 14q24.1: Results from a Multicenter Study in Italy. Eur. J. Cancer 2015, 51, 2289–2295. [Google Scholar] [CrossRef]
- Antoniou, A.C.; Kuchenbaecker, K.B.; Soucy, P.; Beesley, J.; Chen, X.; McGuffog, L.; Lee, A.; Barrowdale, D.; Healey, S.; Sinilnikova, O.M.; et al. Common Variants at 12p11, 12q24, 9p21, 9q31.2 and in ZNF365 Are Associated with Breast Cancer Risk for BRCA1 and/or BRCA2 Mutation Carriers. Breast Cancer Res. 2012, 14, R33. [Google Scholar] [CrossRef] [PubMed]
- Peng, S.; Lü, B.; Ruan, W.; Zhu, Y.; Sheng, H.; Lai, M. Genetic Polymorphisms and Breast Cancer Risk: Evidence from Meta-Analyses, Pooled Analyses, and Genome-Wide Association Studies. Breast Cancer Res. Treat. 2011, 127, 309–324. [Google Scholar] [CrossRef]
- Dahlin, A.M.; Wibom, C.; Andersson, U.; Hougaard, D.M.; Bybjerg-Grauholm, J.; Deltour, I.; Hultman, C.M.; Kähler, A.K.; Karlsson, R.; Hjalmars, U.; et al. Genetic Variants in the 9p21.3 Locus Associated with Glioma Risk in Children, Adolescents, and Young Adults: A Case-Control Study. Cancer Epidemiol. Biomark. Prev. 2019, 28, 1252–1258. [Google Scholar] [CrossRef]
- Chen, Y.-D.; Zhang, N.; Qiu, X.-G.; Yuan, J.; Yang, M. LncRNA CDKN2BAS Rs2157719 Genetic Variant Contributes to Medulloblastoma Predisposition. J. Gene Med. 2018, 20, e3000. [Google Scholar] [CrossRef]
- Adel Fahmideh, M.; Lavebratt, C.; Schüz, J.; Röösli, M.; Tynes, T.; Grotzer, M.A.; Johansen, C.; Kuehni, C.E.; Lannering, B.; Prochazka, M.; et al. CCDC26, CDKN2BAS, RTEL1 and TERT Polymorphisms in Pediatric Brain Tumor Susceptibility. Carcinogenesis 2015, 36, 876–882. [Google Scholar] [CrossRef]
- Li, W.-Q.; Pfeiffer, R.M.; Hyland, P.L.; Shi, J.; Gu, F.; Wang, Z.; Bhattacharjee, S.; Luo, J.; Xiong, X.; Yeager, M.; et al. Genetic Polymorphisms in the 9p21 Region Associated with Risk of Multiple Cancers. Carcinogenesis 2014, 35, 2698–2705. [Google Scholar] [CrossRef] [PubMed]
- Park, S.L.; Fesinmeyer, M.D.; Timofeeva, M.; Caberto, C.P.; Kocarnik, J.M.; Han, Y.; Love, S.-A.; Young, A.; Dumitrescu, L.; Lin, Y.; et al. Pleiotropic Associations of Risk Variants Identified for Other Cancers with Lung Cancer Risk: The PAGE and TRICL Consortia. J. Natl. Cancer Inst. 2014, 106, dju061. [Google Scholar] [CrossRef] [PubMed]
- Wibom, C.; Späth, F.; Dahlin, A.M.; Langseth, H.; Hovig, E.; Rajaraman, P.; Johannesen, T.B.; Andersson, U.; Melin, B. Investigation of Established Genetic Risk Variants for Glioma in Prediagnostic Samples from a Population-Based Nested Case-Control Study. Cancer Epidemiol. Biomark. Prev. 2015, 24, 810–816. [Google Scholar] [CrossRef]
- Qi, X.; Wan, Y.; Zhan, Q.; Yang, S.; Wang, Y.; Cai, X. Effect of CDKN2A/B Rs4977756 Polymorphism on Glioma Risk: A Meta-Analysis of 16 Studies Including 24077 Participants. Mamm. Genome 2016, 27, 1–7. [Google Scholar] [CrossRef]
- Lu, H.; Yang, Y.; Wang, J.; Liu, Y.; Huang, M.; Sun, X.; Ke, Y. The CDKN2A-CDKN2B Rs4977756 Polymorphism and Glioma Risk: A Meta-Analysis. Int. J. Clin. Exp. Med. 2015, 8, 17480–17488. [Google Scholar]
- Viana-Pereira, M.; Moreno, D.A.; Linhares, P.; Amorim, J.; Nabiço, R.; Costa, S.; Vaz, R.; Reis, R.M. Replication of GWAS Identifies RTEL1, CDKN2A/B, and PHLDB1 SNPs as Risk Factors in Portuguese Gliomas Patients. Mol. Biol. Rep. 2020, 47, 877–886. [Google Scholar] [CrossRef] [PubMed]
- Ghasimi, S.; Wibom, C.; Dahlin, A.M.; Brännström, T.; Golovleva, I.; Andersson, U.; Melin, B. Genetic Risk Variants in the CDKN2A/B, RTEL1 and EGFR Genes Are Associated with Somatic Biomarkers in Glioma. J. Neurooncol. 2016, 127, 483–492. [Google Scholar] [CrossRef]
- Shete, S.; Hosking, F.J.; Robertson, L.B.; Dobbins, S.E.; Sanson, M.; Malmer, B.; Simon, M.; Marie, Y.; Boisselier, B.; Delattre, J.-Y.; et al. Genome-Wide Association Study Identifies Five Susceptibility Loci for Glioma. Nat. Genet. 2009, 41, 899–904. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Peng, Y.; Zhao, X. An Updated and Comprehensive Meta-Analysis of Association Between Seven Hot Loci Polymorphisms from Eight GWAS and Glioma Risk. Mol. Neurobiol. 2016, 53, 4397–4405. [Google Scholar] [CrossRef]
- Dahlin, A.M.; Wibom, C.; Ghasimi, S.; Brännström, T.; Andersson, U.; Melin, B. Relation between Established Glioma Risk Variants and DNA Methylation in the Tumor. PLoS ONE 2016, 11, e0163067. [Google Scholar] [CrossRef]
- Bei, J.-X.; Su, W.-H.; Ng, C.-C.; Yu, K.; Chin, Y.-M.; Lou, P.-J.; Hsu, W.-L.; McKay, J.D.; Chen, C.-J.; Chang, Y.-S.; et al. A GWAS Meta-Analysis and Replication Study Identifies a Novel Locus within CLPTM1L/TERT Associated with Nasopharyngeal Carcinoma in Individuals of Chinese Ancestry. Cancer Epidemiol. Biomark. Prev. 2016, 25, 188–192. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.Y.-Y.; Johansson, G.; Wibom, C.; Brännström, T.; Malmström, A.; Henriksson, R.; Golovleva, I.; Bondy, M.L.; Andersson, U.; Dahlin, A.M.; et al. The Genetic Architecture of Gliomagenesis-Genetic Risk Variants Linked to Specific Molecular Subtypes. Cancers 2019, 11, 2001. [Google Scholar] [CrossRef] [PubMed]
- Gutierrez-Camino, A.; Martin-Guerrero, I.; Garcia de Andoin, N.; Sastre, A.; Carbone Bañeres, A.; Astigarraga, I.; Navajas, A.; Garcia-Orad, A. Confirmation of Involvement of New Variants at CDKN2A/B in Pediatric Acute Lymphoblastic Leukemia Susceptibility in the Spanish Population. PLoS ONE 2017, 12, e0177421. [Google Scholar] [CrossRef] [PubMed]
- Iacobucci, I.; Sazzini, M.; Garagnani, P.; Ferrari, A.; Boattini, A.; Lonetti, A.; Papayannidis, C.; Mantovani, V.; Marasco, E.; Ottaviani, E.; et al. A Polymorphism in the Chromosome 9p21 ANRIL Locus Is Associated to Philadelphia Positive Acute Lymphoblastic Leukemia. Leuk. Res. 2011, 35, 1052–1059. [Google Scholar] [CrossRef] [PubMed]
- Davari, D.R.; Orlow, I.; Kanetsky, P.A.; Luo, L.; Edmiston, S.N.; Conway, K.; Parrish, E.A.; Hao, H.; Busam, K.J.; Sharma, A.; et al. Disease-Associated Risk Variants in ANRIL Are Associated with Tumor-Infiltrating Lymphocyte Presence in Primary Melanomas in the Population-Based GEM Study. Cancer Epidemiol. Biomark. Prev. 2021, 30, 2309–2316. [Google Scholar] [CrossRef]
- Gu, F.; Pfeiffer, R.M.; Bhattacharjee, S.; Han, S.S.; Taylor, P.R.; Berndt, S.; Yang, H.; Sigurdson, A.J.; Toro, J.; Mirabello, L.; et al. Common Genetic Variants in the 9p21 Region and Their Associations with Multiple Tumours. Br. J. Cancer 2013, 108, 1378–1386. [Google Scholar] [CrossRef]
- Giaccherini, M.; Farinella, R.; Gentiluomo, M.; Mohelnikova-Duchonova, B.; Kauffmann, E.F.; Palmeri, M.; Uzunoglu, F.; Soucek, P.; Petrauskas, D.; Cavestro, G.M.; et al. Association between a Polymorphic Variant in the CDKN2B-AS1/ANRIL Gene and Pancreatic Cancer Risk. Int. J. Cancer 2023, 153, 373–379. [Google Scholar] [CrossRef]
- Gong, W.-J.; Yin, J.-Y.; Li, X.-P.; Fang, C.; Xiao, D.; Zhang, W.; Zhou, H.-H.; Li, X.; Liu, Z.-Q. Association of Well-Characterized Lung Cancer LncRNA Polymorphisms with Lung Cancer Susceptibility and Platinum-Based Chemotherapy Response. Tumour Biol. 2016, 37, 8349–8358. [Google Scholar] [CrossRef]
- Seifi, S.; Pouya, F.; Rahmani, M.; Mehramiz, M.; Rastgar-Moghadam, A.; Gharib, M.; Rahmani, F.; Shahidsales, S.; Hassanian, S.M.; Khazaei, M.; et al. Association of Cyclin-Dependent Kinase Inhibitor 2A/B with Increased Risk of Developing Breast Cancer. J. Cell. Physiol. 2020, 235, 5141–5145. [Google Scholar] [CrossRef]
- Lesseur, C.; Diergaarde, B.; Olshan, A.F.; Wünsch-Filho, V.; Ness, A.R.; Liu, G.; Lacko, M.; Eluf-Neto, J.; Franceschi, S.; Lagiou, P.; et al. Genome-Wide Association Analyses Identify New Susceptibility Loci for Oral Cavity and Pharyngeal Cancer. Nat. Genet. 2016, 48, 1544–1550. [Google Scholar] [CrossRef]
- Wrensch, M.; Jenkins, R.B.; Chang, J.S.; Yeh, R.-F.; Xiao, Y.; Decker, P.A.; Ballman, K.V.; Berger, M.; Buckner, J.C.; Chang, S.; et al. Variants in the CDKN2B and RTEL1 Regions Are Associated with High-Grade Glioma Susceptibility. Nat. Genet. 2009, 41, 905–908. [Google Scholar] [CrossRef] [PubMed]
- Cui, Q.; Feng, F.-T.; Xu, M.; Liu, W.-S.; Yao, Y.-Y.; Xie, S.-H.; Li, X.-Z.; Ye, Z.-L.; Feng, Q.-S.; Chen, L.-Z.; et al. Nasopharyngeal Carcinoma Risk Prediction via Salivary Detection of Host and Epstein-Barr Virus Genetic Variants. Oncotarget 2017, 8, 95066–95074. [Google Scholar] [CrossRef] [PubMed]
- Bei, J.-X.; Li, Y.; Jia, W.-H.; Feng, B.-J.; Zhou, G.; Chen, L.-Z.; Feng, Q.-S.; Low, H.-Q.; Zhang, H.; He, F.; et al. A Genome-Wide Association Study of Nasopharyngeal Carcinoma Identifies Three New Susceptibility Loci. Nat. Genet. 2010, 42, 599–603. [Google Scholar] [CrossRef] [PubMed]
- Driver, K.E.; Song, H.; Lesueur, F.; Ahmed, S.; Barbosa-Morais, N.L.; Tyrer, J.P.; Ponder, B.A.J.; Easton, D.F.; Pharoah, P.D.P.; Dunning, A.M.; et al. Association of Single-Nucleotide Polymorphisms in the Cell Cycle Genes with Breast Cancer in the British Population. Carcinogenesis 2008, 29, 333–341. [Google Scholar] [CrossRef]
- Campa, D.; Pastore, M.; Gentiluomo, M.; Talar-Wojnarowska, R.; Kupcinskas, J.; Malecka-Panas, E.; Neoptolemos, J.P.; Niesen, W.; Vodicka, P.; Delle Fave, G.; et al. Functional Single Nucleotide Polymorphisms within the Cyclin-Dependent Kinase Inhibitor 2A/2B Region Affect Pancreatic Cancer Risk. Oncotarget 2016, 7, 57011–57020. [Google Scholar] [CrossRef]
- Lesseur, C.; Ferreiro-Iglesias, A.; McKay, J.D.; Bossé, Y.; Johansson, M.; Gaborieau, V.; Landi, M.T.; Christiani, D.C.; Caporaso, N.C.; Bojesen, S.E.; et al. Genome-Wide Association Meta-Analysis Identifies Pleiotropic Risk Loci for Aerodigestive Squamous Cell Cancers. PLoS Genet. 2021, 17, e1009254. [Google Scholar] [CrossRef]
- Almontashiri, N.A.M.; Antoine, D.; Zhou, X.; Vilmundarson, R.O.; Zhang, S.X.; Hao, K.N.; Chen, H.-H.; Stewart, A.F.R. 9p21.3 Coronary Artery Disease Risk Variants Disrupt TEAD Transcription Factor-Dependent Transforming Growth Factor β Regulation of P16 Expression in Human Aortic Smooth Muscle Cells. Circulation 2015, 132, 1969–1978. [Google Scholar] [CrossRef]
- Zhu, B.; Zhu, Y.; Tian, J.; Shen, N.; Li, J.; Lou, J.; Ke, J.; Yang, Y.; Gong, Y.; Gong, J.; et al. A Functional Variant Rs1537373 in 9p21.3 Region Is Associated with Pancreatic Cancer Risk. Mol. Carcinog. 2019, 58, 760–766. [Google Scholar] [CrossRef]
- Al Olama, A.A.; Kote-Jarai, Z.; Berndt, S.I.; Conti, D.V.; Schumacher, F.; Han, Y.; Benlloch, S.; Hazelett, D.J.; Wang, Z.; Saunders, E.; et al. A Meta-Analysis of 87,040 Individuals Identifies 23 New Susceptibility Loci for Prostate Cancer. Nat. Genet. 2014, 46, 1103–1109. [Google Scholar] [CrossRef]
- Stein, M.M.; Thompson, E.E.; Schoettler, N.; Helling, B.A.; Magnaye, K.M.; Stanhope, C.; Igartua, C.; Morin, A.; Washington, C.; Nicolae, D.; et al. A Decade of Research on the 17q12-21 Asthma Locus: Piecing Together the Puzzle. J. Allergy Clin. Immunol. 2018, 142, 749–764.e3. [Google Scholar] [CrossRef]
- Cheng, J.; Cai, M.-Y.; Chen, Y.-N.; Li, Z.-C.; Tang, S.-S.; Yang, X.-L.; Chen, C.; Liu, X.; Xiong, X.-D. Variants in ANRIL Gene Correlated with Its Expression Contribute to Myocardial Infarction Risk. Oncotarget 2017, 8, 12607–12619. [Google Scholar] [CrossRef]
- He, S.; Cao, R.; Mao, Y.; Li, N.; Wang, Y.; Ma, H.; Tian, K. Alternative Splicing of PSMD13 Mediated by Genetic Variants Is Significantly Associated with Endometrial Cancer Risk. J. Gynecol. Oncol. 2023, 34, e40. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Qu, L.; Chen, F.; Zhu, X. Propofol Upregulates MiR-320a and Reduces HMGB1 by Downregulating ANRIL to Inhibit PTC Cell Malignant Behaviors. Pathol. Res. Pract. 2020, 216, 152856. [Google Scholar] [CrossRef]
- Ma, Y.; Shen, N.; Wicha, M.S.; Luo, M. The Roles of the Let-7 Family of MicroRNAs in the Regulation of Cancer Stemness. Cells 2021, 10, 2415. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Li, P.; Wan, T.; Tu, B.; Li, J.; Huang, F. TIGIT/PVR and LncRNA ANRIL Dual-Targetable PAMAM Polymeric Nanoparticles Efficiently Inhibited the Hepatoma Carcinoma by Combination of Immunotherapy and Gene Therapy. J. Drug Target. 2021, 29, 783–791. [Google Scholar] [CrossRef] [PubMed]
- Cui, X.; Yu, T.; Shang, J.; Xiao, D.; Wang, X. Long Non-Coding RNA CDKN2B-AS1 Facilitates Laryngeal Squamous Cell Cancer Through Regulating MiR-497/CDK6 Pathway. Onco. Targets Ther. 2019, 12, 8853–8862. [Google Scholar] [CrossRef]
- Zhao, B.; Lu, Y.-L.; Yang, Y.; Hu, L.-B.; Bai, Y.; Li, R.-Q.; Zhang, G.-Y.; Li, J.; Bi, C.-W.; Yang, L.-B.; et al. Overexpression of LncRNA ANRIL Promoted the Proliferation and Migration of Prostate Cancer Cells via Regulating Let-7a/TGF-Β1/Smad Signaling Pathway. Cancer Biomark. 2018, 21, 613–620. [Google Scholar] [CrossRef]
- Du, Z.; Zhang, F.; Liu, L.; Shen, H.; Liu, T.; Jin, J.; Yu, N.; Wan, Z.; Wang, H.; Hu, X.; et al. LncRNA ANRIL Promotes HR Repair through Regulating PARP1 Expression by Sponging MiR-7-5p in Lung Cancer. BMC Cancer 2023, 23, 130. [Google Scholar] [CrossRef]
- Ma, M.-L.; Zhang, H.-Y.; Zhang, S.-Y.; Yi, X.-L. LncRNA CDKN2B-AS1 Sponges MiR-28-5p to Regulate Proliferation and Inhibit Apoptosis in Colorectal Cancer. Oncol. Rep. 2021, 46, 213. [Google Scholar] [CrossRef]
- Wang, X.; Zhang, G.; Cheng, Z.; Dai, L.; Jia, L.; Jing, X.; Wang, H.; Zhang, R.; Liu, M.; Jiang, T.; et al. Knockdown of LncRNA ANRIL Inhibits the Development of Cisplatin Resistance by Upregulating MiR-98 in Lung Cancer Cells. Oncol. Rep. 2020, 44, 1025–1036. [Google Scholar] [CrossRef]
- Hang, C.; Zhang, Y.; Qu, Y.; Wang, X. LncRNA ANRIL Represses Proliferation of Oral Squamous Cell Carcinoma Cells through Targeting MiR-99a. Minerva Med. 2022, 113, 887–889. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Li, T.; Han, X.; Yuan, H. Knockdown of LncRNA ANRIL Suppresses Cell Proliferation, Metastasis, and Invasion via Regulating MiR-122-5p Expression in Hepatocellular Carcinoma. J. Cancer Res. Clin. Oncol. 2018, 144, 205–214. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.; Ning, M.; Liu, Q.; Ding, X.; Wang, Y.; Liu, Q. Knockdown of Long Non-Coding RNA CDKN2B-AS1 Suppresses the Progression of Breast Cancer by MiR-122-5p/STK39 Axis. Bioengineered 2021, 12, 5125–5137. [Google Scholar] [CrossRef]
- Chai, L.; Yuan, Y.; Chen, C.; Zhou, J.; Wu, Y. The Role of Long Non-Coding RNA ANRIL in the Carcinogenesis of Oral Cancer by Targeting MiR-125a. Biomed. Pharmacother. 2018, 103, 38–45. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Jiang, H.; Jiang, X. Downregulation of LncRNA ANRIL Inhibits Proliferation, Induces Apoptosis, and Enhances Radiosensitivity in Nasopharyngeal Carcinoma Cells through Regulating MiR-125a. Cancer Biol. Ther. 2017, 18, 331–338. [Google Scholar] [CrossRef]
- Yin, Y.; Yang, W.; Zhang, L.; Liu, K.; Luo, Z. Long Non-Coding RNA ANRIL and Its Target MicroRNAs (MicroRNA-34a, MicroRNA-125a and MicroRNA-186) Relate to Risk Stratification and Prognosis in Multiple Myeloma. Hematology 2021, 26, 160–169. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.; Kong, S.; Xu, A. LncRNA ANRIL Suppresses Proliferation and Promotes Apoptosis of Ovarian Cancer Cells by Regulating MiR-125a-3p/MAPK Signaling Pathway. Minerva Med. 2022, 113, 581–582. [Google Scholar] [CrossRef]
- Li, C.; Zhai, W.; Wan, L.; Li, J.; Huang, A.; Xing, S.; Fan, K. MicroRNA-125a Attenuates the Chemoresistance against Ubenimex in Non-Small Cell Lung Carcinoma via Targeting the Aminopeptidase N Signaling Pathway. J. Cell. Biochem. 2020, 121, 1716–1727. [Google Scholar] [CrossRef]
- Ma, Y.; Zhang, H.; Li, G.; Hu, J.; Liu, X.; Lin, L. LncRNA ANRIL Promotes Cell Growth, Migration and Invasion of Hepatocellular Carcinoma Cells via Sponging MiR-144. Anticancer Drugs 2019, 30, 1013–1021. [Google Scholar] [CrossRef]
- Wang, L.; Bi, R.; Li, L.; Zhou, K.; Yin, H. LncRNA ANRIL Aggravates the Chemoresistance of Pancreatic Cancer Cells to Gemcitabine by Targeting Inhibition of MiR-181a and Targeting HMGB1-Induced Autophagy. Aging 2021, 13, 19272–19281. [Google Scholar] [CrossRef]
- Sun, C.; Shen, C.; Zhang, Y.; Hu, C. LncRNA ANRIL Negatively Regulated Chitooligosaccharide-Induced Radiosensitivity in Colon Cancer Cells by Sponging MiR-181a-5p. Adv. Clin. Exp. Med. 2021, 30, 55–65. [Google Scholar] [CrossRef]
- Zhu, L.; Zhang, Q.; Li, S.; Jiang, S.; Cui, J.; Dang, G. Interference of the Long Noncoding RNA CDKN2B-AS1 Upregulates MiR-181a-5p/TGFβI Axis to Restrain the Metastasis and Promote Apoptosis and Senescence of Cervical Cancer Cells. Cancer Med. 2019, 8, 1721–1730. [Google Scholar] [CrossRef] [PubMed]
- Beylerli, O.; Khasanov, D.; Gareev, I.; Valitov, E.; Sokhatskii, A.; Wang, C.; Pavlov, V.; Khasanova, G.; Ahmad, A. Differential Non-Coding RNAs Expression Profiles of Invasive and Non-Invasive Pituitary Adenomas. Non-Coding RNA Res. 2021, 6, 115–122. [Google Scholar] [CrossRef]
- Wang, G.; Xu, G.; Wang, W. Long Noncoding RNA CDKN2B-AS1 Facilitates Lung Cancer Development Through Regulating MiR-378b/NR2C2. Onco. Targets Ther. 2020, 13, 10641–10649. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Sun, H.; Liang, H.; Wang, Y.; Lu, M.; Guo, Z.; Lv, Z.; Ren, W. Evaluation of LncRNA ANRIL Potential in Hepatic Cancer Progression. J. Environ. Pathol. Toxicol. Oncol. 2019, 38, 119–131. [Google Scholar] [CrossRef] [PubMed]
- Gui, D.; Cao, H. Long Non-Coding RNA CDKN2B-AS1 Promotes Osteosarcoma by Increasing the Expression of MAP3K3 via Sponging MiR-4458. Vitr. Cell. Dev. Biol. Anim. 2020, 56, 24–33. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Feng, L.; Liu, P.; Duan, W. ANRIL Promotes Chemoresistance via Disturbing Expression of ABCC1 by Regulating the Expression of Let-7a in Colorectal Cancer. Biosci. Rep. 2018, 38, BSR20180620. [Google Scholar] [CrossRef]
- Kotake, Y.; Nakagawa, T.; Kitagawa, K.; Suzuki, S.; Liu, N.; Kitagawa, M.; Xiong, Y. Long Non-Coding RNA ANRIL Is Required for the PRC2 Recruitment to and Silencing of P15(INK4B) Tumor Suppressor Gene. Oncogene 2011, 30, 1956–1962. [Google Scholar] [CrossRef]
- Muniz, L.; Lazorthes, S.; Delmas, M.; Ouvrard, J.; Aguirrebengoa, M.; Trouche, D.; Nicolas, E. Circular ANRIL Isoforms Switch from Repressors to Activators of P15/CDKN2B Expression during RAF1 Oncogene-Induced Senescence. RNA Biol. 2021, 18, 404–420. [Google Scholar] [CrossRef]
- El Messaoudi-Aubert, S.; Nicholls, J.; Maertens, G.N.; Brookes, S.; Bernstein, E.; Peters, G. Role for the MOV10 RNA Helicase in Polycomb-Mediated Repression of the INK4a Tumor Suppressor. Nat. Struct. Mol. Biol. 2010, 17, 862–868. [Google Scholar] [CrossRef]
- Maenner, S.; Müller, M.; Fröhlich, J.; Langer, D.; Becker, P.B. ATP-Dependent RoX RNA Remodeling by the Helicase Maleless Enables Specific Association of MSL Proteins. Mol. Cell. 2013, 51, 174–184. [Google Scholar] [CrossRef] [PubMed]
- Ou, M.; Li, X.; Zhao, S.; Cui, S.; Tu, J. Long Non-Coding RNA CDKN2B-AS1 Contributes to Atherosclerotic Plaque Formation by Forming RNA-DNA Triplex in the CDKN2B Promoter. EBioMedicine 2020, 55, 102694. [Google Scholar] [CrossRef]
- Li, Y.; Syed, J.; Sugiyama, H. RNA-DNA Triplex Formation by Long Noncoding RNAs. Cell Chem. Biol. 2016, 23, 1325–1333. [Google Scholar] [CrossRef] [PubMed]
- Cabili, M.N.; Dunagin, M.C.; McClanahan, P.D.; Biaesch, A.; Padovan-Merhar, O.; Regev, A.; Rinn, J.L.; Raj, A. Localization and Abundance Analysis of Human LncRNAs at Single-Cell and Single-Molecule Resolution. Genome Biol. 2015, 16, 20. [Google Scholar] [CrossRef] [PubMed]
- Lo Sardo, V.; Chubukov, P.; Ferguson, W.; Kumar, A.; Teng, E.L.; Duran, M.; Zhang, L.; Cost, G.; Engler, A.J.; Urnov, F.; et al. Unveiling the Role of the Most Impactful Cardiovascular Risk Locus through Haplotype Editing. Cell 2018, 175, 1796–1810.e20. [Google Scholar] [CrossRef]
- Nie, F.; Sun, M.; Yang, J.; Xie, M.; Xu, T.; Xia, R.; Liu, Y.; Liu, X.; Zhang, E.; Lu, K.; et al. Long Noncoding RNA ANRIL Promotes Non-Small Cell Lung Cancer Cell Proliferation and Inhibits Apoptosis by Silencing KLF2 and P21 Expression. Mol. Cancer Ther. 2015, 14, 268–277. [Google Scholar] [CrossRef]
- Liu, L.; Ning, S.-B.; Fu, S.; Mao, Y.; Xiao, M.; Guo, B. Effects of LncRNA ANRIL on Proliferation and Apoptosis of Oral Squamous Cell Carcinoma Cells by Regulating TGF-β/Smad Pathway. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 6194–6201. [Google Scholar] [CrossRef]
- Chen, D.; Zhang, Z.; Mao, C.; Zhou, Y.; Yu, L.; Yin, Y.; Wu, S.; Mou, X.; Zhu, Y. ANRIL Inhibits P15(INK4b) through the TGFβ1 Signaling Pathway in Human Esophageal Squamous Cell Carcinoma. Cell. Immunol. 2014, 289, 91–96. [Google Scholar] [CrossRef]
- Zhang, C.; Ge, S.; Gong, W.; Xu, J.; Guo, Z.; Liu, Z.; Gao, X.; Wei, X.; Ge, S. LncRNA ANRIL Acts as a Modular Scaffold of WDR5 and HDAC3 Complexes and Promotes Alteration of the Vascular Smooth Muscle Cell Phenotype. Cell Death Dis. 2020, 11, 435. [Google Scholar] [CrossRef]
- Huang, D.; Bi, C.; Zhao, Q.; Ding, X.; Bian, C.; Wang, H.; Wang, T.; Liu, H. Knockdown Long Non-Coding RNA ANRIL Inhibits Proliferation, Migration and Invasion of HepG2 Cells by down-Regulation of MiR-191. BMC Cancer 2018, 18, 919. [Google Scholar] [CrossRef]
- Hacisuleyman, E.; Goff, L.A.; Trapnell, C.; Williams, A.; Henao-Mejia, J.; Sun, L.; McClanahan, P.; Hendrickson, D.G.; Sauvageau, M.; Kelley, D.R.; et al. Topological Organization of Multichromosomal Regions by the Long Intergenic Noncoding RNA Firre. Nat. Struct. Mol. Biol. 2014, 21, 198–206. [Google Scholar] [CrossRef] [PubMed]
- Hasegawa, Y.; Brockdorff, N.; Kawano, S.; Tsutui, K.; Tsutui, K.; Nakagawa, S. The Matrix Protein HnRNP U Is Required for Chromosomal Localization of Xist RNA. Dev. Cell. 2010, 19, 469–476. [Google Scholar] [CrossRef] [PubMed]
- Arab, K.; Karaulanov, E.; Musheev, M.; Trnka, P.; Schäfer, A.; Grummt, I.; Niehrs, C. GADD45A Binds R-Loops and Recruits TET1 to CpG Island Promoters. Nat. Genet. 2019, 51, 217–223. [Google Scholar] [CrossRef] [PubMed]
- Gibbons, H.R.; Shaginurova, G.; Kim, L.C.; Chapman, N.; Spurlock, C.F.; Aune, T.M. Divergent LncRNA GATA3-AS1 Regulates GATA3 Transcription in T-Helper 2 Cells. Front. Immunol. 2018, 9, 2512. [Google Scholar] [CrossRef]
- Gonzalez, I.; Munita, R.; Agirre, E.; Dittmer, T.A.; Gysling, K.; Misteli, T.; Luco, R.F. A LncRNA Regulates Alternative Splicing via Establishment of a Splicing-Specific Chromatin Signature. Nat. Struct. Mol. Biol. 2015, 22, 370–376. [Google Scholar] [CrossRef]
- Amann, T.; Bataille, F.; Spruss, T.; Dettmer, K.; Wild, P.; Liedtke, C.; Mühlbauer, M.; Kiefer, P.; Oefner, P.J.; Trautwein, C.; et al. Reduced Expression of Fibroblast Growth Factor Receptor 2IIIb in Hepatocellular Carcinoma Induces a More Aggressive Growth. Am. J. Pathol. 2010, 176, 1433–1442. [Google Scholar] [CrossRef]
- Frampton, G.M.; Ali, S.M.; Rosenzweig, M.; Chmielecki, J.; Lu, X.; Bauer, T.M.; Akimov, M.; Bufill, J.A.; Lee, C.; Jentz, D.; et al. Activation of MET via Diverse Exon 14 Splicing Alterations Occurs in Multiple Tumor Types and Confers Clinical Sensitivity to MET Inhibitors. Cancer Discov. 2015, 5, 850–859. [Google Scholar] [CrossRef]
- Urbanski, L.M.; Leclair, N.; Anczuków, O. Alternative-Splicing Defects in Cancer: Splicing Regulators and Their Downstream Targets, Guiding the Way to Novel Cancer Therapeutics. Wiley Interdiscip. Rev. RNA 2018, 9, e1476. [Google Scholar] [CrossRef]
- Eperon, I.C.; Makarova, O.V.; Mayeda, A.; Munroe, S.H.; Cáceres, J.F.; Hayward, D.G.; Krainer, A.R. Selection of Alternative 5’ Splice Sites: Role of U1 SnRNP and Models for the Antagonistic Effects of SF2/ASF and HnRNP A1. Mol. Cell. Biol. 2000, 20, 8303–8318. [Google Scholar] [CrossRef]
- Segal, E.; Fondufe-Mittendorf, Y.; Chen, L.; Thåström, A.; Field, Y.; Moore, I.K.; Wang, J.-P.Z.; Widom, J. A Genomic Code for Nucleosome Positioning. Nature 2006, 442, 772–778. [Google Scholar] [CrossRef]
- Schwartz, S.; Meshorer, E.; Ast, G. Chromatin Organization Marks Exon-Intron Structure. Nat. Struct. Mol. Biol. 2009, 16, 990–995. [Google Scholar] [CrossRef] [PubMed]
- Andersson, R.; Enroth, S.; Rada-Iglesias, A.; Wadelius, C.; Komorowski, J. Nucleosomes Are Well Positioned in Exons and Carry Characteristic Histone Modifications. Genome Res. 2009, 19, 1732–1741. [Google Scholar] [CrossRef] [PubMed]
- Tilgner, H.; Nikolaou, C.; Althammer, S.; Sammeth, M.; Beato, M.; Valcárcel, J.; Guigó, R. Nucleosome Positioning as a Determinant of Exon Recognition. Nat. Struct. Mol. Biol. 2009, 16, 996–1001. [Google Scholar] [CrossRef] [PubMed]
- Saint-André, V.; Batsché, E.; Rachez, C.; Muchardt, C. Histone H3 Lysine 9 Trimethylation and HP1γ Favor Inclusion of Alternative Exons. Nat. Struct. Mol. Biol. 2011, 18, 337–344. [Google Scholar] [CrossRef] [PubMed]
- Spies, N.; Nielsen, C.B.; Padgett, R.A.; Burge, C.B. Biased Chromatin Signatures around Polyadenylation Sites and Exons. Mol. Cell. 2009, 36, 245–254. [Google Scholar] [CrossRef]
- Agirre, E.; Oldfield, A.J.; Bellora, N.; Segelle, A.; Luco, R.F. Splicing-Associated Chromatin Signatures: A Combinatorial and Position-Dependent Role for Histone Marks in Splicing Definition. Nat. Commun. 2021, 12, 682. [Google Scholar] [CrossRef] [PubMed]
- Hon, G.; Wang, W.; Ren, B. Discovery and Annotation of Functional Chromatin Signatures in the Human Genome. PLoS Comput. Biol. 2009, 5, e1000566. [Google Scholar] [CrossRef]
- Chen, Y.; Li, Z.; Chen, X.; Zhang, S. Long Non-Coding RNAs: From Disease Code to Drug Role. Acta. Pharm. Sin. B 2021, 11, 340–354. [Google Scholar] [CrossRef]
- Childs-Disney, J.L.; Yang, X.; Gibaut, Q.M.R.; Tong, Y.; Batey, R.T.; Disney, M.D. Targeting RNA Structures with Small Molecules. Nat. Rev. Drug Discov. 2022, 21, 736–762. [Google Scholar] [CrossRef]
Cancers SNPs | LC | GC | BC | TC | BrC | MM | PC | ATL/AML/ B-ALL | Melanoma/ BCC | EC | HNSCC/LSCC/ ESCC | PancC | OS | Overall Cancer |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
rs2151280 | [169] | [170,171] | [172] | [173] | [174] | |||||||||
rs17694493 | [175] | |||||||||||||
rs4977574 | [166] | [176] | [177] | |||||||||||
rs78545330 | [178,179] | |||||||||||||
rs1333040 | [180] | |||||||||||||
rs10757278 | [176,181] | [177] | ||||||||||||
rs62560775 | [182] | [182] | ||||||||||||
rs1011970 | [183,184,185,186,187] | [182] | [163] | |||||||||||
rs2157719 | [188,189,190] | [191] | ||||||||||||
rs4977756 | [192] | [190,193,194,195,196,197,198,199,200] | [201] | |||||||||||
rs634537 | [188,202] | |||||||||||||
rs2811712 | [163] | [203] | ||||||||||||
rs1333048 | [166] | [176,181] | [177] | |||||||||||
rs564398 | [204] | [205] | [206] | [206] | ||||||||||
rs10965215 | [178] | [205] | ||||||||||||
rs1412832 | [207] | |||||||||||||
rs2518723 | [178] | |||||||||||||
rs77792598 | [178] | |||||||||||||
rs4977753 | [178] | |||||||||||||
rs75917766 | [178] | |||||||||||||
rs1333049 | [208] | [209] | [165] | |||||||||||
rs8181047 | [210] | |||||||||||||
rs1412829 | [190,193,197,200,211] | [201,212,213] | ||||||||||||
rs145929329 | [188] | |||||||||||||
rs3218005 | [163,214] | |||||||||||||
rs3217992 | [203] | [215] | [167] | |||||||||||
rs2811709 | [203] | |||||||||||||
rs518394 | [205] | |||||||||||||
rs7857345 | [216] | |||||||||||||
rs1063192 | [168] | [163,190] | [191,201] | |||||||||||
rs615552 | [206] | [206] | ||||||||||||
rs573687 | [206] | [206] | ||||||||||||
rs10811661 | [165] | |||||||||||||
rs10120688 | [208] |
miRNAs | Cancers | Effect of ANRIL/miRNA Axis | miRNA Target | Hybridization Location on ANRIL | References |
---|---|---|---|---|---|
let-7b-5p | BrC | Promotes proliferation, migration and suppresses apoptosis. Enhances tumor growth in mice xenograft. | - | exon 11 | [120] |
let-7a | OC, CRC, PC HNSCC | Promotes proliferation, migration and suppresses apoptosis. Enhances 5-FU, Oxaliplatin, and Cisplatin chemoresistance and tumor growth in mice xenograft. High expression associated with higher clinical stage patient. | HMGA2, ABCC1 | exon 11 | [106,151,227] |
miR-7-5p | LC, ATL/AML | Promotes cell viability, migration and invasion. Suppresses radiosensitivity through enhancing HDR system. Enhances tumor growth in mice xenograft. | TCF4 PARP1 (down-regulated genes BRCA1/RAD51) | exon 1 | [137,228] |
miR-28-5p | CRC | Promotes proliferation. | URGCP | exon 2 | [229] |
miR-98 | LC | Enhances proliferation and cisplatin chemoresistance. | - | exon 11 | [230] |
miR-99a | HNSCC, GC | Promotes proliferation, migration, invasion and suppresses apoptosis. | BMI1 | - | [94,231] |
miR-122-5p | TC, HCC, BC | Promotes proliferation, migration, invasion and tumor growth in vivo. Suppresses apoptosis and enhances tumor in mice xenograft. | P4HA1 STK39 | exon 11 | [116,232,233] |
miR-125a | BC, HNSCC, MM | Promotes proliferation, migration, and invasion. Suppresses apoptosis and radiosensitivity. Enhances doxorubicin chemoresistance and tumor growth in mice xenograft. High expression associated with advanced ISS stage, and decreased complete response. | ENO1 ESRRA β2-MG | exon 1 | [99,234,235,236] |
miR-125a-3p | OC | Promotes proliferation, migration and suppresses apoptosis. | p38 | - | [237] |
miR-125a-5p | LC, OS, EC | Promotes proliferation and suppresses apoptosis. Enhances ubenimex, cisplatin and paclitaxel chemoresistance. | APN STAT3 Bcl2, MRP4 | exon 4 | [125,141,238] |
miR-141-3p | RC | Promotes proliferation, migration and invasion and suppresses apoptosis. Enhances tumor growth in mice xenograft. | CCND1 and CCND2 | exon 3 | [146] |
miR-143-3p | OC | Promotes proliferation, migration and invasion, and suppresses apoptosis. Enhances tumor growth in mice xenograft. | SMAD3 | exon 1 | [105] |
miR-144 | HCC | Promotes proliferation, migration invasion, and suppresses apoptosis. | PBX3 | - | [239] |
miR-145-5p | BC | Involved in the development of early breast cancer. | MMP1 | - | [100] |
miR-181a | HCC, PancC | Promotes proliferation, migration and invasion. | HMGB1, Snai2 | exon 1 | [152,240] |
miR-181a-5p | CRC, CC | Promotes proliferation, migration and invasion. Suppresses apoptosis, cell cycle arrest and senescence. High expression suppresses chitooligosaccharide (COS)-related radiosensitivity. | CCNG1, TGF-β1 | exon 1 | [96,241,242] |
miR-199a-5p | HCC, BrC | Promotes proliferation, migration and invasion. Suppresses apoptosis and cell autophagy. Enhances mitochondrial function and tumor growth in mice xenograft. | DDR1 ARL2 | exon 17, 20 | [118,156,158] |
miR-200a | BrC | Promotes proliferation and suppresses apoptosis. | - | - | [243] |
miR-203a | HCC, BrC | Promotes proliferation and inhibits anoikis. | Bcl-2, p-AKT | - | [121,225] |
miR-320a | TC | Promotes proliferation, migration and invasion, and suppresses apoptosis. Enhances tumor growth in mice xenograft. | HMGB1 | exon 18 | [223] |
miR-324-5p | HNSCC | Promotes proliferation and suppresses apoptosis. High expression associated with advanced clinical stage, metastasis. | ROCK1 | exon 20 | [148] |
miR-328 | RB | Enhances proliferation and cisplatin chemoresistance. | ABCG2, MDR1 | exon 20 | [56] |
miR-378b | LC | Promotes proliferation, migration and invasion, and suppresses apoptosis. | NR2C2 | exon 19 | [244] |
miR-384 | HCC | Promotes proliferation, migration, invasion and suppresses apoptosis and cell cycle arrest. | STAT3 | - | [245] |
miR-411-3p | MM, OC | Promotes proliferation, migration invasion, and suppresses apoptosis. Enhances tumor stem cell-like property and tumor growth in vivo mice xenograft. | HIF-1α | exon 21 | [108,131] |
miR-424-5p | HCC | Enhances cell viability, migration and invasion. | - | exon 17 | [155] |
miR-497 | HNSCC | Promotes proliferation, migration, invasion, and suppresses apoptosis. | CDK6 | exon 17 | [226] |
miR-4440 | BC | Promotes proliferation, migration and invasion. | - | exon 2 | [178] |
miR-4458 | OS | Promotes proliferation, migration, and invasion. Enhances tumor growth in mice xenografts. | MAP3K3 | exon 11 | [246] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanchez, A.; Lhuillier, J.; Grosjean, G.; Ayadi, L.; Maenner, S. The Long Non-Coding RNA ANRIL in Cancers. Cancers 2023, 15, 4160. https://doi.org/10.3390/cancers15164160
Sanchez A, Lhuillier J, Grosjean G, Ayadi L, Maenner S. The Long Non-Coding RNA ANRIL in Cancers. Cancers. 2023; 15(16):4160. https://doi.org/10.3390/cancers15164160
Chicago/Turabian StyleSanchez, Aymeric, Julien Lhuillier, Guillaume Grosjean, Lilia Ayadi, and Sylvain Maenner. 2023. "The Long Non-Coding RNA ANRIL in Cancers" Cancers 15, no. 16: 4160. https://doi.org/10.3390/cancers15164160
APA StyleSanchez, A., Lhuillier, J., Grosjean, G., Ayadi, L., & Maenner, S. (2023). The Long Non-Coding RNA ANRIL in Cancers. Cancers, 15(16), 4160. https://doi.org/10.3390/cancers15164160