Potential Predictive Biomarkers of Systemic Drug Therapy for Hepatocellular Carcinoma: Anticipated Usefulness in Clinical Practice
Abstract
:Simple Summary
Abstract
1. Introduction
2. Exploring Potential Biomarkers to Predict the Therapeutic Effects of TKIs (Table 1)
2.1. Potential Biomarkers for Sorafenib
2.2. Potential Biomarkers for Regorafenib
2.3. Signaling Pathways as Biomarkers for TKIs: Insights from Trials with mTOR and MET Inhibitors
2.4. Potential Biomarkers for Lenvatinib
Therapeutics | Study Design | Number of Cases | Prognostic and Predictive Factors | Outcome | Statistical Analysis HR (95% CI) | p-Value | Authors [Reference No.] |
---|---|---|---|---|---|---|---|
Sorafenib | Retrospective, single-arm | 120 | High serum Ang-2 | PFS ↓ | Univariate 1.84 (1.21–2.81) | 0.004 | Miyahara K et al. [17] |
OS ↓ | Multivariate 1.83 (1.12–2.98) | 0.014 | |||||
High angiogenic group * *: patients with >three serum cytokines (Ang-2, FST, G-CSF, HGF, Leptin, PDGF-BB, PECAM-1, or VEGF) | PFS ↓ | Univariate 1.98 (1.30–3.06) | 0.001 | ||||
OS ↓ | Multivariate 1.76 (1.07–2.94) | 0.023 | |||||
MVI (present) | OS ↓ | Multivariate 2.27 (1.36–3.72) | 0.001 | ||||
Sorafenib | Retrospective pooled analysis of two phase 3 trials (vs. placebo) | Sorafenib 448 Placebo 379 | Without EHS | OS ↑ | Multivariate 0.55 (0.42–0.72) | 0.015 | Bruix J et al. [18] |
With HCV | OS ↑ | Multivariate 0.47 (0.32–0.69) | 0.035 | ||||
Low NLR | OS ↑ | Multivariate 0.59 (0.46–0.77) | 0.0497 | ||||
Sorafenib | Subgroup meta-analyses, single-arm | 170 | Low NLR | OS ↑ | Univariate 1.49 (1.17–1.91) | 0.001 | Qi X et al. [20] |
Sorafenib | Observational registry, single-arm | 3371 | Child–Pugh A | OS ↑ | Kaplan–Meier | N/A | Marrero JA et al. [22] |
Bilirubin | OS | Univariate 1.71 (1.57–1.86) | N/A | ||||
Albumin | OS | Univariate 1.76 (1.63–1.89) | N/A | ||||
Sorafenib | Retrospective, single-arm, HCV patients only | 103 | HCV eradication | OS ↑ | Multivariate 0.46 (0.26–0.78) | 0.004 | Kuwano A et al. [23] |
ALBI score | OS | Multivariate 2.29 (1.20–4.37) | 0.012 | ||||
Sorafenib | Population-based retrospective cohort, HCV patients only, single-arm | 1684 | DAA user | OS ↑ | Univariate PSM univariate | <0.0001 <0.0001 | Tsai H-Y et al. [24] |
Sorafenib | Retrospective, single-arm | 55 | FGF3/FGF4 amplification (Frozen tumor tissue) | CR/PR ↑ | Fisher’s exact | 0.006 | Arao T et al. [29] |
Multiple lung metastases | CR/PR ↑ | Fisher’s exact | 0.006 | ||||
Sorafenib | Retrospective, single-arm | 20 | High miR-224 expression (FFPE tumor tissue) | PFS ↑ | Univariate 0.28 (0.09–0.92) | 0.029 | Gyöngyösi B et al. [31] |
OS ↑ | Univariate 0.24 (0.07–0.79) | 0.012 | |||||
Sorafenib | Retrospective, single-arm | Training 26 Validation 58 | High miR-425-3p expression (FFPE tumor tissue) | TTP ↑ | Multivariate 0.4 (0.1–0.7) | 0.002 | Vaira V et al. [34] |
PFS ↑ | Multivariate 0.3 (0.1–0.7) | 0.0012 | |||||
Sorafenib | Retrospective validation of the pharmacogenomics panel, single-arm | 54 | High serum DKK-1 | PFS ↑ | Univariate | 0.0396 | Qiu Z et al. [36] |
OS ↑ | Univariate | 0.0171 | |||||
Regorafenib | Retrospective pooled analysis of the phase 3 trial (vs. placebo) | Protein cohort Regorafenib 332 Placebo 167 | Plasma ANG-1 (1 ng/mL increase) | OS ↓ | Multivariate 1.12 (1.05–1.19) | 0.019 | Teufel M et al. [38] |
TTP ↓ | Multivariate 1.10 (1.04–1.17) | 0.017 | |||||
Low plasma Cystatin-B (2-fold increase) | OS ↓ | Multivariate 1.46 (1.15–1.85) | 0.04 | ||||
TTP ↓ | Multivariate 1.42 (1.14–1.77) | 0.018 | |||||
Low plasma LAP TGF-β1 (2-fold increase) | OS ↓ | Multivariate 1.36 (1.12–1.65) | 0.04 | ||||
TTP ↓ | Multivariate 1.41 (1.18–1.68) | 0.004 | |||||
Low plasma LOX-1 (1 ng/mL increase) | OS ↓ | Multivariate 1.35 (1.16–1.57) | 0.009 | ||||
TTP ↓ | Multivariate 1.78 (1.33–2.39) | 0.003 | |||||
Low plasma MIP-1α (1 pg/mL increase) | OS ↓ | Multivariate 1.02 (1.01–1.04) | 0.04 | ||||
TTP ↓ | Multivariate 1.02 (1.00–1.03) | 0.043 | |||||
miRNA cohort Regorafenib 234 Placebo 109 | Decreased miR-15b | OS ↑ | Multivariate 0.37 (0.20–0.70) | 0.002 | |||
Decreased miR-107 | OS ↑ | Multivariate 0.54 (0.37–0.81) | 0.003 | ||||
Decreased miR-320b | OS ↑ | Multivariate 0.57 (0.41–0.81) | 0.001 | ||||
Increased miR-122 | OS ↑ | Multivariate 1.35 (1.14–1.60) | 0.0004 | ||||
Increased miR-374b | OS ↑ | Multivariate 1.36 (1.11–1.65) | 0.002 | ||||
Increased miR-200a | OS ↑ | Multivariate 1.39 (1.15–1.68) | 0.001 | ||||
Increased miR-30a | OS ↑ | Multivariate 1.47 (1.14–1.88) | 0.003 | ||||
Increased miR-125b | OS ↑ | Multivariate 1.54 (1.19–1.99) | 0.001 | ||||
Absence miR-645 * (* dichotomized analysis, not vs. placebo) | OS ↑ | Multivariate 3.16 (1.52–6.55) | 0.002 | ||||
Lenvatinib | Subgroup analysis of the open-label phase 3 trial (vs. sorafenib) | Lenvatinib 478 (HBV 251, Alcohol 36) sorafenib 476 (HBV 228, Alcohol 21) | HBV | PFS ↑ | Univariate 0.62 (0.50–0.75) | N/A | Kudo M et al. [8] |
Alcohol | PFS ↑ | Univariate 0.27 (0.11–0.66) | N/A | ||||
Lenvatinib | Retrospective, single-arm | 237 | NLR ≥ 4 | OS ↓ | Multivariate 1.87 (1.10–3.12) | 0.021 | Tada T et al. [56] |
PFS ↓ | Multivariate 1.90 (1.27–2.84) | 0.002 | |||||
DCR ↓ | Chi-square test? | 0.007 | |||||
AFP ≥ 400 ng/mL | OS ↓ | Multivariate 1.97 (1.19–3.27) | 0.009 | ||||
mALBI grade 2b or 3 | OS ↓ | Multivariate 2.12 (1.27–3.56) | 0.004 | ||||
BCLC stage ≥ C | PFS ↓ | Multivariate 1.52 (1.03–2.24) | 0.036 | ||||
Lenvatinib | Retrospective, single-arm | 1325 | HBV | OS ↓ | Multivariate 1.56 (1.13–2.17) * | 0.0071 * | Casadei-Gardini A et al. [57] *: Data are from the model 1 of 3 multivariate analyses. |
NAFLD/NASH | OS ↑ | Multivariate 0.58 (0.33–0.98) * | 0.0044 * | ||||
PFS ↑ | Multivariate 0.87 (0.75–0.93) | 0.0090 | |||||
BCLC stage C | OS ↓ | Multivariate 1.64 (1.19–2.27) * | 0.0027 * | ||||
PFS ↓ | Multivariate 1.33 (1.14–1.55) | 0.0002 | |||||
NLR > 3 | OS ↓ | Multivariate 1.95 (1.46–2.60) * | <0.0001 * | ||||
PFS ↓ | Multivariate 1.16 (1.01–1.36) | 0.0482 | |||||
AST > 38 | OS ↓ | Multivariate 1.52 (1.08–2.13) * | 0.0167 * | ||||
PFS ↓ | Multivariate 1.21 (1.01–1.45) | 0.0365 | |||||
Lenvatinib | Retrospective validation of the experimentally identified biomarker (vs. sorafenib) | Lenvatinib 65 (ST6GAL1 high 22, low 43) sorafenib 31 (ST6GAL1 high 12, low 19) | Serum ST6GAL1 high | OS ↑ | Univariate | <0.05 | Myojin Y et al. [58] |
3. AFP as an Approved Predictive Biomarker for Ramucirumab Treatment
4. Exploration of Potential Biomarkers to Predict the Therapeutic Efficacy of Single-Agent ICIs and Combined Immunotherapy (Table 2)
4.1. Known Candidate Predictive Markers of the Efficacy of Single-Agent ICI and Combined Immunotherapies for HCC: PD-L1 Expression, Tumor Mutation Burden (TMB), and Microsatellite Instability (MSI)
4.2. NASH as a Background Liver Disease
4.3. Wnt/β-Catenin Mutations as a Biomarker and MRI Findings as Imaging Biomarkers
4.4. Problems with Wnt/β-Catenin Mutations as a Biomarker and MRI Findings as Imaging Biomarkers
4.5. Potential Biomarkers to Predict the Therapeutic Effect of ICI Therapy
Therapeutics | Study Design | Number of Cases | Prognostic and Predictive Factors | Outcome | Statistical Analysis HR (95% CI) | p-Value | Author [Reference No.] |
---|---|---|---|---|---|---|---|
Anti-PD-(L)1-based immunotherapy | Meta-analyses of 3 phase 3 trials: Checkmate 459 (nivolumab vs. sorafenib), IMbrave 150 (Atezo/Beva vs. sorafenib), KEYNOTE-240 (Pembrolizumab vs. Placebo) | ICI 985 Nivolumab 371 Pembrolizumab 278 Atezo/Beva 336 Control 672 Sorafenib 372 + 165 Placebo 135 | HBV | OS ↑ | Univariate 0.64 (0.49–0.83) | 0.0008 | Pfister D et. al. [75] |
HCV | OS ↑ | Univariate 0.68 (0.48–0.97) | 0.04 | ||||
Retrospective (ICI single arm) | exploratory cohort 130 validation cohort 118 | NAFLD | OS ↓ | Multivariate 2.6. (1.2–5.6) | 0.017 | ||
Atezo/Beva Lenvatinib (Sorafenib) | Retrospective | Non-viral cohort Atezo/Beva 190 Lenvatinib 569 | Lenvatinib | OS ↑ | Multivariate 0.65 (0.44–0.95) | 0.0268 | Rimini M et al. [77] |
PFS ↑ | Multivariate 0.67 (0.51–0.86) | 0.035 | |||||
NAFLD/NASH cohort Atezo/Beva 82 Lenvatinib 254 | Lenvatinib | OS ↑ | Multivariate 0.46 (0.26–0.84) | 0.011 | |||
PFS ↑ | Multivariate 0.55 (0.38–0.82) | 0.031 | |||||
Anti-PD-(L)1 monotherapy | Retrospective, single arm | 18 | Hyperintensity tumor (RER ‡ ≥ 0.9) on EOB-MRI | PFS ↓ | Multivariate 7.78 (1.59–38.1) | 0.011 | Aoki T et. al. [83] |
Atezo/Beva | Retrospective validation based on multiomics study, single arm | Non-viral HCC 30 | Steatotic HCC | PFS ↑ | Univariate | <0.05 | Murai H et.al. [86] |
Atezo/Beva Lenvatinib | Retrospective, separate single arm (not vs. lenvatinib) | Atezo/Beva 35 | Heterogeneous tumor on EOB-MRI | PFS ↓ | Univariate | 0.007 | Sasaki R et.al. [87] |
Hyperintensity tumor (RER ‡ ≥ 0.9) on EOB-MRI | PFS ↓ | Univariate | 0.012 | ||||
Lenvatinib 33 | (no significant factor) | - | |||||
Anti-PD-(L)1-based immunotherapy | Retrospective, single arm | 24 | 20 gene inflamed signature (CCL5, CD2, CD3D, CD48, CD52, CD53, CXCL9, CXCR4, FYB, GZMA, GZMB, GZMK, IGHG1, IGHG3, LAPTM5, LCP2, PTPRC, SLA, TRAC, TRBC2) | PR ↑ | Wilcoxon rank sum | 0.047 | Montironi C et.al. [92] |
Anti-PD-1 monotherapy | Retrospective, single arm | 99 | AFP < 400 | OS ↑ | Univariate 2.81 (1.56–4.97) | <0.0001 | Spahn et. al. [93] |
PFS ↑ | Univariate 1.33 (0.86–2.06) | <0.05 | |||||
Anti-PD-1 monotherapy | Retrospective, single arm | 60 | AFP response as a >20% decline | OS ↑ | Univariate 0.09 (0.02–0.44) | <0.001 | Shao et. al. [94] |
PFS ↑ | Univariate 0.13 (0.04–0.39) | 0.003 | |||||
Anti-PD-(L)1-based immunotherapy Sorafenib | Retrospective, separate single arm (not vs. sorafenib) | Anti-PD-(L)1-based immunotherapy: training cohort 190 (anti-PD-(L)1 mono 110, Atezo/Beva 75, Others 5) validation cohort 102 (anti-PD-(L)1 mono 68, Atezo/Beva 25, Anti-PD-(L)1 + TKI 7, Others 2) | Child–Pugh A | OS ↑ | Multivariate 2.3 (1.5–3.4) | <0.001 | Scheiner B et.al. [95] |
ECOG PS 0 | OS ↑ | Multivariate 2.1 (1.4–3.2) | <0.001 | ||||
AFP < 100 | OS ↑ | Multivariate 1.7 (1.2–2.6) | 0.007 | ||||
CRP < 1 | OS ↑ | Multivariate 1.7 (1.2–2.6) | 0.007 | ||||
CRAFITY score † | OS | Univariate | 0.001 | ||||
CRAFITY low | 1 | ||||||
CRAFITY int. | 2.0 (1.1–3.4) | ||||||
CRAFITY high | 3.6 (2.1–6.2) | ||||||
CRAFITY score † | ORR | Chi-square | 0.001 | ||||
DCR | Chi-square | <0.001 | |||||
CRAFITY score † | OS | Univariate | 0.001 | ||||
DCR | Chi-square | 0.037 | |||||
Sorafenib 204 | CRAFITY score † | OS | Univariate | <0.001 | |||
Ate/Bev | Retrospective, single arm | 297 | AFP < 100 | PFS ↑ | Multivariate | <0.001 | Hatanaka T et.al. [96] |
OS ↑ | Multivariate | 0.028 | |||||
CRP < 1 | PFS ↑ | Multivariate | <0.001 | ||||
OS ↑ | Multivariate | 0.032 | |||||
CRAFITY score † | PFS | Univariate | <0.001 | ||||
OS | Univariate | ||||||
DCR | Chi-square | 0.029 | |||||
Ate/Bev | Retrospective, single arm | 40 | NLR ≤ 3.21 | PFS ↑ | Univariate | <0.0001 | Eso Y et.al [101] |
Ate/Bev | Retrospective, single arm | 249 | NLR > 3 | OS ↓ | Multivariate 3.37 (1.02–11.08) | 0.001 | Tada T et.al. [102] |
Atezo/Beva Sorafenib | Retrospective pooled analysis of the phase 1b GO30140 (single arm) and the phase 3 trial IMbrave 150 (Atezo/Beva vs. sorafenib) | GO30140 arm A cohort Atezo/Beva 90 (single arm) | <Transcriptome analyses> | Zhu AX et. al. [72] | |||
ABRS a high | PFS ↑ | Univariate 0.51 (0.3–0.87) | 0.013 | ||||
CD274 b high | PFS ↑ | Univariate 0.42 (0.25–0.72) | 0.0011 | ||||
Teff c high | PFS ↑ | Univariate 0.46 (0.27–0.78) | 0.0035 | ||||
<In situ analyses> | |||||||
CD8+ T cell density | CR/PR ↑ | Student T | 0.007 | ||||
CD3+ T cell density | CR/PR ↑ | Student T | 0.039 | ||||
CD3+ GZMB + T cell density | CR/PR ↑ | Student T | 0.044 | ||||
MHC1 + tumor cells | CR/PR ↑ | Student T | 0.0087 | ||||
IMbrave 150 (Atezo/Beva 119 sorafenib 58) | <Transcriptome analyses> | ||||||
ABRS a high | PFS ↑ | Multivariate 0.49 (0.25–0.97) | 0.041 | ||||
OS ↑ | Multivariate 0.26 (0.11–0.58) | 0.0012 | |||||
CD274 b high | PFS ↑ | Multivariate 0.46 (0.25–0.86) | 0.015 | ||||
OS ↑ | Multivariate 0.3 (0.14–0.64) | 0.002 | |||||
Teff c high | PFS ↑ | Multivariate 0.52 (0.28–0.99) | 0.047 | ||||
OS ↑ | Multivariate 0.24 (0.11–0.5) | 0.0002 | |||||
Treg d/Teff c low | PFS ↑ | Multivariate 0.42 (0.22–0.79) | 0.007 | ||||
OS ↑ | Multivariate 0.24 (0.11–0.54) | 0.0006 | |||||
GPC3 low | PFS ↑ | Multivariate 0.47 (0.27–0.81) | 0.006 | ||||
OS ↑ | Multivariate 0.29 (0.13–0.62) | 0.002 | |||||
AFP low | PFS ↑ | Multivariate 0.49 (0.28–0.87) | 0.014 | ||||
OS ↑ | Multivariate 0.32 (0.14–0.73) | 0.007 | |||||
<In situ analyses> | |||||||
CD8+ T cell high dens. | OS ↑ | Multivariate 0.29 (0.14–0.61) | 0.0011 | ||||
PFS ↑ | Multivariate 0.54 (0.29–1.00) | 0.053 | |||||
<Genetic profiling> | |||||||
CTNNB1 WT | OS ↑ | Multivariate 0.42 (0.19–0.91) | 3 × 10−4 | ||||
PFS ↑ | Multivariate 0.45 (0.27–0.86) | 0.0086 | |||||
TERT Mut | OS ↑ | Multivariate 0.38 (0.16–0.89) | 7.8 × 10−5 | ||||
PFS ↑ | Multivariate 0.61 (0.33–1.10) | 0.047 | |||||
Atezo/Beva | Retrospective, single arm | 34 | High plasma IL-6 | PFS ↑ | Univariate | <0.05 | Myojin Y et.al. [103] |
Multivariate 2.785 (1.216–6.38) | 0.01 | ||||||
OS ↑ | Univariate | <0.05 | |||||
Atezo/Beva Lenvatinib | Retrospective, separate single arm (not vs. lenvatinib) | Atezo/Beva 24 | High-level CD8+ TILs | PFS ↑ | Univariate | 0.041 | Kuwano A et.al. [110] |
ORR ↑ | Chi-square | 0.012 | |||||
DCR ↑ | Chi-square | 0.031 | |||||
Lenvatinib 15 | (No significant factor) | ||||||
Anti-PD-1 monotherapy | CheckMate 040 trial (nivolumab) | 37 | <Genetic profiling> Inflammatory gene signatures (CD274, CD8A, LAG3, STAT1) | OS ↑ | Univariate | 0.01 | Sangro et.al. [108] |
PD-L1 | OS ↑ | Univariate | 0.032 | ||||
Anti-PD-1 monotherapy | Retrospective, single arm | 99 | Antibiotic treatment | PD ↑ | Chi-square | <0.05 | Spahn et.al. [93] |
PFS ↓ | Univariate 1.65 (0.9–3.0) | <0.05 | |||||
Atezo/Beva | Retrospective, single arm | 85 | Cell free DNA low | OS ↑ | Univariate | 0.018 | Matsumae et.al [104] |
PFS ↑ | Univariate | 0.021 | |||||
Atezo/Beva | Retrospective, single arm | 174 | Anti-drug antibodies | OS ↓ | Univariate 5.81 (2.7–12.5) | 0.001 | Kim et.al. [105] |
PFS ↓ | Univariate 2.52 (1.27–5.01) | 0.006 | |||||
Atezo/Beva | Retrospective, single arm | 150 | Grade 1/2 irAEs | OS ↑ | Multivariate 0.09 (0.01–0.64) | 0.017 | Fukushima ey.al. [113] |
PFS ↑ | Multivariate 0.34 (0.17–0.69) | 0.003 |
5. Conclusions and Future Directions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rumgay, H.; Arnold, M.; Ferlay, J.; Lesi, O.; Cabasag, C.J.; Vignat, J.; Laversanne, M.; McGlynn, K.A.; Soerjomataram, I. Global burden of primary liver cancer in 2020 and predictions to 2040. J. Hepatol. 2022, 77, 1598–1606. [Google Scholar] [CrossRef] [PubMed]
- McGlynn, K.A.; Petrick, J.L.; El-Serag, H.B. Epidemiology of Hepatocellular Carcinoma. Hepatology 2021, 73 (Suppl. S1), 4–13. [Google Scholar] [CrossRef] [PubMed]
- Llovet, J.M.; Kelley, R.K.; Villanueva, A.; Singal, A.G.; Pikarsky, E.; Roayaie, S.; Lencioni, R.; Koike, K.; Zucman-Rossi, J.; Finn, R.S. Hepatocellular carcinoma. Nat. Rev. Dis. Primers 2021, 7, 6. [Google Scholar] [CrossRef]
- Mathurin, P.; Rixe, O.; Carbonell, N.; Bernard, B.; Cluzel, P.; Bellin, M.F.; Khayat, D.; Opolon, P.; Poynard, T. Overview of medical treatments in unresectable hepatocellular carcinoma-an impossible meta-analysis? Aliment. Pharmacol. Ther. 1998, 12, 111–126. [Google Scholar] [CrossRef] [PubMed]
- Wilhelm, S.M.; Carter, C.; Tang, L.; Wilkie, D.; McNabola, A.; Rong, H.; Chen, C.; Zhang, X.; Vincent, P.; McHugh, M.; et al. BAY 43-9006 exhibits broad spectrum oral antitumor activity and targets the raf/mek/erk pathway and receptor tyrosine kinases involved in tumor progression and angiogenesis. Cancer Res. 2004, 64, 7099–7109. [Google Scholar] [CrossRef] [PubMed]
- Llovet, J.M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, J.-F.; De Oliveira, A.C.; Santoro, A.; Raoul, J.-L.; Forner, A.; et al. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 2008, 359, 378–390. [Google Scholar] [CrossRef] [PubMed]
- Bruix, J.; Qin, S.; Merle, P.; Granito, A.; Huang, Y.-H.; Bodoky, G.; Pracht, M.; Yokosuka, O.; Rosmorduc, O.; Breder, V.; et al. Regorafenib for patients with hepatocellular carcinoma who progressed on sorafenib treatment (RESORCE): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2017, 389, 56–66. [Google Scholar] [CrossRef]
- Kudo, M.; Finn, R.S.; Qin, S.; Han, K.-H.; Ikeda, K.; Piscaglia, F.; Baron, A.; Park, J.-W.; Han, G.; Jassem, J.; et al. Lenvatinib versus sorafenib in first-line treatment of patients with unresectable hepatocellular carcinoma: A randomised phase 3 non-inferiority trial. Lancet 2018, 391, 1163–1173. [Google Scholar] [CrossRef]
- Zhu, A.X.; Kang, Y.-K.; Yen, C.-J.; Finn, R.S.; Galle, P.R.; Llovet, J.M.; Assenat, E.; Brandi, G.; Pracht, M.; Lim, H.Y.; et al. Ramucirumab after sorafenib in patients with advanced hepatocellular carcinoma and increased α-fetoprotein concentrations (REACH-2): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2019, 20, 282–296. [Google Scholar] [CrossRef]
- Abou-Alfa, G.K.; Meyer, T.; Cheng, A.-L.; El-Khoueiry, A.B.; Rimassa, L.; Ryoo, B.-Y.; Cicin, I.; Merle, P.; Chen, Y.; Park, J.-W.; et al. Cabozantinib in Patients with Advanced and Progressing Hepatocellular Carcinoma. N. Engl. J. Med. 2018, 379, 54–63. [Google Scholar] [CrossRef]
- El-Khoueiry, A.B.; Sangro, B.; Yau, T.; Crocenzi, T.S.; Kudo, M.; Hsu, C.; Kim, T.-Y.; Choo, S.-P.; Trojan, J.; Welling, T.H.; et al. Nivolumab in patients with advanced hepatocellular carcinoma (CheckMate 040): An open-label, non-comparative, phase 1/2 dose escalation and expansion trial. Lancet 2017, 389, 2492–2502. [Google Scholar] [CrossRef] [PubMed]
- Zhu, A.X.; Finn, R.S.; Edeline, J.; Cattan, S.; Ogasawara, S.; Palmer, D.; Verslype, C.; Zagonel, V.; Fartoux, L.; Vogel, A.; et al. Pembrolizumab in patients with advanced hepatocellular carcinoma previously treated with sorafenib (KEYNOTE-224): A non-randomised, open-label phase 2 trial. Lancet Oncol. 2018, 19, 940–952. [Google Scholar] [CrossRef]
- Finn, R.S.; Ryoo, B.-Y.; Merle, P.; Kudo, M.; Bouattour, M.; Lim, H.Y.; Breder, V.; Edeline, J.; Chao, Y.; Ogasawara, S.; et al. Pembrolizumab as Second-Line Therapy in Patients with Advanced Hepatocellular Carcinoma in KEYNOTE-240: A Randomized, Double-Blind, Phase III Trial. J. Clin. Oncol. 2020, 38, 193–202. [Google Scholar] [CrossRef]
- Finn, R.S.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.-Y.; Kudo, M.; Breder, V.; Merle, P.; Kaseb, A.O.; et al. Atezolizumab plus Bevacizumab in Unresectable Hepatocellular Carcinoma. N. Engl. J. Med. 2020, 382, 1894–1905. [Google Scholar] [CrossRef] [PubMed]
- Abou-Alfa, G.K.; Lau, G.; Kudo, M.; Chan, S.L.; Kelley, R.K.; Furuse, J.; Sukeepaisarnjaroen, W.; Kang, Y.-K.; Van Dao, T.; De Toni, E.N.; et al. Tremelimumab plus Durvalumab in Unresectable Hepatocellular Carcinoma. NEJM Evid. 2022, 1, EVI-Doa2100070. [Google Scholar] [CrossRef]
- Llovet, J.M.; Peña, C.E.; Lathia, C.D.; Shan, M.; Meinhardt, G.; Bruix, J. Plasma biomarkers as predictors of outcome in patients with advanced hepatocellular carcinoma. Clin. Cancer Res. 2012, 18, 2290–2300. [Google Scholar] [CrossRef]
- Miyahara, K.; Nouso, K.; Morimoto, Y.; Takeuchi, Y.; Hagihara, H.; Kuwaki, K.; Onishi, H.; Ikeda, F.; Miyake, Y.; Nakamura, S.; et al. Pro-angiogenic cytokines for prediction of outcomes in patients with advanced hepatocellular carcinoma. Br. J. Cancer 2013, 109, 2072–2078. [Google Scholar] [CrossRef]
- Bruix, J.; Cheng, A.-L.; Meinhardt, G.; Nakajima, K.; De Sanctis, Y.; Llovet, J. Prognostic factors and predictors of sorafenib benefit in patients with hepatocellular carcinoma: Analysis of two phase III studies. J. Hepatol. 2017, 67, 999–1008. [Google Scholar] [CrossRef]
- Guthrie, G.J.K.; Charles, K.A.; Roxburgh, C.S.D.; Horgan, P.G.; McMillan, D.C.; Clarke, S.J. The systemic inflammation-based neutrophil–lymphocyte ratio: Experience in patients with cancer. Crit. Rev. Oncol. Hematol. 2013, 88, 218–230. [Google Scholar] [CrossRef]
- Templeton, A.J.; Mcnamara, M.G.; Šeruga, B.; Vera-Badillo, F.E.; Aneja, P.; Ocaña, A.; Leibowitz-Amit, R.; Sonpavde, G.; Knox, J.J.; Tran, B.; et al. Prognostic role of neutrophil-to-lymphocyte ratio in solid tumors: A systematic review and meta-analysis. J. Natl. Cancer Inst. 2014, 106, dju124. [Google Scholar] [CrossRef]
- Qi, X.; Li, J.; Deng, H.; Li, H.; Su, C.; Guo, X. Neutrophil-to-lymphocyte ratio for the prognostic assessment of hepatocellular carcinoma: A systematic review and meta-analysis of observational studies. Oncotarget 2016, 7, 45283–45301. [Google Scholar] [CrossRef] [PubMed]
- Marrero, J.A.; Kudo, M.; Venook, A.P.; Ye, S.-L.; Bronowicki, J.-P.; Chen, X.-P.; Dagher, L.; Furuse, J.; Geschwind, J.-F.H.; de Guevara, L.L.; et al. Observational registry of sorafenib use in clinical practice across Child-Pugh subgroups: The GIDEON study. J. Hepatol. 2016, 65, 1140–1147. [Google Scholar] [CrossRef]
- Kuwano, A.; Yada, M.; Nagasawa, S.; Tanaka, K.; Morita, Y.; Masumoto, A.; Motomura, K. Hepatitis C virus eradication ameliorates the prognosis of advanced hepatocellular carcinoma treated with sorafenib. J. Viral Hepat. 2022, 29, 543–550. [Google Scholar] [CrossRef] [PubMed]
- Tsai, H.-Y.; Chang, H.-P.; Chen, C.-J.; Hsu, W.-L.; Huang, L.-Y.; Lee, P.-C. Effects of direct-acting antiviral therapy for patients with advanced hepatocellular carcinoma and concomitant hepatitis C-A population-based cohort study. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 7543–7552. [Google Scholar] [CrossRef] [PubMed]
- Abou-Alfa, G.K.; Schwartz, L.; Ricci, S.; Amadori, D.; Santoro, A.; Figer, A.; De Greve, J.; Douillard, J.-Y.; Lathia, C.; Schwartz, B.; et al. Phase II Study of Sorafenib in patients with advanced hepatocellular carcinoma. J. Clin. Oncol. 2006, 24, 4293–4300. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Zhao, P.; Li, S.-Q.; Xiao, W.-K.; Yin, X.-Y.; Peng, B.-G.; Liang, L.-J. Prognostic impact of pERK in advanced hepatocellular carcinoma patients treated with sorafenib. Eur. J. Surg. Oncol. 2013, 39, 974–980. [Google Scholar] [CrossRef] [PubMed]
- Negri, F.V.; Bello, B.D.; Porta, C.; Campanini, N.; Rossi, S.; Tinelli, C.; Poggi, G.; Missale, G.; Fanello, S.; Salvagni, S.; et al. Expression of pERK and VEGFR-2 in advanced hepatocellular carcinoma and resistance to sorafenib treatment. Liver Int. 2015, 35, 2001–2008. [Google Scholar] [CrossRef] [PubMed]
- Personeni, N.; Rimassa, L.; Pressiani, T.; Destro, A.; Ligorio, C.; Tronconi, M.C.; Bozzarelli, S.; Carnaghi, C.; Di Tommaso, L.; Giordano, L.; et al. Molecular determinants of outcome in sorafenib-treated patients with hepatocellular carcinoma. J. Cancer Res. Clin. Oncol. 2013, 139, 1179–1187. [Google Scholar] [CrossRef]
- Arao, T.; Ueshima, K.; Matsumoto, K.; Nagai, T.; Kimura, H.; Hagiwara, S.; Sakurai, T.; Haji, S.; Kanazawa, A.; Hidaka, H.; et al. FGF3/FGF4 amplification and multiple lung metastases in responders to sorafenib in hepatocellular carcinoma. Hepatology 2012, 57, 1407–1415. [Google Scholar] [CrossRef]
- Chen, X.; Ba, Y.; Ma, L.; Cai, X.; Yin, Y.; Wang, K.; Guo, J.; Zhang, Y.; Chen, J.; Guo, X.; et al. Characterization of microRNAs in serum: A novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008, 18, 997–1006. [Google Scholar] [CrossRef]
- Gyöngyösi, B.; Végh, E.; Járay, B.; Székely, E.; Fassan, M.; Bodoky, G.; Schaff, Z.; Kiss, A. Pretreatment MicroRNA Level and Outcome in Sorafenib-treated Hepatocellular Carcinoma. J. Histochem. Cytochem. 2014, 62, 547–555. [Google Scholar] [CrossRef] [PubMed]
- Giordano, S.; Columbano, A. MicroRNAs: New tools for diagnosis, prognosis, and therapy in hepatocellular carcinoma? Hepatology 2012, 57, 840–847. [Google Scholar] [CrossRef] [PubMed]
- Ghidini, M.; Braconi, C. Non-Coding RNAs in Primary Liver Cancer. Front. Med. 2015, 2, 36. [Google Scholar] [CrossRef] [PubMed]
- Vaira, V.; Roncalli, M.; Carnaghi, C.; Faversani, A.; Maggioni, M.; Augello, C.; Rimassa, L.; Pressiani, T.; Spagnuolo, G.; Di Tommaso, L.; et al. MicroRNA-425-3p predicts response to sorafenib therapy in patients with hepatocellular carcinoma. Liver Int. 2014, 35, 1077–1086. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Liu, Z.; Lin, Q.; Luo, Q.; Cen, Y.; Li, J.; Fang, X.; Gong, C. MiRNAs and Cancer: Key Link in Diagnosis and Therapy. Genes 2021, 12, 1289. [Google Scholar] [CrossRef] [PubMed]
- Qiu, Z.; Li, H.; Zhang, Z.; Zhu, Z.; He, S.; Wang, X.; Wang, P.; Qin, J.; Zhuang, L.; Wang, W.; et al. A Pharmacogenomic Landscape in Human Liver Cancers. Cancer Cell 2019, 36, 179–193.e11. [Google Scholar] [CrossRef] [PubMed]
- Semënov, M.V.; Zhang, X.; He, X. DKK1 antagonizes wnt signaling without promotion of lrp6 internalization and degradation. J. Biol. Chem. 2008, 283, 21427–21432. [Google Scholar] [CrossRef]
- Teufel, M.; Seidel, H.; Köchert, K.; Meinhardt, G.; Finn, R.S.; Llovet, J.M.; Bruix, J. Biomarkers Associated with Response to Regorafenib in Patients with Hepatocellular Carcinoma. Gastroenterology 2019, 156, 1731–1741. [Google Scholar] [CrossRef]
- Piccart-Gebhart, M.J.; Procter, M.; Leyland-Jones, B.; Goldhirsch, A.; Untch, M.; Smith, I.; Gianni, L.; Baselga, J.; Bell, R.H.; Jackisch, C.; et al. Trastuzumab after adjuvant chemotherapy in her2-positive breast cancer. N. Engl. J. Med. 2005, 353, 1659–1672. [Google Scholar] [CrossRef]
- Cataldo, V.D.; Gibbons, D.L.; Pérez-Soler, R.; Quintás-Cardama, A. Treatment of non-small-cell lung cancer with Erlotinib or Gefitinib. N. Engl. J. Med. 2011, 364, 947–955. [Google Scholar] [CrossRef]
- Solomon, B.J.; Mok, T.; Kim, D.-W.; Wu, Y.-L.; Nakagawa, K.; Mekhail, T.; Felip, E.; Cappuzzo, F.; Paolini, J.; Usari, T.; et al. First-line crizotinib versus chemotherapy in ALK-positive lung cancer. N. Engl. J. Med. 2014, 371, 2167–2177. [Google Scholar] [CrossRef] [PubMed]
- Llovet, J.M.; Hernandez-Gea, V. Hepatocellular carcinoma: Reasons for phase III failure and novel perspectives on trial design. Clin. Cancer Res. 2014, 20, 2072–2079. [Google Scholar] [CrossRef] [PubMed]
- Villanueva, A.; Chiang, D.Y.; Newell, P.; Peix, J.; Thung, S.; Alsinet, C.; Tovar, V.; Roayaie, S.; Minguez, B.; Sole, M.; et al. Pivotal role of mTOR signaling in hepatocellular carcinoma. Gastroenterology 2008, 135, 1972–1983. [Google Scholar] [CrossRef] [PubMed]
- Zhu, A.X.; Kudo, M.; Assenat, E.; Cattan, S.; Kang, Y.-K.; Lim, H.Y.; Poon, R.T.P.; Blanc, J.-F.; Vogel, A.; Chen, C.-L.; et al. Effect of Everolimus on survival in advanced hepatocellular carcinoma after failure of Sorafenib. JAMA 2014, 312, 57–67. [Google Scholar] [CrossRef]
- Zhang, B.; Finn, R.S. Personalized Clinical Trials in Hepatocellular Carcinoma Based on Biomarker Selection. Liver Cancer 2016, 5, 221–232. [Google Scholar] [CrossRef]
- Santoro, A.; Rimassa, L.; Borbath, I.; Daniele, B.; Salvagni, S.; Van Laethem, J.L.; Van Vlierberghe, H.; Trojan, J.; Kolligs, F.T.; Weiss, A.; et al. Tivantinib for second-line treatment of advanced hepatocellular carcinoma: A randomised, placebo-controlled phase 2 study. Lancet Oncol. 2013, 14, 55–63. [Google Scholar] [CrossRef]
- Rimassa, L.; Assenat, E.; Peck-Radosavljevic, M.; Pracht, M.; Zagonel, V.; Mathurin, P.; Caremoli, E.R.; Porta, C.; Daniele, B.; Bolondi, L.; et al. Tivantinib for second-line treatment of MET-high, advanced hepatocellular carcinoma (METIV-HCC): A final analysis of a phase 3, randomised, placebo-controlled study. Lancet Oncol. 2018, 19, 682–693. [Google Scholar] [CrossRef] [PubMed]
- Kudo, M.; Morimoto, M.; Moriguchi, M.; Izumi, N.; Takayama, T.; Yoshiji, H.; Hino, K.; Oikawa, T.; Chiba, T.; Motomura, K.; et al. A randomized, double-blind, placebo-controlled, phase 3 study of tivantinib in Japanese patients with MET-high hepatocellular carcinoma. Cancer Sci. 2020, 111, 3759–3769. [Google Scholar] [CrossRef]
- Rimassa, L.; Kelley, R.K.; Meyer, T.; Ryoo, B.-Y.; Merle, P.; Park, J.-W.; Blanc, J.-F.; Lim, H.Y.; Tran, A.; Chan, Y.-W.; et al. Outcomes Based on Plasma Biomarkers for the Phase 3 CELESTIAL Trial of Cabozantinib versus Placebo in Advanced Hepatocellular Carcinoma. Liver Cancer 2021, 11, 38–47. [Google Scholar] [CrossRef]
- Totoki, Y.; Tatsuno, K.; Covington, K.R.; Ueda, H.; Creighton, C.J.; Kato, M.; Tsuji, S.; Donehower, L.A.; Slagle, B.L.; Nakamura, H.; et al. Trans-ancestry mutational landscape of hepatocellular carcinoma genomes. Nat. Genet. 2014, 46, 1267–1273. [Google Scholar] [CrossRef]
- Schulze, K.; Imbeaud, S.; Letouzé, E.; Alexandrov, L.B.; Calderaro, J.; Rebouissou, S.; Couchy, G.; Meiller, C.; Shinde, J.; Soysouvanh, F.; et al. Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat. Genet. 2015, 47, 505–511. [Google Scholar] [CrossRef] [PubMed]
- Xue, R.; Li, R.; Guo, H.; Guo, L.; Su, Z.; Ni, X.; Qi, L.; Zhang, T.; Li, Q.; Zhang, Z.; et al. Variable Intra-Tumor Genomic Heterogeneity of Multiple Lesions in Patients with Hepatocellular Carcinoma. Gastroenterology 2016, 150, 998–1008. [Google Scholar] [CrossRef] [PubMed]
- Pinter, M.; Peck-Radosavljevic, M. Review article: Systemic treatment of hepatocellular carcinoma. Aliment. Pharmacol. Ther. 2018, 48, 598–609. [Google Scholar] [CrossRef] [PubMed]
- Tohyama, O.; Matsui, J.; Kodama, K.; Hata-Sugi, N.; Kimura, T.; Okamoto, K.; Minoshima, Y.; Iwata, M.; Funahashi, Y. Antitumor activity of lenvatinib (E7080): An angiogenesis inhibitor that targets multiple receptor tyrosine kinases in preclinical human thyroid cancer models. J. Thyroid Res. 2014, 2014, 638747. [Google Scholar] [CrossRef] [PubMed]
- Matsuki, M.; Hoshi, T.; Yamamoto, Y.; Ikemori-Kawada, M.; Minoshima, Y.; Funahashi, Y.; Matsui, J. Lenvatinib inhibits angiogenesis and tumor fibroblast growth factor signaling pathways in human hepatocellular carcinoma models. Cancer Med. 2018, 7, 2641–2653. [Google Scholar] [CrossRef] [PubMed]
- Tada, T.; Kumada, T.; Hiraoka, A.; Michitaka, K.; Atsukawa, M.; Hirooka, M.; Tsuji, K.; Ishikawa, T.; Takaguchi, K.; Kariyama, K.; et al. Neutrophil-to-lymphocyte ratio is associated with survival in patients with unresectable hepatocellular carcinoma treated with lenvatinib. Liver Int. 2020, 40, 968–976. [Google Scholar] [CrossRef] [PubMed]
- Casadei-Gardini, A.; Rimini, M.; Kudo, M.; Shimose, S.; Tada, T.; Suda, G.; Goh, M.J.; Jefremow, A.; Scartozzi, M.; Cabibbo, G.; et al. Real Life Study of Lenvatinib Therapy for Hepatocellular Carcinoma: RELEVANT Study. Liver Cancer 2022, 11, 527–539. [Google Scholar] [CrossRef] [PubMed]
- Myojin, Y.; Kodama, T.; Maesaka, K.; Motooka, D.; Sato, Y.; Tanaka, S.; Abe, Y.; Ohkawa, K.; Mita, E.; Hayashi, Y.; et al. ST6GAL1 Is a Novel Serum Biomarker for Lenvatinib-Susceptible FGF19-Driven Hepatocellular Carcinoma. Clin. Cancer Res. 2021, 27, 1150–1161. [Google Scholar] [CrossRef]
- Wilson, L.J.; Linley, A.; Hammond, D.E.; Hood, F.E.; Coulson, J.M.; MacEwan, D.J.; Ross, S.J.; Slupsky, J.R.; Smith, P.D.; Eyers, P.A.; et al. New Perspectives, Opportunities, and Challenges in Exploring the Human Protein Kinome. Cancer Res. 2018, 78, 15–29. [Google Scholar] [CrossRef]
- Ferrara, N.; Gerber, H.-P.; LeCouter, J. The biology of VEGF and its receptors. Nat. Med. 2003, 9, 669–676. [Google Scholar] [CrossRef]
- Spratlin, J.L.; Cohen, R.B.; Eadens, M.; Gore, L.; Camidge, D.R.; Diab, S.; Leong, S.; O’Bryant, C.; Chow, L.Q.M.; Serkova, N.J.; et al. Phase I pharmacologic and biologic study of ramucirumab (IMC-1121B), a fully human immunoglobulin G1monoclonal antibody targeting the vascular endothelial growth factor receptor-2. J. Clin. Oncol. 2010, 28, 780–787. [Google Scholar] [CrossRef] [PubMed]
- Zhu, A.X.; Finn, R.S.; Mulcahy, M.; Gurtler, J.; Sun, W.; Schwartz, J.D.; Dalal, R.P.; Joshi, A.; Hozak, R.R.; Xu, Y.; et al. A Phase II and biomarker study of ramucirumab, a human monoclonal antibody targeting the VEGF receptor-2, as first-line monotherapy in patients with advanced hepatocellular cancer. Clin. Cancer Res. 2013, 19, 6614–6623. [Google Scholar] [CrossRef]
- Zhu, A.X.; Park, J.O.; Ryoo, B.-Y.; Yen, C.-J.; Poon, R.; Pastorelli, D.; Blanc, J.-F.; Chung, H.C.; Baron, A.D.; Pfiffer, T.E.F.; et al. Ramucirumab versus placebo as second-line treatment in patients with advanced hepatocellular carcinoma following first-line therapy with sorafenib (REACH): A randomised, double-blind, multicentre, phase 3 trial. Lancet Oncol. 2015, 16, 859–870. [Google Scholar] [CrossRef]
- Montal, R.; Andreu-Oller, C.; Bassaganyas, L.; Esteban-Fabró, R.; Moran, S.; Montironi, C.; Moeini, A.; Pinyol, R.; Peix, J.; Cabellos, L.; et al. Molecular portrait of high alpha-fetoprotein in hepatocellular carcinoma: Implications for biomarker-driven clinical trials. Br. J. Cancer 2019, 121, 340–343. [Google Scholar] [CrossRef] [PubMed]
- Donne, R.; Lujambio, A. The liver cancer immune microenvironment: Therapeutic implications for hepatocellular carcinoma. Hepatology 2023, 77, 1773–1796. [Google Scholar] [CrossRef] [PubMed]
- Yau, T.; Park, J.-W.; Finn, R.S.; Cheng, A.-L.; Mathurin, P.; Edeline, J.; Kudo, M.; Harding, J.J.; Merle, P.; Rosmorduc, O.; et al. Nivolumab versus sorafenib in advanced hepatocellular carcinoma (CheckMate 459): A randomised, multicentre, open-label, phase 3 trial. Lancet Oncol. 2022, 23, 77–90. [Google Scholar] [CrossRef] [PubMed]
- Qin, S.; Chen, Z.; Fang, W.; Ren, Z.; Xu, R.; Ryoo, B.-Y.; Meng, Z.; Bai, Y.; Chen, X.; Liu, X.; et al. Pembrolizumab Versus Placebo as Second-Line Therapy in Patients from Asia with Advanced Hepatocellular Carcinoma: A Randomized, Double-Blind, Phase III Trial. J. Clin. Oncol. 2023, 41, 1434–1443. [Google Scholar] [CrossRef]
- Leach, D.R.; Krummel, M.F.; Allison, J.P. Enhancement of antitumor immunity by CTLA-4 Blockade. Science 1996, 271, 1734–1736. [Google Scholar] [CrossRef]
- Iwai, Y.; Ishida, M.; Tanaka, Y.; Okazaki, T.; Honjo, T.; Minato, N. Involvement of PD-L1 on tumor cells in the escape from host immune system and tumor immunotherapy by PD-L1 blockade. Proc. Natl. Acad. Sci. USA 2002, 99, 12293–12297. [Google Scholar] [CrossRef]
- Shiravand, Y.; Khodadadi, F.; Kashani, S.M.A.; Hosseini-Fard, S.R.; Hosseini, S.; Sadeghirad, H.; Ladwa, R.; O’byrne, K.; Kulasinghe, A. Immune Checkpoint Inhibitors in Cancer Therapy. Curr. Oncol. 2022, 29, 3044–3060. [Google Scholar] [CrossRef]
- Ang, C.; Klempner, S.J.; Ali, S.M.; Madison, R.; Ross, J.S.; Severson, E.A.; Fabrizio, D.; Goodman, A.; Kurzrock, R.; Suh, J.; et al. Prevalence of established and emerging biomarkers of immune checkpoint inhibitor response in advanced hepatocellular carcinoma. Oncotarget 2019, 10, 4018–4025. [Google Scholar] [CrossRef] [PubMed]
- Zhu, A.X.; Abbas, A.R.; de Galarreta, M.R.; Guan, Y.; Lu, S.; Koeppen, H.; Zhang, W.; Hsu, C.-H.; He, A.R.; Ryoo, B.-Y.; et al. Molecular correlates of clinical response and resistance to atezolizumab in combination with bevacizumab in advanced hepatocellular carcinoma. Nat. Med. 2022, 28, 1599–1611. [Google Scholar] [CrossRef]
- Kudo, M. Pembrolizumab for the Treatment of Hepatocellular Carcinoma. Liver Cancer 2019, 8, 143–154. [Google Scholar] [CrossRef] [PubMed]
- Pinato, D.J.; Mauri, F.A.; Spina, P.; Cain, O.; Siddique, A.; Goldin, R.; Victor, S.; Pizio, C.; Akarca, A.U.; Boldorini, R.L.; et al. Clinical implications of heterogeneity in PD-L1 immunohistochemical detection in hepatocellular carcinoma: The Blueprint-HCC study. Br. J. Cancer 2019, 120, 1033–1036. [Google Scholar] [CrossRef] [PubMed]
- Pfister, D.; Núñez, N.G.; Pinyol, R.; Govaere, O.; Pinter, M.; Szydlowska, M.; Gupta, R.; Qiu, M.; Deczkowska, A.; Weiner, A.; et al. NASH limits anti-tumour surveillance in immunotherapy-treated HCC. Nature 2021, 592, 450–456. [Google Scholar] [CrossRef] [PubMed]
- Cheng, A.-L.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.-Y.; Lim, H.Y.; Kudo, M.; Breder, V.; Merle, P.; et al. Updated efficacy and safety data from IMbrave150: Atezolizumab plus bevacizumab vs. sorafenib for unresectable hepatocellular carcinoma. J. Hepatol. 2022, 76, 862–873. [Google Scholar] [CrossRef] [PubMed]
- Rimini, M.; Rimassa, L.; Ueshima, K.; Burgio, V.; Shigeo, S.; Tada, T.; Suda, G.; Yoo, C.; Cheon, J.; Pinato, D.; et al. Atezolizumab plus bevacizumab versus lenvatinib or sorafenib in non-viral unresectable hepatocellular carcinoma: An international propensity score matching analysis. ESMO Open 2022, 7, 100591. [Google Scholar] [CrossRef] [PubMed]
- Espinoza, M.; Muquith, M.; Lim, M.; Zhu, H.; Singal, A.G.; Hsiehchen, D. Disease Etiology and Outcomes After Atezolizumab Plus Bevacizumab in Hepatocellular Carcinoma: Post-Hoc Analysis of IMbrave150. Gastroenterology 2023, 165, 286–288.e4. [Google Scholar] [CrossRef]
- Spranger, S.; Bao, R.; Gajewski, T.F. Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature 2015, 523, 231–235. [Google Scholar] [CrossRef]
- Luke, J.J.; Bao, R.; Sweis, R.F.; Spranger, S.; Gajewski, T.F. WNT/β-catenin Pathway Activation Correlates with Immune Exclusion across Human Cancers. Clin. Cancer Res. 2019, 25, 3074–3083. [Google Scholar] [CrossRef]
- Harding, J.J.; Nandakumar, S.; Armenia, J.; Khalil, D.N.; Albano, M.; Ly, M.; Shia, J.; Hechtman, J.F.; Kundra, R.; El Dika, I.; et al. Prospective Genotyping of Hepatocellular Carcinoma: Clinical Implications of Next-Generation Sequencing for Matching Patients to Targeted and Immune Therapies. Clin. Cancer Res. 2019, 25, 2116–2126. [Google Scholar] [CrossRef]
- Ueno, A.; Masugi, Y.; Yamazaki, K.; Komuta, M.; Effendi, K.; Tanami, Y.; Tsujikawa, H.; Tanimoto, A.; Okuda, S.; Itano, O.; et al. OATP1B3 expression is strongly associated with Wnt/β-catenin signalling and represents the transporter of gadoxetic acid in hepatocellular carcinoma. J. Hepatol. 2014, 61, 1080–1087. [Google Scholar] [CrossRef]
- Aoki, T.; Nishida, N.; Ueshima, K.; Morita, M.; Chishina, H.; Takita, M.; Hagiwara, S.; Ida, H.; Minami, Y.; Yamada, A.; et al. Higher Enhancement Intrahepatic Nodules on the Hepatobiliary Phase of Gd-EOB-DTPA-Enhanced MRI as a Poor Responsive Marker of Anti-PD-1/PD-L1 Monotherapy for Unresectable Hepatocellular Carcinoma. Liver Cancer 2021, 10, 615–628. [Google Scholar] [CrossRef] [PubMed]
- Kubo, A.; Suda, G.; Kimura, M.; Maehara, O.; Tokuchi, Y.; Kitagataya, T.; Ohara, M.; Yamada, R.; Shigesawa, T.; Suzuki, K.; et al. Characteristics and Lenvatinib Treatment Response of Unresectable Hepatocellular Carcinoma with Iso-High Intensity in the Hepatobiliary Phase of EOB-MRI. Cancers 2021, 13, 3633. [Google Scholar] [CrossRef] [PubMed]
- Kuwano, A.; Tanaka, K.; Yada, M.; Nagasawa, S.; Morita, Y.; Masumoto, A.; Motomura, K. Therapeutic efficacy of lenvatinib for hepatocellular carcinoma with iso-high intensity in the hepatobiliary phase of Gd-EOB-DTPA-MRI. Mol. Clin. Oncol. 2022, 16, 53. [Google Scholar] [CrossRef]
- Murai, H.; Kodama, T.; Maesaka, K.; Tange, S.; Motooka, D.; Suzuki, Y.; Shigematsu, Y.; Inamura, K.; Mise, Y.; Saiura, A.; et al. Multiomics identifies the link between intratumor steatosis and the exhausted tumor immune microenvironment in hepatocellular carcinoma. Hepatology 2023, 77, 77–91. [Google Scholar] [CrossRef] [PubMed]
- Sasaki, R.; Nagata, K.; Fukushima, M.; Haraguchi, M.; Miuma, S.; Miyaaki, H.; Soyama, A.; Hidaka, M.; Eguchi, S.; Shigeno, M.; et al. Evaluating the Role of Hepatobiliary Phase of Gadoxetic Acid-Enhanced Magnetic Resonance Imaging in Predicting Treatment Impact of Lenvatinib and Atezolizumab plus Bevacizumab on Unresectable Hepatocellular Carcinoma. Cancers 2022, 14, 827. [Google Scholar] [CrossRef] [PubMed]
- Kuwano, A.; Yada, M.; Narutomi, F.; Nagasawa, S.; Tanaka, K.; Kurosaka, K.; Ohishi, Y.; Masumoto, A.; Motomura, K. Therapeutic efficacy of atezolizumab plus bevacizumab for hepatocellular carcinoma with WNT/β-catenin signal activation. Oncol. Lett. 2022, 24, 216. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, T.; Kitao, A.; Matsui, O.; Hayashi, T.; Nio, K.; Kondo, M.; Ohno, N.; Miyati, T.; Okada, H.; Yamashita, T.; et al. Gd-EOB-DTPA-enhanced magnetic resonance imaging and alpha-fetoprotein predict prognosis of early-stage hepatocellular carcinoma. Hepatology 2014, 60, 1674–1685. [Google Scholar] [CrossRef] [PubMed]
- Hagiwara, S.; Nishida, N.; Kudo, M. Advances in Immunotherapy for Hepatocellular Carcinoma. Cancers 2023, 15, 2070. [Google Scholar] [CrossRef]
- Sia, D.; Jiao, Y.; Martinez-Quetglas, I.; Kuchuk, O.; Villacorta-Martin, C.; de Moura, M.C.; Putra, J.; Camprecios, G.; Bassaganyas, L.; Akers, N.; et al. Identification of an Immune-specific Class of Hepatocellular Carcinoma, Based on Molecular Features. Gastroenterology 2017, 153, 812–826. [Google Scholar] [CrossRef] [PubMed]
- Montironi, C.; Castet, F.; Haber, P.K.; Pinyol, R.; Torres-Martin, M.; Torrens, L.; Mesropian, A.; Wang, H.; Puigvehi, M.; Maeda, M.; et al. Inflamed and non-inflamed classes of HCC: A revised immunogenomic classification. Gut 2023, 72, 129–140. [Google Scholar] [CrossRef] [PubMed]
- Spahn, S.; Roessler, D.; Pompilia, R.; Gabernet, G.; Gladstone, B.P.; Horger, M.; Biskup, S.; Feldhahn, M.; Nahnsen, S.; Hilke, F.J.; et al. Clinical and Genetic Tumor Characteristics of Responding and Non-Responding Patients to PD-1 Inhibition in Hepatocellular Carcinoma. Cancers 2020, 12, 3830. [Google Scholar] [CrossRef] [PubMed]
- Shao, Y.; Liu, T.; Hsu, C.; Lu, L.; Shen, Y.; Lin, Z.; Cheng, A.; Hsu, C. Early alpha-foetoprotein response associated with treatment efficacy of immune checkpoint inhibitors for advanced hepatocellular carcinoma. Liver Int. 2019, 39, 2184–2189. [Google Scholar] [CrossRef] [PubMed]
- Scheiner, B.; Pomej, K.; Kirstein, M.M.; Hucke, F.; Finkelmeier, F.; Waidmann, O.; Himmelsbach, V.; Schulze, K.; von Felden, J.; Fründt, T.W.; et al. Prognosis of patients with hepatocellular carcinoma treated with immunotherapy—Development and validation of the CRAFITY score. J. Hepatol. 2022, 76, 353–363. [Google Scholar] [CrossRef] [PubMed]
- Hatanaka, T.; Kakizaki, S.; Hiraoka, A.; Tada, T.; Hirooka, M.; Kariyama, K.; Tani, J.; Atsukawa, M.; Takaguchi, K.; Itobayashi, E.; et al. Prognostic impact of C-reactive protein and alpha-fetoprotein in immunotherapy score in hepatocellular carcinoma patients treated with atezolizumab plus bevacizumab: A multicenter retrospective study. Hepatol. Int. 2022, 16, 1150–1160. [Google Scholar] [CrossRef] [PubMed]
- Capone, M.; Giannarelli, D.; Mallardo, D.; Madonna, G.; Festino, L.; Grimaldi, A.M.; Vanella, V.; Simeone, E.; Paone, M.; Palmieri, G.; et al. Baseline neutrophil-to-lymphocyte ratio (NLR) and derived NLR could predict overall survival in patients with advanced melanoma treated with nivolumab. J. Immunother. Cancer 2018, 6, 74. [Google Scholar] [CrossRef]
- Bilen, M.A.; Dutcher, G.M.A.; Liu, Y.; Ravindranathan, D.; Kissick, H.T.; Carthon, B.C.; Kucuk, O.; Harris, W.B.; Master, V.A. Association between Pretreatment Neutrophil-to-Lymphocyte Ratio and Outcome of Patients with Metastatic Renal-Cell Carcinoma Treated with Nivolumab. Clin. Genitourin. Cancer 2018, 16, e563–e575. [Google Scholar] [CrossRef]
- Ogata, T.; Satake, H.; Ogata, M.; Hatachi, Y.; Inoue, K.; Hamada, M.; Yasui, H. Neutrophil-to-lymphocyte ratio as a predictive or prognostic factor for gastric cancer treated with nivolumab: A multicenter retrospective study. Oncotarget 2018, 9, 34520–34527. [Google Scholar] [CrossRef]
- Bagley, S.J.; Kothari, S.; Aggarwal, C.; Bauml, J.M.; Alley, E.W.; Evans, T.L.; Kosteva, J.A.; Ciunci, C.A.; Gabriel, P.E.; Thompson, J.C.; et al. Pretreatment neutrophil-to-lymphocyte ratio as a marker of outcomes in nivolumab-treated patients with advanced non-small-cell lung cancer. Lung Cancer 2017, 106, 1–7. [Google Scholar] [CrossRef]
- Eso, Y.; Takeda, H.; Taura, K.; Takai, A.; Takahashi, K.; Seno, H. Pretreatment Neutrophil-to-Lymphocyte Ratio as a Predictive Marker of Response to Atezolizumab Plus Bevacizumab for Hepatocellular Carcinoma. Curr. Oncol. 2021, 28, 4157–4166. [Google Scholar] [CrossRef] [PubMed]
- Tada, T.; Kumada, T.; Hiraoka, A.; Hirooka, M.; Kariyama, K.; Tani, J.; Atsukawa, M.; Takaguchi, K.; Itobayashi, E.; Fukunishi, S.; et al. Neutrophil–lymphocyte ratio predicts early outcomes in patients with unresectable hepatocellular carcinoma treated with atezolizumab plus bevacizumab: A multicenter analysis. Eur. J. Gastroenterol. Hepatol. 2022, 34, 698–706. [Google Scholar] [CrossRef] [PubMed]
- Myojin, Y.; Kodama, T.; Sakamori, R.; Maesaka, K.; Matsumae, T.; Sawai, Y.; Imai, Y.; Ohkawa, K.; Miyazaki, M.; Tanaka, S.; et al. Interleukin-6 Is a Circulating Prognostic Biomarker for Hepatocellular Carcinoma Patients Treated with Combined Immunotherapy. Cancers 2022, 14, 883. [Google Scholar] [CrossRef]
- Matsumae, T.; Kodama, T.; Myojin, Y.; Maesaka, K.; Sakamori, R.; Takuwa, A.; Oku, K.; Motooka, D.; Sawai, Y.; Oshita, M.; et al. Circulating Cell-Free DNA Profiling Predicts the Therapeutic Outcome in Advanced Hepatocellular Carcinoma Patients Treated with Combination Immunotherapy. Cancers 2022, 11, 3367. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.; Yang, H.; Kim, I.; Kang, B.; Kim, H.; Kim, H.; Lee, W.S.; Jung, S.; Lim, H.Y.; Cheon, J.; et al. Association of High Levels of Antidrug Antibodies Against Atezolizumab with Clinical Outcomes and T-Cell Responses in Patients with Hepatocellular Carcinoma. JAMA Oncol. 2022, 8, 1825–1829. [Google Scholar] [CrossRef] [PubMed]
- Reig, M.; Forner, A.; Rimola, J.; Ferrer-Fàbrega, J.; Burrel, M.; Garcia-Criado, Á.; Kelley, R.K.; Galle, P.R.; Mazzaferro, V.; Salem, R.; et al. BCLC strategy for prognosis prediction and treatment recommendation: The 2022 update. J. Hepatol. 2022, 76, 681–693. [Google Scholar] [CrossRef] [PubMed]
- Kudo, M. Durvalumab Plus Tremelimumab: A Novel Combination Immunotherapy for Unresectable Hepatocellular Carcinoma. Liver Cancer 2022, 11, 87–93. [Google Scholar] [CrossRef]
- Sangro, B.; Melero, I.; Wadhawan, S.; Finn, R.S.; Abou-Alfa, G.K.; Cheng, A.L.; Yau, T.; Furuse, J.; Park, J.W.; Boyd, Z.; et al. Association of inflammatory biomarkers with clinical outcomes in nivolumab-treated patients with advanced hepatocellular carcinoma. J. Hepatol. 2020, 73, 1460–1469. [Google Scholar] [CrossRef]
- Haber, P.K.; Castet, F.; Torres-Martin, M.; Andreu-Oller, C.; Puigvehí, M.; Miho, M.; Radu, P.; Dufour, J.F.; Verslype, C.; Zimpel, C.; et al. Molecular Markers of Response to Anti-PD1 Therapy in Advanced Hepatocellular Carcinoma. Gastroenterology 2023, 164, 72–88.e18. [Google Scholar] [CrossRef]
- Kuwano, A.; Yada, M.; Miyazaki, Y.; Tanaka, K.; Kurosaka, K.; Ohishi, Y.; Masumoto, A.; Motomura, K. Tumor-infiltrating CD8+ T cells as a biomarker for chemotherapy efficacy in unresectable hepatocellular carcinoma. Oncol. Lett. 2023, 25, 259. [Google Scholar] [CrossRef]
- Lee, P.C.; Wu, C.J.; Hung, Y.W.; Lee, C.J.; Chi, C.T.; Lee, I.C.; Yu-Lun, K.; Chou, S.H.; Luo, J.C.; Hou, M.C.; et al. Gut microbiota and metabolites associate with outcomes of immune checkpoint inhibitor-treated unresectable hepatocellular carcinoma. J. Immunother. Cancer 2022, 10, e004779. [Google Scholar] [CrossRef] [PubMed]
- Ng, K.Y.Y.; Tan, S.H.; Tan, J.J.E.; Tay, D.S.H.; Lee, A.W.X.; Ang, A.J.S.; Wong, L.W.J.; Choo, S.P.; Tai, D.W.-M.; Lee, J.J.X. Impact of Immune-Related Adverse Events on Efficacy of Immune Checkpoint Inhibitors in Patients with Advanced Hepatocellular Carcinoma. Liver Cancer 2021, 11, 9–21. [Google Scholar] [CrossRef] [PubMed]
- Fukushima, T.; Morimoto, M.; Kobayashi, S.; Ueno, M.; Uojima, H.; Hidaka, H.; Kusano, C.; Chuma, M.; Numata, K.; Tsuruya, K.; et al. Association between Immune-Related Adverse Events and Survival in Patients with Hepatocellular Carcinoma Treated with Atezolizumab Plus Bevacizumab. Oncologist 2023, 28, e526–e533. [Google Scholar] [CrossRef] [PubMed]
Prognostic and Predictive Factors | Therapeutics | Study Design | Outcome | Statistical Analysis HR (95% CI) | p-Value | Author [Reference No.] |
---|---|---|---|---|---|---|
<Etiology> | ||||||
HBV | Anti-PD-(L)1-based immunotherapy | Meta-analyses of 3 phase 3 trials: Checkmate 459 (nivolumab vs. sorafenib), IMbrave 150 (Atezo/Beva vs. sorafenib), KEYNOTE-240 (Pembrolizumab vs. placebo) | OS | Univariate 0.64 (0.49–0.83) | 0.0008 | Pfister D et al. [75] |
HCV | OS | Univariate 0.68 (0.48–0.97) | 0.04 | |||
NAFLD | Retrospective (ICI single arm) | OS | Multivariate 2.6 (1.2–5.6) | 0.017 | ||
<Liver function and general condition> | ||||||
Child–Pugh A | Anti-PD-(L)1-based immunotherapy | Retrospective, separate single arm (not vs. sorafenib) | OS | Multivariate 2.3 (1.5–3.4) | <0.001 | Scheiner B et al. [95] |
ECOG PS0 | OS | Multivariate 2.1 (1.4–3.2) | <0.001 | |||
<Image> | ||||||
hypertensive tumor (RER ‡ ≥ 0.9) on EOB-MRI | Anti-PD-(L)1 monotherapy | Retrospective, single arm | PFS | Multivariate 7.78 (1.59–38.1) | 0.011 | Aoki T et al. [83] |
Atezo/Beva, lenvatinib | Retrospective, separate single arm (not vs. lenvatinib) | PFS | Univariate | 0.012 | Sasaki R et al. [87] | |
Heterogenous tumor on EOB-MRI | PFS | Univariate | 0.007 | |||
Steatotic HCC | Atezo/Beva | Retrospective validation based on multiomics study, single arm | PFS | Univariate | <0.05 | Murai H et al. [86] |
<Blood marker> | ||||||
AFP(<400) | Anti-PD-1 monotherapy | Retrospective, single arm | OS | Univariate 2.81 (1.56–4.97) | <0.0001 | Spahn et. al. [93] |
PFS | Univariate 1.33 (0.86–2.06) | <0.05 | ||||
AFP response as a >20% decline | Anti-PD-1 monotherapy | Retrospective, single arm | OS | Univariate 0.09 (0.02–0.44) | <0.001 | |
PFS | Univariate 0.13 (0.04–0.39) | 0.003 | ||||
AFP (<100) | Anti-PD-(L)1-based immunotherapy | Retrospective, separate single arm | OS | Multivariate 1.7 (1.2–2.6) | 0.007 | Scheiner B et al. [95] |
Atezo/Beva | Retrospective, single arm | PFS | Multivariate | <0.001 | Hatanaka T et.al. [96] | |
OS | Multivariate | 0.028 | ||||
CRP (<1) | Anti-PD-(L)1-based immunotherapy | Retrospective, single arm | OS | Multivariate 1.7 (1.2–2.6) | 0.007 | Scheiner B et.al. [95] |
Atezo/Beva | Retrospective, single arm | PFS | Multivariate | <0.001 | Hatanaka T et.al. [96] | |
OS | Multivariate | 0.032 | ||||
CAFITY score † | Anti-PD-(L)1-based immunotherapy | Retrospective, separate single arm (not vs. sorafenib) | OS | Univariate | 0.001 | Scheiner B et.al. [95] |
CAFITY low | 1 | |||||
CAFITY int | 2.0 (1.1–3.4) | |||||
CAFITY high | 3.6 (2.1–6.2) | |||||
CAFITY score † | ORR | Chi-square | 0.001 | |||
DCR | Chi-square | <0.001 | ||||
CAFITY score † | Atezo/Beva | Retrospective, single arm | PFS | Univariate | <0.001 | Hatanaka T et.al. [96] |
OS | Univariate | |||||
DCR | Chi-square | 0.029 | ||||
NLR (>3.21) | Atezo/Beva | Retrospective, single arm | PFS | Univariate | <0.0001 | Eso Y et.al [101] |
NLR (>3) | Atezo/Beva | Retrospective, single arm | OS | Multivariate 3.37 (1.02–11.08) | 0.001 | Tada T et.al. [102] |
IL-6 | Atezo/Beva | Retrospective, single arm | PFS | Univariate | <0.05 | Myojin Y et.al. [103] |
Multivariate 2.785 (1.216–6.38) | 0.01 | |||||
OS | Univariate | <0.05 | ||||
<Transcriptome> | ||||||
ABRS a | Atezo/Beva (not vs. sorafenib) | Retrospective analysis of GO30140 arm A cohort | PFS | Univariate 0.51 (0.3–0.87) | 0.013 | Zhu AX et. al. [72] |
Atezo/Beva vs. sorafenib | Retrospective analysis of IMbrave 150 | PFS | Multivariate 0.49 (0.25–0.97) | 0.041 | ||
OS | Multivariate 0.26 (0.11–0.58) | 0.0012 | ||||
CD274 b | Atezo/Beva (not vs. sorafenib) | Retrospective analysis of GO30140 arm A cohort | PFS | Univariate 0.42 (0.25–0.72) | 0.0011 | |
Atezo/Beva vs. sorafenib | Retrospective analysis of IMbrave 150 | PFS | Multivariate 0.46 (0.25–0.86) | 0.015 | ||
OS | Multivariate 0.3 (0.14–0.64) | 0.002 | ||||
Teff c | Atezo/Beva (not vs. sorafenib) | Retrospective analysis of GO30140 arm A cohort | PFS | Univariate 0.46 (0.27–0.78) | 0.0035 | |
Atezo/Beva vs. sorafenib | Retrospective analysis of IMbrave 150 | PFS | Multivariate 0.52 (0.28–0.99) | 0.047 | ||
OS | Multivariate 0.24 (0.11–0.5) | 0.0002 | ||||
Treg d/Teff c | PFS | Multivariate 0.52 (0.28–0.99) | 0.047 | |||
OS | Multivariate 0.24 (0.11–0.5) | 0.0002 | ||||
GPC3 | PFS | Multivariate 0.47 (0.27–0.81) | 0.007 | |||
OS | Multivariate 0.29 (0.13–0.62) | 0.002 | ||||
AFP | PFS | Multivariate 0.49 (0.28–0.87) | 0.014 | |||
OS | Multivariate 0.32 (0.14–0.73) | 0.007 | ||||
<In situ marker> | ||||||
CD8+ T cell | Atezo/Beva (not vs. sorafenib) | Retrospective analysis of GO30140 arm A cohort | CR/PR | Student T | 0.007 | Zhu AX et al. [72] |
CD3+ T cell | CR/PR | Student T | 0.039 | |||
CD3 + GZMB + T cell | CR/PR | Student T | 0.044 | |||
MHC1 + tumor cells | CR/PR | Student T | 0.0087 | |||
<Genetic marker> | ||||||
CTNNB1 WT | Atezo/Beva vs. sorafenib | Retrospective analysis of IMbrave 150 | OS | Multivariate 0.42 (0.19–0.91) | 3 × 10−4 | Zhu AX et al. [72] |
PFS | multivariate 0.45 (0.27–0.86) | 0.0086 | ||||
TERT Mut | OS | multivariate 0.38 (0.16–0.89) | 7.8 × 10−5 | |||
PFS | multivariate 0.61 (0.33–1.10) | 0.047 | ||||
CD274, CD8A, LAG3, STAT1 | Anti-PD-1 monotherapy | Retrospective analysis of CheckMate 040 trial | OS | Univariate | 0.01 | Sangro et al. [108] |
PD-L1 | OS | Univariate | 0.032 | |||
<Other> | ||||||
Cell-free DNA | Anti-PD-1 monotherapy | Retrospective, single arm | OS | Univariate | 0.018 | Matsumae et.al. [104] |
PFS | Univariate | 0.021 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Motomura, K.; Kuwano, A.; Tanaka, K.; Koga, Y.; Masumoto, A.; Yada, M. Potential Predictive Biomarkers of Systemic Drug Therapy for Hepatocellular Carcinoma: Anticipated Usefulness in Clinical Practice. Cancers 2023, 15, 4345. https://doi.org/10.3390/cancers15174345
Motomura K, Kuwano A, Tanaka K, Koga Y, Masumoto A, Yada M. Potential Predictive Biomarkers of Systemic Drug Therapy for Hepatocellular Carcinoma: Anticipated Usefulness in Clinical Practice. Cancers. 2023; 15(17):4345. https://doi.org/10.3390/cancers15174345
Chicago/Turabian StyleMotomura, Kenta, Akifumi Kuwano, Kosuke Tanaka, Yuta Koga, Akihide Masumoto, and Masayoshi Yada. 2023. "Potential Predictive Biomarkers of Systemic Drug Therapy for Hepatocellular Carcinoma: Anticipated Usefulness in Clinical Practice" Cancers 15, no. 17: 4345. https://doi.org/10.3390/cancers15174345
APA StyleMotomura, K., Kuwano, A., Tanaka, K., Koga, Y., Masumoto, A., & Yada, M. (2023). Potential Predictive Biomarkers of Systemic Drug Therapy for Hepatocellular Carcinoma: Anticipated Usefulness in Clinical Practice. Cancers, 15(17), 4345. https://doi.org/10.3390/cancers15174345