Radiomics: The New Promise for Differentiating Progression, Recurrence, Pseudoprogression, and Radionecrosis in Glioma and Glioblastoma Multiforme
Abstract
:Simple Summary
Abstract
1. Introduction
- A.
- Pseudoprogression: A transient enlargement of tumoral abnormal signal intensity and enhancement after chemoradiation (usually within six months after treatment) caused by inflammation, edema, damage to the endothelium, blood–brain barrier (BBB) disruption, and oligodendroglial injury after treatment. It is more common within 3 months after completion of therapy, but it can occur years after treatment. Moreover, it is more common in O6-methylguanine-DNA methyltransferase (MGMT)-methylated tumors, particularly when treated with TMZ [15]. Patients are usually stable clinically. Pseudoprogression is generally associated with a longer survival rate [17,18,19]. Pseudoprogression (psp) arises from a pronounced local tissue reaction involving inflammation, edema, and abnormal vessel permeability, leading to new or increased contrast-enhancing lesions. While less severe cases may subside without additional treatment, more severe cases can progress to true treatment-related necrosis over time [20]. The differentiation between tumor progression and pseudoprogression presents a significant challenge, and advanced imaging techniques such as advanced MRI and PET imaging show promise in improving the accuracy of this differentiation [21]. Follow-up MRI scans, conducted 4 to 8 weeks after the initial scan, are commonly utilized to aid in distinguishing between the two conditions [20].
- B.
- Radiation necrosis: Radiation can cause radiation-induced neurotoxicity in the brain parenchyma, secretion of tumor necrosis factor-alpha (TNF-α), endothelial damage, damage to the BBB, glial and subsequence worsening of edema, and the enhancement/evolution of new areas of abnormal enhancement mimicking recurrence/true progression. Radiation necrosis (RN) usually happens 3–12 months after RT in approximately 3–24% of adult brain tumors but can be seen up to several years and even decades after RT [15]. Histological examination reveals necrosis, edema, gliosis, endothelial thickening, hyalinization, fibrinoid deposition, thrombosis, and vessel occlusion. These pathological criteria distinguish RN from other glioma-related conditions [22]. TNF-α is the primary cytokine released following radiation. Other cytokines that cause endothelial cell death, astrocyte activation, and BBB permeability are upregulated by TNF-alpha [23,24]. The imaging features of radiation-induced necrosis present challenges in differentiation, as the contrast-enhancing mass on T1-weighted imaging with gadolinium appears similar to tumor progression using conventional MRI techniques [25,26].
- C.
- Recurrence: Recurrence is one of the leading causes of death in glioma and GBM [27]. Recurrence timelines can demonstrate substantial variability. A study centered on patients diagnosed with low-grade glioma highlighted that a proportion of 28% had recurrence events within two years subsequent to their main surgery. Conversely, a more substantial proportion, 72%, witnessed recurrence events after this two-year threshold [28]. The timing of recurrence is influenced by the grade of the glioma. High-grade gliomas like glioblastoma have a high recurrence rate, with most recurrences found near the original tumor site [29,30].
- D.
- True progression: Malignant progression alongside the recurrence of low-grade glioma primarily contributes to its treatment complications and poor prognosis [33]. Pathologically, true progression (TP) is characterized by neovascularization, the proliferation of tumoral cells, and the disruption of the BBB [20]. Numerous determinants, including genetic evolution, microenvironmental interplay, and histological features alterations, mark the progression of gliomas. Additionally, the presence or absence of IDH mutations plays a role in shaping the course of glioma progression, having implications for patient prognosis and the degree of cell malignancy [34]. The glioma’s molecular details and brain location play a critical role in determining its progression rate, which can span from a mere two years to well over ten years [35]. Of note, glioblastoma can exhibit different progression patterns, such as local, diffuse, distant, and multifocal [36]. Although several molecular markers have been identified to predict the progression of the glioma, a lack of standardized methods and insufficient clinical trials have hindered the practicality of this approach in clinical settings [37].
2. Current Differentiating Approaches in Glioma after Treatment
Imaging Modality | Dx of Recurrence, Treatment Response (Radionecrosis), True Progression | DDX of Recurrence vs. Treatment Changes | DDX of True Progression vs. Radionecrosis | DDX of True Progression vs. Pseudoprogression |
---|---|---|---|---|
FDG PET | Recurrence: sensitivity = 78%, specificity = 88% [69]. | Sensitivity = 0.86, specificity = 0.80, accuracy = 0.83, cut-off: maximum standardized uptake value (SUV max) = 1.9 [70]. ** Sensitivity = 79%, specificity = 70% [71]. | ||
Amino acid PET | Sensitivity = 93%, specificity = 100%, accuracy = 93%, TBR = 1.6 [72]/ sensitivity = 0.88, specificity = 0.78, diagnostic odds ratio = 26, the area under the curve (AUC) of hierarchical summary receiver operating characteristic (HSROC) = 0.86 [73]. | Sensitivity = 100%, specificity = 91%, accuracy = 96%, maximum tumor-to-brain ratio (tbrmax) cutoff = 2.3 [74]. Sensitivity = 100%, specificity = 79%, accuracy = 83% [75]/sensitivity = 84%, specificity, = 86%, accuracy = 85% [60]. | ||
Conventional MRI (T1, T2, FLAIR, T1 + C) | Recurrence: sensitivity = 0.36, specificity = 0.93, AUC = 0.75 [76]/sensitivity = 31.7%, specificity = 80%, PPV = 96.3%, NPV = 6.7% [77]. Early progression: sensitivity = 0.81, specificity = 0.69, AUROC= 0.79 [78]. | Sensitivity = 8%, specificity = 91%, PPV = 25%, NPV = 73% [79]. | Sensitivity = 88.9%, specificity = 33.4% [80]. Sensitivity = 38.1%, specificity = 93.3%, NPV = 41.8% [40]. | |
DWI/ADC | Treatment response: sensitivity = 0.71, specificity = 0.87 [53]. | Sensitivity = 52.6–94.7%, specificity = 50–90% [81]. | TR vs. pseudoprogression: sensitivity = 0.88, specificity= 0.85 [82]/ TR vs. pseudoprogression: sensitivity = 0.90, specificity = 0.82, accuracy = 0.93 [83]. | |
MR perfusion | Treatment response: sensitivity = 0.87, specificity = 0.86 [53]. | Sensitivity = 0.9, specificity = 0.88 [84]/sensitivity = 0.83, specificity = 0.85, AUROC = 0.91 [85]/sensitivity = 0.88, specificity = 0.88 [84]. | Sensitivity = 0.88, specificity = 0.77, AUROC = 0.88 [86]/sensitivity = 0.85, specificity = 0.79, accuracy = 0.9 [82]. | |
MR spectroscopy (Cho/NAA or Cho/Cr) | True progression: sensitivity = 71.2%, specificity = 90.2%, AUC = 0.792 [87]. Treatment response: sensitivity = 91%, specificity= 95% [53]. | Sensitivity = 75.0%, specificity = 81.0%, accuracy = 79% [88]. | Sensitivity = 60%, specificity = 45%, PPV = 16% NPV = 87% [89]. | |
Multimodal MRI (conventional sequences + DWI/ADC + MRP + MRS) | Sensitivity = 80.6%, specificity = 66.6% [90]. | |||
PET/MRI | Recurrence: sensitivity = 97.14%, specificity = 93.33%, accuracy: 96% [91]. | Sensitivity = 0.88, specificity = 0.79, AUC = 0.91 [73]. |
3. Radiomics Differentiates
3.1. Pseudoprogression vs. True Progression
Author (Year) (Country) | Sample Size (Mean Age) | Tumor Characteristics | Grade | Intervention | Follow-Up | Imaging Modalities | Tracer or Contrast (Dosage) |
---|---|---|---|---|---|---|---|
Zhang et al., (2019) (China) [103] | 51 (47.6) | Glioblastoma 12, astrocytoma 14, ependymoma 3, mixed glioma 22 | High (III–IV) 32 (62.7%), low (I–II) 19 (37.3%) | Radiation and surgery | >6 months | 3.0 T MRI T1/T1C/T2/FLAIR | Gadolinium (0.1 mmol/kg) |
Tiwari et al., (2016) (USA) [104] | 43 (N/M) | Glioma 33, metastasis 25 | - | At least one patient had surgical resection | >9 months | T1 + C WI/T2WI/FLAIR | Gadolinium (-) |
Gao et al., (2020) (China) [105] | 39 (51.45) | Glioblastomas and anaplastic astrocytoma | Glioma recurrence: (III = 4, IV = 21) TRE: (III = 3, IV = 11) | Radiotherapy and chemotherapy | >6 months | 3.0 T MRI T1WI/T2 FLAIR, postcontrast T2FLAIR | Gadopentetate dimeglumine (0.1 mmol/Kg) |
Chen et al., (2015) (China) [106] | 22 (43.54) | Glioblastoma | - | Surgical resection + CCRT with TMZ | 6 months | 1.5 T MRI T1WI, T2WI, FLAIR, and T1Ce | Gadobutrol (0.1 mmol/kg) |
Sadique et al., (2022) (USA) [107] | 30 (N/M) | Glioblastoma (from different public datasets) | - | - | 2–3 months | T1, T2, FLAIR, T1 + C | - |
Wang et al., (2019) (China) [108] | 160 (44.59) | Glioma | - | Radiation therapy + TMZ + six cycles of adjuvant TMZ | 40 months | 18F-FDG, 11C-MET, and 3.0 T MRI (T1 + C and FALIR) | 18F-FDG (3.7 MBq/kg) 11C-MET PET (555–740 MBq) |
Sun et al., (2021) (China) [102] | 77 (49.1) | Glioblastoma | - | Total resection or subtotal resection + CCRT and TMZ | 6 months | 3.0 T MRI (T1 + C) | Gadodiamide (0.1 mmol/kg) |
Hotta et al., (2019) (Japan) [109] | 41 (55.5) | Glioma | Grade 2 (n = 4), grade 3 (n = 8), and grade 4 (n = 8) | Radiation therapy (either conventional radiotherapy or stereotactic radiosurgery) | 6 months | PET/CT | MET (384.0 ± 22.7 MBq) |
Park et al., (2021) (S. Korea) [110] | 127 (57.46) | Grade 4 GBM + R132H mutation in IDH1, MGMT | - | Surgery with chemoradiation | 2–3 months | 3.0 T MRI T1, T2, ADC | Gadolinium (0.1 mL/kg) |
Jiang et al., (2022) (USA) [111] | 86 (52.15) | Primary malignant glioma (glioblastoma-anaplastic, oligodendroglioma-anaplastic, astrocytoma-gliosarcoma) | Recurrence: (III = 22, IV = 38), treatment: (III = 4, IV = 22) | Gross total resection, other surgical procedures + chemoradiation or radiotherapy | Range, 18 days to 3655 days | 3.0 T MRI (APTw)—T2w, FLAIR, T1w, and (Gd-T1w) | Gadolinium (0.2 mL/kg) |
Zhang et al., (2022) (China) [112] | 126 (46.25) | Grades 2–4 GBM | - | Surgery + chemoradiation or radiotherapy | 2–3 months | 3.0 T MRI T1WI, T2WI, T2FLAIR, DWI, ASL, and CE-T1WI | - |
3.2. Recurrent Brain Tumor vs. Radiation Necrosis
4. Limitations and Challenges
5. Conclusions
Machine Learning Features | Radiomics Features | Performance Metrics | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Author (Year) | Model | Method of Measuring Performance | Segmentation Software # Feature Extraction and Selection Software # Feature Analysis Software | Type of Features # Number of Selected and Extracted Features | Modality | Sensitivity | Specificity | PPV | NPV | AUC | Accuracy | |
Zhang et al., (2019) (China) [103] | Random forest, naive Bayes classifiers, AlexNet, Inception v3 CNN | Cross-validation | ITKSNAP software, FSL5.0.9 # AlexNet, and Inception v3 # MATLAB 2017b | Handcrafted, deep texture features # 4 nontexture features, 41,284 texture features, 16,384 AlexNet features, and 8192 Inception v3 features extracted | Multimodality MRI | 99.4% | 97.5% | NA | NA | 0.998 | 97.8% | |
Tiwari et al., (2016) (USA) [104] | SVM classifier | Independent validation cohort | 3D Slicer and BraTumIA # Matlab R 2014b # Matlab R2014b | Spatial distribution of pixel intensities within the MRI images and included features # E: 119 2D texture features on a per-voxel basis # S: 78 | FLAIR | NA | NA | NA | NA | 0.79 | 75% | |
T2 | NA | NA | NA | NA | 0.77 | 72% | ||||||
Gao et al., (2020) (China) [105] | SVM classifier | Five-fold cross-validation | ITK-SNAP # E: PyRadiomics S: recursive feature elimination (RFE) # N/A | Three first-order features, eight gray-level co-occurrence matrix (GLCM) features, and two gray-level run-length (GLRLM) features # E: 186 S: 13 | T1 + C | 100% | 70% | 62.5% | 100% | 0.8 | 80% | |
T2 FLAIR + C | 100% | 80% | 71.43% | 100% | 0.84 | 86.67% | ||||||
T1C subtraction + T2 FLAIR subtraction | 100% | 90% | 83.33% | 100% | 0.94 | 93.33% | ||||||
Chen et al., (2015) (China) [106] | N/A | N/A | Manually # N/A # MedCalc IBM SPSS Statistics | GLCM texture # N/A | T1 + C | 91.7% | 70% | 78.6% | 87.5% | 0.84 | 81.8% | |
T2 | 75% | 100% | 66.7% | 100% | 0.88 | 86.4% | ||||||
FLAIR | 66.7% | 80% | 80% | 66.7% | 0.75 | 72.7% | ||||||
Sadique et al., (2022) (USA) [107] | Random forest (RF) classifier | Stratified five-fold cross-validation, leave-one-out cross-validation | A 3D deep learning model was used to segment subregions of the tumor, which were verified by a radiologist # N/A # N/A | Multiresolution texture features, texture features # | Texture, volumetric, and histogram features | NA | 94% | NA | NA | NA | 93% | |
Wang et al., (2019) (China) [108] | Computer-supported predictive models | Cross-validation | ITK-SNAP # AnalysisKit (GE Healthcare, China) # R studio | First-order features, shape features, and texture features # E: 912 (FDG 303; MET 297; MRI 312) # S: 8–13 | FDG | 69% | 76% | NA | NA | 0.8 | 71% | |
MET | 75% | 69% | NA | NA | 0.75 | 73% | ||||||
MRI | 62% | 65% | NA | NA | 0.62 | 69% | ||||||
FDG + MET | 75% | 91% | NA | NA | 0.89 | 79% | ||||||
FDG + MRI | 83% | 75% | NA | NA | 0.86 | 81% | ||||||
MET + MRI | 72% | 58% | NA | NA | 0.8 | 68% | ||||||
Sun et al., (2021) (China) [102] | Random forest classifier | RF classifier trained with 50 trees, 10-fold cross-validation | ITK-SNAP version 3.6 # E: Analysis-Kinetics (A.K., GE Healthcare) S: R version 3. 4. 2 # SPSS 20 | 42 histogram features, 11 Gy-level size zone matrix (GLSZM) texture features, 10 Haralick features, 144 Gy-level co-occurrence matrix (GLCM) texture features, and 180 run-length matrix (RLM) texture features # E: 9675 S: 50 | T1 + C | 78% | 61% | NA | NA | NA | 72% | |
Hotta et al., (2019) (Japan) [109] | Random forest classifier | 10-fold cross-validation | LIFEX # E: LIFEx S: R package “Boruta” # LIFEx | Texture features extracted from MET-PET images using gray-level co-occurrence matrix (GLCM), gray-level run-length matrix (GLRLM), gray-level zone-length matrix (GLZLM), and neighborhood gray-level difference matrix (NGLDM) # E: 42 S: 30 | Radiomics | 90.1% | 93.9% | 95.2% | 88.6% | 0.98 | 92.2% | |
T/N Ratio | 60.6% | 72.7% | 86.9% | 38.1% | 0.73 | 63.6% | ||||||
Park et al., (2021) (S. Korea) [110] | SVM, KNN, AdaBoost | 10-fold cross-validation | 3D slicer (semiautomatic) # PyRadiomics # R-WhiteStripe | GLCM, GLRLM, GLSZM, NGTDM # E: 263 S: 18 | LASSO feature selection and SVM | 66.7% | 87% | NA | NA | 0.8 | 78% | |
Jiang et al., (2022) (USA) [111] | N/A | N/A | ITK-SNAP # PyRadiomics # SPSS 26.0 MATLAB R2021a | APTw features # E: 525 for each sequence; a total of 2589 S: for T1w, T2w, FLAIR, Gd-T1w, or APTw MR images, 34, 61, 47, 18, or 176 radiomics features were selected | All sequences | 85% | 100% | NA | NA | 92.5% | 89.5% | |
APTw | 70.6% | 96.2% | NA | NA | 87.8% | 86% | ||||||
T1 | 96.7% | 23.1% | NA | NA | 59.9% | 74.4% | ||||||
T2 | 58.3% | 90% | NA | NA | 77.9% | 76.7% | ||||||
FLAIR | 88.3% | 73.1% | NA | NA | 80.7% | 83.7% | ||||||
T1 + C1 | 0 | 75% | NA | NA | 61.5% | 76.7% | ||||||
T1, T2, FLAIR, T1 + C8 | 5% | 76.9% | NA | NA | 81% | 82.6% | ||||||
T1, T2, FLAIR, APTw | 88.3% | 96.2% | NA | NA | 92.2% | 90.7% | ||||||
Zhang et al., (2022) (China) [112] | SVM, KNN, LR, NB | 10-fold cross-validation | ITK-SNAP (Manually) # MATLAB # MATLAB, Python 3.8 | GLCM, GLRLM, GLSZM, first order # E: 4199 S: eight (two T1, one T1 + C, one ADC, four CBF) | SVM and multiparameter MRI | 91.7% | NA | NA | NA | 0.94 | NA | |
100% | NA | NA | NA | 0.82 | NA |
Author Contributions
Funding
Conflicts of Interest
References
- Davis, M.E. Glioblastoma: Overview of Disease and Treatment. Clin. J. Oncol. Nurs. 2016, 20, S2–S8. [Google Scholar] [CrossRef] [PubMed]
- Ostrom, Q.T.; Gittleman, H.; Truitt, G.; Boscia, A.; Kruchko, C.; Barnholtz-Sloan, J.S. CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2011–2015. Neuro Oncol. 2018, 20, iv1–iv86. [Google Scholar] [CrossRef]
- Schwartzbaum, J.A.; Fisher, J.L.; Aldape, K.D.; Wrensch, M. Epidemiology and molecular pathology of glioma. Nat. Clin. Pract. Neurol. 2006, 2, 494–503. [Google Scholar] [CrossRef] [PubMed]
- Berzero, G.; Di Stefano, A.L.; Ronchi, S.; Bielle, F.; Villa, C.; Guillerm, E.; Capelle, L.; Mathon, B.; Laurenge, A.; Giry, M.; et al. IDH-wildtype lower-grade diffuse gliomas: The importance of histological grade and molecular assessment for prognostic stratification. Neuro Oncol. 2021, 23, 955–966. [Google Scholar] [CrossRef] [PubMed]
- Whitfield, B.T.; Huse, J.T. Classification of adult-type diffuse gliomas: Impact of the World Health Organization 2021 update. Brain Pathol. 2022, 32, e13062. [Google Scholar] [CrossRef]
- Jovčevska, I.; Kočevar, N.; Komel, R. Glioma and glioblastoma—How much do we (not) know? Mol. Clin. Oncol. 2013, 1, 935–941. [Google Scholar] [CrossRef]
- Tan, A.C.; Ashley, D.M.; López, G.Y.; Malinzak, M.; Friedman, H.S.; Khasraw, M. Management of glioblastoma: State of the art and future directions. CA Cancer J. Clin. 2020, 70, 299–312. [Google Scholar] [CrossRef] [PubMed]
- Rončević, A.; Koruga, N.; Soldo Koruga, A.; Rončević, R.; Rotim, T.; Šimundić, T.; Kretić, D.; Perić, M.; Turk, T.; Štimac, D. Personalized Treatment of Glioblastoma: Current State and Future Perspective. Biomedicines 2023, 11, 1579. [Google Scholar] [CrossRef]
- van den Bent, M. UpToDate. In Treatment and Prognosis of IDH-Mutant, 1p/19q-Codeleted Oligodendrogliomas in Adults; Wen, P.Y., Ed.; UpToDate: Waltham, MA, USA, 2023. [Google Scholar]
- Alexiou, G.A.; Tsiouris, S.; Kyritsis, A.P.; Voulgaris, S.; Argyropoulou, M.I.; Fotopoulos, A.D. Glioma recurrence versus radiation necrosis: Accuracy of current imaging modalities. J. Neurooncol. 2009, 95, 1–11. [Google Scholar] [CrossRef]
- Giglio, P.; Gilbert, M.R. Cerebral radiation necrosis. Neurologist 2003, 9, 180–188. [Google Scholar] [CrossRef]
- Nihashi, T.; Dahabreh, I.J.; Terasawa, T. Diagnostic accuracy of PET for recurrent glioma diagnosis: A meta-analysis. AJNR Am. J. Neuroradiol. 2013, 34, 944–950. [Google Scholar] [CrossRef] [PubMed]
- Abdalla, G.; Hammam, A.; Anjari, M.; D’Arco, D.F.; Bisdas, D.S. Glioma surveillance imaging: Current strategies, shortcomings, challenges and outlook. BJR Open 2020, 2, 20200009. [Google Scholar] [CrossRef] [PubMed]
- Shukla, G.; Alexander, G.S.; Bakas, S.; Nikam, R.; Talekar, K.; Palmer, J.D.; Shi, W. Advanced magnetic resonance imaging in glioblastoma: A review. Chin. Clin. Oncol. 2017, 6, 40. [Google Scholar] [CrossRef] [PubMed]
- Zikou, A.; Sioka, C.; Alexiou, G.A.; Fotopoulos, A.; Voulgaris, S.; Argyropoulou, M.I. Radiation Necrosis, Pseudoprogression, Pseudoresponse, and Tumor Recurrence: Imaging Challenges for the Evaluation of Treated Gliomas. Contrast Media Mol. Imaging 2018, 2018, 6828396. [Google Scholar] [CrossRef]
- Soni, N.; Ora, M.; Mohindra, N.; Menda, Y.; Bathla, G. Diagnostic Performance of PET and Perfusion-Weighted Imaging in Differentiating Tumor Recurrence or Progression from Radiation Necrosis in Posttreatment Gliomas: A Review of Literature. AJNR Am. J. Neuroradiol. 2020, 41, 1550–1557. [Google Scholar] [CrossRef]
- Franceschi, E.; Tosoni, A.; Pozzati, E.; Brandes, A.A. Association between response to primary treatments and MGMT status in glioblastoma. Expert Rev. Anticancer Ther. 2008, 8, 1781–1786. [Google Scholar] [CrossRef]
- Brandes, A.A.; Tosoni, A.; Spagnolli, F.; Frezza, G.; Leonardi, M.; Calbucci, F.; Franceschi, E. Disease progression or pseudoprogression after concomitant radiochemotherapy treatment: Pitfalls in neurooncology. Neuro Oncol. 2008, 10, 361–367. [Google Scholar] [CrossRef]
- Balaña, C.; Capellades, J.; Pineda, E.; Estival, A.; Puig, J.; Domenech, S.; Verger, E.; Pujol, T.; Martinez-García, M.; Oleaga, L.; et al. Pseudoprogression as an adverse event of glioblastoma therapy. Cancer Med. 2017, 6, 2858–2866. [Google Scholar] [CrossRef]
- Thust, S.C.; van den Bent, M.J.; Smits, M. Pseudoprogression of brain tumors. J. Magn. Reson. Imaging 2018, 48, 571–589. [Google Scholar] [CrossRef]
- Le Fèvre, C.; Lhermitte, B.; Ahle, G.; Chambrelant, I.; Cebula, H.; Antoni, D.; Keller, A.; Schott, R.; Thiery, A.; Constans, J.M.; et al. Pseudoprogression versus true progression in glioblastoma patients: A multiapproach literature review: Part 1—Molecular, morphological and clinical features. Crit. Rev. Oncol. Hematol. 2021, 157, 103188. [Google Scholar] [CrossRef]
- Brandsma, D.; Stalpers, L.; Taal, W.; Sminia, P.; van den Bent, M.J. Clinical features, mechanisms, and management of pseudoprogression in malignant gliomas. Lancet Oncol. 2008, 9, 453–461. [Google Scholar] [CrossRef] [PubMed]
- Wilson, C.M.; Gaber, M.W.; Sabek, O.M.; Zawaski, J.A.; Merchant, T.E. Radiation-induced astrogliosis and blood-brain barrier damage can be abrogated using anti-TNF treatment. Int. J. Radiat. Oncol. Biol. Phys. 2009, 74, 934–941. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.J.; Leeds, N.E.; Fuller, G.N.; Van Tassel, P.; Maor, M.H.; Sawaya, R.E.; Levin, V.A. Malignant gliomas: MR imaging spectrum of radiation therapy- and chemotherapy-induced necrosis of the brain after treatment. Radiology 2000, 217, 377–384. [Google Scholar] [CrossRef]
- Walker, A.J.; Ruzevick, J.; Malayeri, A.A.; Rigamonti, D.; Lim, M.; Redmond, K.J.; Kleinberg, L. Postradiation imaging changes in the CNS: How can we differentiate between treatment effect and disease progression? Future Oncol. 2014, 10, 1277–1297. [Google Scholar] [CrossRef] [PubMed]
- Reddy, K.; Westerly, D.; Chen, C. MRI patterns of T1 enhancing radiation necrosis versus tumour recurrence in high-grade gliomas. J. Med. Imaging Radiat. Oncol. 2013, 57, 349–355. [Google Scholar] [CrossRef]
- Chen, W.; Wang, Y.; Zhao, B.; Liu, P.; Liu, L.; Wang, Y.; Ma, W. Optimal Therapies for Recurrent Glioblastoma: A Bayesian Network Meta-Analysis. Front. Oncol. 2021, 11, 641878. [Google Scholar] [CrossRef]
- Fukuya, Y.; Ikuta, S.; Maruyama, T.; Nitta, M.; Saito, T.; Tsuzuki, S.; Chernov, M.; Kawamata, T.; Muragaki, Y. Tumor recurrence patterns after surgical resection of intracranial low-grade gliomas. J. Neurooncol 2019, 144, 519–528. [Google Scholar] [CrossRef]
- Birzu, C.; French, P.; Caccese, M.; Cerretti, G.; Idbaih, A.; Zagonel, V.; Lombardi, G. Recurrent Glioblastoma: From Molecular Landscape to New Treatment Perspectives. Cancers 2020, 13, 47. [Google Scholar] [CrossRef]
- Kirkpatrick, J.P.; Sampson, J.H. Recurrent malignant gliomas. Semin. Radiat. Oncol. 2014, 24, 289–298. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, Z.; Li, J.; Huang, T.; Wang, Y.; Chang, L.; Zheng, W.; Ma, Y.; Chen, F.; Gong, X.; et al. Genomic analysis of primary and recurrent gliomas reveals clinical outcome related molecular features. Sci. Rep. 2019, 9, 16058. [Google Scholar] [CrossRef]
- Li, C.; Xi, S.; Chen, Y.; Guo, C.; Zhang, J.; Yang, Q.; Wang, J.; Sai, K.; Zeng, J.; Wang, J.; et al. Clinical significance of histopathological features of paired recurrent gliomas: A cohort study from a single cancer center. BMC Cancer 2023, 23, 8. [Google Scholar] [CrossRef] [PubMed]
- Teng, C.; Zhu, Y.; Li, Y.; Dai, L.; Pan, Z.; Wanggou, S.; Li, X. Recurrence- and Malignant Progression-Associated Biomarkers in Low-Grade Gliomas and Their Roles in Immunotherapy. Front. Immunol. 2022, 13, 899710. [Google Scholar] [CrossRef] [PubMed]
- Varn, F.S.; Johnson, K.C.; Martinek, J.; Huse, J.T.; Nasrallah, M.P.; Wesseling, P.; Cooper, L.A.D.; Malta, T.M.; Wade, T.E.; Sabedot, T.S.; et al. Glioma progression is shaped by genetic evolution and microenvironment interactions. Cell 2022, 185, 2184–2199.e2116. [Google Scholar] [CrossRef]
- Bready, D.; Placantonakis, D.G. Molecular Pathogenesis of Low-Grade Glioma. Neurosurg. Clin. N. Am. 2019, 30, 17–25. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Yu, K.; Li, M.; Cui, Y.; Ren, X.; Yang, C.; Zhao, X.; Lin, S. Classification of Progression Patterns in Glioblastoma: Analysis of Predictive Factors and Clinical Implications. Front. Oncol. 2020, 10, 590648. [Google Scholar] [CrossRef]
- Rapôso, C.; Vitorino-Araujo, J.L.; Barreto, N. Molecular Markers of Gliomas to Predict Treatment and Prognosis: Current State and Future Directions. In Gliomas; Debinski, W., Ed.; Exon Publications: Brisbane City, Australia, 2021. [Google Scholar]
- Mullins, M.E.; Barest, G.D.; Schaefer, P.W.; Hochberg, F.H.; Gonzalez, R.G.; Lev, M.H. Radiation necrosis versus glioma recurrence: Conventional MR imaging clues to diagnosis. AJNR Am. J. Neuroradiol. 2005, 26, 1967–1972. [Google Scholar] [PubMed]
- Katsura, M.; Sato, J.; Akahane, M.; Furuta, T.; Mori, H.; Abe, O. Recognizing Radiation-induced Changes in the Central Nervous System: Where to Look and What to Look For. RadioGraphics 2021, 41, 224–248. [Google Scholar] [CrossRef]
- Young, R.J.; Gupta, A.; Shah, A.D.; Graber, J.J.; Zhang, Z.; Shi, W.; Holodny, A.I.; Omuro, A.M. Potential utility of conventional MRI signs in diagnosing pseudoprogression in glioblastoma. Neurology 2011, 76, 1918–1924. [Google Scholar] [CrossRef]
- Sanghera, P.; Perry, J.; Sahgal, A.; Symons, S.; Aviv, R.; Morrison, M.; Lam, K.; Davey, P.; Tsao, M.N. Pseudoprogression following chemoradiotherapy for glioblastoma multiforme. Can. J. Neurol. Sci. 2010, 37, 36–42. [Google Scholar] [CrossRef]
- van de Weijer, T.; Broen, M.P.G.; Moonen, R.P.M.; Hoeben, A.; Anten, M.; Hovinga, K.; Compter, I.; van der Pol, J.A.J.; Mitea, C.; Lodewick, T.M.; et al. The Use of (18)F-FET-PET-MRI in Neuro-Oncology: The Best of Both Worlds-A Narrative Review. Diagnostics 2022, 12, 1202. [Google Scholar] [CrossRef]
- Nuessle, N.C.; Behling, F.; Tabatabai, G.; Castaneda Vega, S.; Schittenhelm, J.; Ernemann, U.; Klose, U.; Hempel, J.M. ADC-Based Stratification of Molecular Glioma Subtypes Using High b-Value Diffusion-Weighted Imaging. J. Clin. Med. 2021, 10, 3451. [Google Scholar] [CrossRef]
- Carrete, L.R.; Young, J.S.; Cha, S. Advanced Imaging Techniques for Newly Diagnosed and Recurrent Gliomas. Front. Neurosci. 2022, 16, 787755. [Google Scholar] [CrossRef]
- Asao, C.; Korogi, Y.; Kitajima, M.; Hirai, T.; Baba, Y.; Makino, K.; Kochi, M.; Morishita, S.; Yamashita, Y. Diffusion-weighted imaging of radiation-induced brain injury for differentiation from tumor recurrence. AJNR Am. J. Neuroradiol. 2005, 26, 1455–1460. [Google Scholar] [PubMed]
- van Dijken, B.R.J.; van Laar, P.J.; Smits, M.; Dankbaar, J.W.; Enting, R.H.; van der Hoorn, A. Perfusion MRI in treatment evaluation of glioblastomas: Clinical relevance of current and future techniques. J. Magn. Reson. Imaging 2019, 49, 11–22. [Google Scholar] [CrossRef] [PubMed]
- da Cruz, H.L.C., Jr.; Rodriguez, I.; Domingues, R.C.; Gasparetto, E.L.; Sorensen, A.G. Pseudoprogression and pseudoresponse: Imaging challenges in the assessment of posttreatment glioma. AJNR Am. J. Neuroradiol. 2011, 32, 1978–1985. [Google Scholar] [CrossRef] [PubMed]
- Hein, P.A.; Eskey, C.J.; Dunn, J.F.; Hug, E.B. Diffusion-weighted imaging in the follow-up of treated high-grade gliomas: Tumor recurrence versus radiation injury. AJNR Am. J. Neuroradiol. 2004, 25, 201–209. [Google Scholar]
- Brandes, A.A.; Franceschi, E.; Tosoni, A.; Blatt, V.; Pession, A.; Tallini, G.; Bertorelle, R.; Bartolini, S.; Calbucci, F.; Andreoli, A.; et al. MGMT promoter methylation status can predict the incidence and outcome of pseudoprogression after concomitant radiochemotherapy in newly diagnosed glioblastoma patients. J. Clin. Oncol. 2008, 26, 2192–2197. [Google Scholar] [CrossRef]
- Verma, N.; Cowperthwaite, M.C.; Burnett, M.G.; Markey, M.K. Differentiating tumor recurrence from treatment necrosis: A review of neuro-oncologic imaging strategies. Neuro Oncol. 2013, 15, 515–534. [Google Scholar] [CrossRef]
- van den Elshout, R.; Scheenen, T.W.J.; Driessen, C.M.L.; Smeenk, R.J.; Meijer, F.J.A.; Henssen, D. Diffusion imaging could aid to differentiate between glioma progression and treatment-related abnormalities: A meta-analysis. Insights Imaging 2022, 13, 158. [Google Scholar] [CrossRef]
- Yanagihara, T.K.W. Diffusion-weighted imaging of the brain for glioblastoma: Implications for radiation oncology. Appl. Radiat. Oncol. 2014, 5–13. [Google Scholar] [CrossRef]
- van Dijken, B.R.J.; van Laar, P.J.; Holtman, G.A.; van der Hoorn, A. Diagnostic accuracy of magnetic resonance imaging techniques for treatment response evaluation in patients with high-grade glioma, a systematic review and meta-analysis. Eur. Radiol. 2017, 27, 4129–4144. [Google Scholar] [CrossRef] [PubMed]
- Kamada, K.; Houkin, K.; Abe, H.; Sawamura, Y.; Kashiwaba, T. Differentiation of cerebral radiation necrosis from tumor recurrence by proton magnetic resonance spectroscopy. Neurol. Med. Chir. 1997, 37, 250–256. [Google Scholar] [CrossRef] [PubMed]
- Kazda, T.; Bulik, M.; Pospisil, P.; Lakomy, R.; Smrcka, M.; Slampa, P.; Jancalek, R. Advanced MRI increases the diagnostic accuracy of recurrent glioblastoma: Single institution thresholds and validation of MR spectroscopy and diffusion weighted MR imaging. Neuroimage Clin. 2016, 11, 316–321. [Google Scholar] [CrossRef] [PubMed]
- Dhermain, F.G.; Hau, P.; Lanfermann, H.; Jacobs, A.H.; van den Bent, M.J. Advanced MRI and PET imaging for assessment of treatment response in patients with gliomas. Lancet Neurol. 2010, 9, 906–920. [Google Scholar] [CrossRef]
- Weinberg, B.D.; Kuruva, M.; Shim, H.; Mullins, M.E. Clinical Applications of Magnetic Resonance Spectroscopy in Brain Tumors: From Diagnosis to Treatment. Radiol. Clin. N. Am. 2021, 59, 349–362. [Google Scholar] [CrossRef] [PubMed]
- Shooli, H.; Dadgar, H.; Wáng, Y.J.; Vafaee, M.S.; Kashuk, S.R.; Nemati, R.; Jafari, E.; Nabipour, I.; Gholamrezanezhad, A.; Assadi, M.; et al. An update on PET-based molecular imaging in neuro-oncology: Challenges and implementation for a precision medicine approach in cancer care. Quant. Imaging Med. Surg. 2019, 9, 1597–1610. [Google Scholar] [CrossRef]
- Najjar, A.M.; Johnson, J.M.; Schellingerhout, D. The Emerging Role of Amino Acid PET in Neuro-Oncology. Bioengineering 2018, 5, 104. [Google Scholar] [CrossRef]
- Kebir, S.; Fimmers, R.; Galldiks, N.; Schäfer, N.; Mack, F.; Schaub, C.; Stuplich, M.; Niessen, M.; Tzaridis, T.; Simon, M.; et al. Late Pseudoprogression in Glioblastoma: Diagnostic Value of Dynamic O-(2-[18F]fluoroethyl)-L-Tyrosine PET. Clin. Cancer Res. 2016, 22, 2190–2196. [Google Scholar] [CrossRef]
- Galldiks, N.; Langen, K.J.; Albert, N.L.; Chamberlain, M.; Soffietti, R.; Kim, M.M.; Law, I.; Le Rhun, E.; Chang, S.; Schwarting, J.; et al. PET imaging in patients with brain metastasis-report of the RANO/PET group. Neuro Oncol. 2019, 21, 585–595. [Google Scholar] [CrossRef]
- Santo, G.; Laudicella, R.; Linguanti, F.; Nappi, A.G.; Abenavoli, E.; Vergura, V.; Rubini, G.; Sciagrà, R.; Arnone, G.; Schillaci, O.; et al. The Utility of Conventional Amino Acid PET Radiotracers in the Evaluation of Glioma Recurrence also in Comparison with MRI. Diagnostics 2022, 12, 844. [Google Scholar] [CrossRef]
- Filss, C.P.; Cicone, F.; Shah, N.J.; Galldiks, N.; Langen, K.J. Amino acid PET and MR perfusion imaging in brain tumours. Clin. Transl. Imaging 2017, 5, 209–223. [Google Scholar] [CrossRef] [PubMed]
- Bell, C.; Dowson, N.; Puttick, S.; Gal, Y.; Thomas, P.; Fay, M.; Smith, J.; Rose, S. Increasing feasibility and utility of (18)F-FDOPA PET for the management of glioma. Nucl. Med. Biol. 2015, 42, 788–795. [Google Scholar] [CrossRef] [PubMed]
- Langen, K.J.; Heinzel, A.; Lohmann, P.; Mottaghy, F.M.; Galldiks, N. Advantages and limitations of amino acid PET for tracking therapy response in glioma patients. Expert Rev. Neurother. 2020, 20, 137–146. [Google Scholar] [CrossRef]
- Almansory, K.O.; Fraioli, F. Combined PET/MRI in brain glioma imaging. Br. J. Hosp. Med. 2019, 80, 380–386. [Google Scholar] [CrossRef] [PubMed]
- Pyka, T.; Hiob, D.; Preibisch, C.; Gempt, J.; Wiestler, B.; Schlegel, J.; Straube, C.; Zimmer, C. Diagnosis of glioma recurrence using multiparametric dynamic 18F-fluoroethyl-tyrosine PET-MRI. Eur. J. Radiol. 2018, 103, 32–37. [Google Scholar] [CrossRef] [PubMed]
- Caroline, I.; Rosenthal, M.A. Imaging modalities in high-grade gliomas: Pseudoprogression, recurrence, or necrosis? J. Clin. Neurosci. 2012, 19, 633–637. [Google Scholar] [CrossRef]
- Treglia, G.; Muoio, B.; Trevisi, G.; Mattoli, M.V.; Albano, D.; Bertagna, F.; Giovanella, L. Diagnostic Performance and Prognostic Value of PET/CT with Different Tracers for Brain Tumors: A Systematic Review of Published Meta-Analyses. Int. J. Mol. Sci. 2019, 20, 4669. [Google Scholar] [CrossRef]
- Imani, F.; Boada, F.E.; Lieberman, F.S.; Davis, D.K.; Mountz, J.M. Molecular and metabolic pattern classification for detection of brain glioma progression. Eur. J. Radiol. 2014, 83, e100–e105. [Google Scholar] [CrossRef]
- Parent, E.E.; Johnson, D.R.; Gleason, T.; Villanueva-Meyer, J.E. Neuro-Oncology Practice Clinical Debate: FDG PET to differentiate glioblastoma recurrence from treatment-related changes. Neurooncol Pract. 2021, 8, 518–525. [Google Scholar] [CrossRef]
- Galldiks, N.; Stoffels, G.; Filss, C.; Rapp, M.; Blau, T.; Tscherpel, C.; Ceccon, G.; Dunkl, V.; Weinzierl, M.; Stoffel, M.; et al. The use of dynamic O-(2-18F-fluoroethyl)-l-tyrosine PET in the diagnosis of patients with progressive and recurrent glioma. Neuro Oncol. 2015, 17, 1293–1300. [Google Scholar] [CrossRef]
- Cui, M.; Zorrilla-Veloz, R.I.; Hu, J.; Guan, B.; Ma, X. Diagnostic Accuracy of PET for Differentiating True Glioma Progression From Post Treatment-Related Changes: A Systematic Review and Meta-Analysis. Front. Neurol. 2021, 12, 671867. [Google Scholar] [CrossRef] [PubMed]
- Galldiks, N.; Dunkl, V.; Stoffels, G.; Hutterer, M.; Rapp, M.; Sabel, M.; Reifenberger, G.; Kebir, S.; Dorn, F.; Blau, T.; et al. Diagnosis of pseudoprogression in patients with glioblastoma using O-(2-[18F]fluoroethyl)-L-tyrosine PET. Eur. J. Nucl. Med. Mol. Imaging 2015, 42, 685–695. [Google Scholar] [CrossRef] [PubMed]
- Prather, K.Y.; O’Neal, C.M.; Westrup, A.M.; Tullos, H.J.; Hughes, K.L.; Conner, A.K.; Glenn, C.A.; Battiste, J.D. A systematic review of amino acid PET in assessing treatment response to temozolomide in glioma. Neurooncol. Adv. 2022, 4, vdac008. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Song, Y.; He, M.; Ren, Q.; Zeng, Y.; Liu, Z.; Liu, H.; Xu, J. Diagnostic Performance of Increased Signal Intensity Within the Resection Cavity on Fluid-Attenuated Inversion Recovery Sequences for Detection of Progression in Patients with Glioma. World Neurosurg. 2018, 110, 434–441. [Google Scholar] [CrossRef]
- Bette, S.; Gempt, J.; Huber, T.; Delbridge, C.; Meyer, B.; Zimmer, C.; Kirschke, J.S.; Boeckh-Behrens, T. FLAIR signal increase of the fluid within the resection cavity after glioma surgery: Generally valid as early recurrence marker? J. Neurosurg. 2017, 127, 417–425. [Google Scholar] [CrossRef] [PubMed]
- Perry, L.A.; Korfiatis, P.; Agrawal, J.P.; Erickson, B.J. Increased signal intensity within glioblastoma resection cavities on fluid-attenuated inversion recovery imaging to detect early progressive disease in patients receiving radiotherapy with concomitant temozolomide therapy. Neuroradiology 2018, 60, 35–42. [Google Scholar] [CrossRef]
- Stockham, A.L.; Tievsky, A.L.; Koyfman, S.A.; Reddy, C.A.; Suh, J.H.; Vogelbaum, M.A.; Barnett, G.H.; Chao, S.T. Conventional MRI does not reliably distinguish radiation necrosis from tumor recurrence after stereotactic radiosurgery. J. Neurooncol. 2012, 109, 149–158. [Google Scholar] [CrossRef]
- Shah, A.H.; Snelling, B.; Bregy, A.; Patel, P.R.; Tememe, D.; Bhatia, R.; Sklar, E.; Komotar, R.J. Discriminating radiation necrosis from tumor progression in gliomas: A systematic review what is the best imaging modality? J. Neurooncol. 2013, 112, 141–152. [Google Scholar] [CrossRef]
- Prager, A.J.; Martinez, N.; Beal, K.; Omuro, A.; Zhang, Z.; Young, R.J. Diffusion and perfusion MRI to differentiate treatment-related changes including pseudoprogression from recurrent tumors in high-grade gliomas with histopathologic evidence. AJNR Am. J. Neuroradiol. 2015, 36, 877–885. [Google Scholar] [CrossRef]
- Tsakiris, C.; Siempis, T.; Alexiou, G.A.; Zikou, A.; Sioka, C.; Voulgaris, S.; Argyropoulou, M.I. Differentiation Between True Tumor Progression of Glioblastoma and Pseudoprogression Using Diffusion-Weighted Imaging and Perfusion-Weighted Imaging: Systematic Review and Meta-analysis. World Neurosurg. 2020, 144, e100–e109. [Google Scholar] [CrossRef]
- Taylor, C.; Ekert, J.O.; Sefcikova, V.; Fersht, N.; Samandouras, G. Discriminators of pseudoprogression and true progression in high-grade gliomas: A systematic review and meta-analysis. Sci. Rep. 2022, 12, 13258. [Google Scholar] [CrossRef]
- Patel, P.; Baradaran, H.; Delgado, D.; Askin, G.; Christos, P.; John Tsiouris, A.; Gupta, A. MR perfusion-weighted imaging in the evaluation of high-grade gliomas after treatment: A systematic review and meta-analysis. Neuro Oncol. 2017, 19, 118–127. [Google Scholar] [CrossRef]
- Zhang, H.M.; Huo, X.B.; Wang, H.L.; Wang, C. Diagnostic Performance of Dynamic Susceptibility Contrast-Enhanced Perfusion-Weighted Imaging in Differentiating Recurrence from Radiation Injury in Postoperative Glioma: A Meta-analysis. J. Comput. Assist. Tomogr. 2022, 46, 938–944. [Google Scholar] [CrossRef]
- Wan, B.; Wang, S.; Tu, M.; Wu, B.; Han, P.; Xu, H. The diagnostic performance of perfusion MRI for differentiating glioma recurrence from pseudoprogression: A meta-analysis. Medicine 2017, 96, e6333. [Google Scholar] [CrossRef] [PubMed]
- Anselmi, M.; Catalucci, A.; Felli, V.; Vellucci, V.; Di Sibio, A.; Gravina, G.L.; Di Staso, M.; Di Cesare, E.; Masciocchi, C. Diagnostic accuracy of proton magnetic resonance spectroscopy and perfusion-weighted imaging in brain gliomas follow-up: A single institutional experience. Neuroradiol. J. 2017, 30, 240–252. [Google Scholar] [CrossRef] [PubMed]
- Di Costanzo, A.; Scarabino, T.; Trojsi, F.; Popolizio, T.; Bonavita, S.; de Cristofaro, M.; Conforti, R.; Cristofano, A.; Colonnese, C.; Salvolini, U.; et al. Recurrent glioblastoma multiforme versus radiation injury: A multiparametric 3-T MR approach. Radiol. Med. 2014, 119, 616–624. [Google Scholar] [CrossRef]
- De Lucia, F.; Lefebvre, Y.; Lemort, M.P. Interest of routine MR spectroscopic techniques for differential diagnosis between radionecrosis and progression of brain tumor lesions. Eur. J. Radiol. Open 2022, 9, 100449. [Google Scholar] [CrossRef] [PubMed]
- Feng, A.; Yuan, P.; Huang, T.; Li, L.; Lyu, J. Distinguishing Tumor Recurrence from Radiation Necrosis in Treated Glioblastoma Using Multiparametric MRI. Acad. Radiol. 2022, 29, 1320–1331. [Google Scholar] [CrossRef]
- Deuschl, C.; Kirchner, J.; Poeppel, T.D.; Schaarschmidt, B.; Kebir, S.; El Hindy, N.; Hense, J.; Quick, H.H.; Glas, M.; Herrmann, K.; et al. (11)C-MET PET/MRI for detection of recurrent glioma. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 593–601. [Google Scholar] [CrossRef]
- Bera, K.; Braman, N.; Gupta, A.; Velcheti, V.; Madabhushi, A. Predicting cancer outcomes with radiomics and artificial intelligence in radiology. Nat. Rev. Clin. Oncol. 2022, 19, 132–146. [Google Scholar] [CrossRef]
- van Timmeren, J.E.; Cester, D.; Tanadini-Lang, S.; Alkadhi, H.; Baessler, B. Radiomics in medical imaging-”how-to” guide and critical reflection. Insights Imaging 2020, 11, 91. [Google Scholar] [CrossRef]
- Tran, W.T.; Jerzak, K.; Lu, F.I.; Klein, J.; Tabbarah, S.; Lagree, A.; Wu, T.; Rosado-Mendez, I.; Law, E.; Saednia, K.; et al. Personalized Breast Cancer Treatments Using Artificial Intelligence in Radiomics and Pathomics. J. Med. Imaging Radiat. Sci. 2019, 50, S32–S41. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Krauze, A.V. Survival Prediction in Gliomas: Current State and Novel Approaches. In Gliomas; Debinski, W., Ed.; Exon Publications: Brisbane City, Australia, 2021. [Google Scholar]
- Aftab, K.; Aamir, F.B.; Mallick, S.; Mubarak, F.; Pope, W.B.; Mikkelsen, T.; Rock, J.P.; Enam, S.A. Radiomics for precision medicine in glioblastoma. J. Neurooncol 2022, 156, 217–231. [Google Scholar] [CrossRef] [PubMed]
- Verma, R.K.; Wiest, R.; Locher, C.; Heldner, M.R.; Schucht, P.; Raabe, A.; Gralla, J.; Kamm, C.P.; Slotboom, J.; Kellner-Weldon, F. Differentiating enhancing multiple sclerosis lesions, glioblastoma, and lymphoma with dynamic texture parameters analysis (DTPA): A feasibility study. Med. Phys. 2017, 44, 4000–4008. [Google Scholar] [CrossRef]
- Razek, A.; Elsebaie, N.A. Imaging of Fulminant Demyelinating Disorders of the Central Nervous System. J. Comput. Assist. Tomogr. 2020, 44, 248–254. [Google Scholar] [CrossRef]
- Kocher, M.; Ruge, M.I.; Galldiks, N.; Lohmann, P. Applications of radiomics and machine learning for radiotherapy of malignant brain tumors. Strahlenther. Onkol. 2020, 196, 856–867. [Google Scholar] [CrossRef] [PubMed]
- Lotan, E.; Jain, R.; Razavian, N.; Fatterpekar, G.M.; Lui, Y.W. State of the Art: Machine Learning Applications in Glioma Imaging. AJR Am. J. Roentgenol. 2019, 212, 26–37. [Google Scholar] [CrossRef]
- Kim, J.Y.; Park, J.E.; Jo, Y.; Shim, W.H.; Nam, S.J.; Kim, J.H.; Yoo, R.E.; Choi, S.H.; Kim, H.S. Incorporating diffusion- and perfusion-weighted MRI into a radiomics model improves diagnostic performance for pseudoprogression in glioblastoma patients. Neuro Oncol. 2019, 21, 404–414. [Google Scholar] [CrossRef]
- Sun, Y.Z.; Yan, L.F.; Han, Y.; Nan, H.Y.; Xiao, G.; Tian, Q.; Pu, W.H.; Li, Z.Y.; Wei, X.C.; Wang, W.; et al. Differentiation of Pseudoprogression from True Progressionin Glioblastoma Patients after Standard Treatment: A Machine Learning Strategy Combinedwith Radiomics Features from T(1)-weighted Contrast-enhanced Imaging. BMC Med. Imaging 2021, 21, 17. [Google Scholar] [CrossRef]
- Zhang, Q.; Cao, J.; Zhang, J.; Bu, J.; Yu, Y.; Tan, Y.; Feng, Q.; Huang, M. Differentiation of Recurrence from Radiation Necrosis in Gliomas Based on the Radiomics of Combinational Features and Multimodality MRI Images. Comput. Math. Methods Med. 2019, 2019, 2893043. [Google Scholar] [CrossRef]
- Tiwari, P.; Prasanna, P.; Wolansky, L.; Pinho, M.; Cohen, M.; Nayate, A.P.; Gupta, A.; Singh, G.; Hatanpaa, K.J.; Sloan, A.; et al. Computer-Extracted Texture Features to Distinguish Cerebral Radionecrosis from Recurrent Brain Tumors on Multiparametric MRI: A Feasibility Study. AJNR Am. J. Neuroradiol. 2016, 37, 2231–2236. [Google Scholar] [CrossRef] [PubMed]
- Gao, X.Y.; Wang, Y.D.; Wu, S.M.; Rui, W.T.; Ma, D.N.; Duan, Y.; Zhang, A.N.; Yao, Z.W.; Yang, G.; Yu, Y.P. Differentiation of Treatment-Related Effects from Glioma Recurrence Using Machine Learning Classifiers Based Upon Pre-and Post-Contrast T1WI and T2 FLAIR Subtraction Features: A Two-Center Study. Cancer Manag. Res. 2020, 12, 3191–3201. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Wei, X.; Zhang, Z.; Yang, R.; Zhu, Y.; Jiang, X. Differentiation of true-progression from pseudoprogression in glio-blastoma treated with radiation therapy and concomitant temozolomide by GLCM texture analysis of conventional MRI. Clin. Imaging 2015, 39, 775–780. [Google Scholar] [CrossRef]
- Sadique, M.; Temtam, A.; Lappinen, E.; Iftekharuddin, K. Radiomic Texture Feature Descriptor to Distinguish Recurrent Brain Tumor from Radiation Necrosis Using Multimodal MRI; SPIE: Washington, DC, USA, 2022; Volume 12033. [Google Scholar]
- Wang, K.; Qiao, Z.; Zhao, X.; Li, X.; Wang, X.; Wu, T.; Chen, Z.; Fan, D.; Chen, Q.; Ai, L. Individualized discrimination of tumor recurrence from radiation necrosis in glioma patients using an integrated radiomics-based model. Eur. J. Nucl. Med. Mol. Imaging 2020, 47, 1400–1411. [Google Scholar] [CrossRef] [PubMed]
- Hotta, M.; Minamimoto, R.; Miwa, K. 11C-methionine-PET for differentiating recurrent brain tumor from radiation necrosis: Radiomics approach with random forest classifier. Sci. Rep. 2019, 9, 15666. [Google Scholar] [CrossRef] [PubMed]
- Park, Y.W.; Choi, D.; Park, J.E.; Ahn, S.S.; Kim, H.; Chang, J.H.; Kim, S.H.; Kim, H.S.; Lee, S.K. Differentiation of recurrent gli-oblastoma from radiation necrosis using diffusion radiomics with machine learning model development and external validation. Sci. Rep. 2021, 11, 2913. [Google Scholar] [CrossRef]
- Jiang, S.; Guo, P.; Heo, H.Y.; Zhang, Y.; Wu, J.; Jin, Y.; Laterra, J.; Eberhart, C.G.; Lim, M.; Blakeley, J.O. Radiomics analysis of amide proton transfer-weighted and structural MR images for treatment response assessment in malignant gliomas. NMR Biomed. 2023, 36, e4824. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, Y.; Wang, Y.; Zhang, X.; Lei, Y.; Zhu, G.; Mao, C.; Zhang, L.; Ma, L. Diffusion-weighted imaging and arterial spin labeling radiomics features may improve differentiation between radiation-induced brain injury and glioma recurrence. Eur. Radiol. 2023, 33, 3332–3342. [Google Scholar] [CrossRef]
- Sartoretti, E.; Sartoretti, T.; Wyss, M.; Reischauer, C.; van Smoorenburg, L.; Binkert, C.A.; Sartoretti-Schefer, S.; Mannil, M. Amide proton transfer weighted (APTw) imaging based radiomics allows for the differentiation of gliomas from metastases. Sci. Rep. 2021, 11, 5506. [Google Scholar] [CrossRef]
- Louis, D.N.; Perry, A.; Wesseling, P.; Brat, D.J.; Cree, I.A.; Figarella-Branger, D.; Hawkins, C.; Ng, H.K.; Pfister, S.M.; Reifen-berger, G.; et al. The 2021 WHO Classification of Tumors of the Central Nervous System: A summary. Neuro Oncol. 2021, 23, 1231–1251. [Google Scholar] [CrossRef]
- An, C.; Park, Y.W.; Ahn, S.S.; Han, K.; Kim, H.; Lee, S.K. Radiomics machine learning study with a small sample size: Single random training-test set split may lead to unreliable results. PLoS ONE 2021, 16, e0256152. [Google Scholar] [CrossRef] [PubMed]
- Demircioğlu, A. Measuring the bias of incorrect application of feature selection when using cross-validation in radiomics. Insights Imaging 2021, 12, 172. [Google Scholar] [CrossRef]
- Tofthagen, C. Threats to validity in retrospective studies. J. Adv. Pract. Oncol. 2012, 3, 181–183. [Google Scholar] [PubMed]
- Zhang, Y.P.; Zhang, X.Y.; Cheng, Y.T.; Li, B.; Teng, X.Z.; Zhang, J.; Lam, S.; Zhou, T.; Ma, Z.R.; Sheng, J.B.; et al. Artificial intelligence-driven radiomics study in cancer: The role of feature engineering and modeling. Mil. Med. Res. 2023, 10, 22. [Google Scholar] [CrossRef] [PubMed]
- Papanikolaou, N.; Matos, C.; Koh, D.M. How to develop a meaningful radiomic signature for clinical use in oncologic patients. Cancer Imaging 2020, 20, 33. [Google Scholar] [CrossRef]
- Xue, C.; Yuan, J.; Zhou, Y.; Wong, O.L.; Cheung, K.Y.; Yu, S.K. Acquisition repeatability of MRI radiomics features in the head and neck: A dual-3D-sequence multi-scan study. Vis. Comput. Ind. Biomed. Art. 2022, 5, 10. [Google Scholar] [CrossRef]
- Dluhoš, P.; Schwarz, D.; Cahn, W.; van Haren, N.; Kahn, R.; Španiel, F.; Horáček, J.; Kašpárek, T.; Schnack, H. Multi-center machine learning in imaging psychiatry: A meta-model approach. Neuroimage 2017, 155, 10–24. [Google Scholar] [CrossRef]
- Xia, W.; Wan, Z.; Yin, Z.; Gaupp, J.; Liu, Y.; Clayton, E.W.; Kantarcioglu, M.; Vorobeychik, Y.; Malin, B.A. It’s all in the timing: Calibrating temporal penalties for biomedical data sharing. J. Am. Med. Inform. Assoc. 2018, 25, 25–31. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alizadeh, M.; Broomand Lomer, N.; Azami, M.; Khalafi, M.; Shobeiri, P.; Arab Bafrani, M.; Sotoudeh, H. Radiomics: The New Promise for Differentiating Progression, Recurrence, Pseudoprogression, and Radionecrosis in Glioma and Glioblastoma Multiforme. Cancers 2023, 15, 4429. https://doi.org/10.3390/cancers15184429
Alizadeh M, Broomand Lomer N, Azami M, Khalafi M, Shobeiri P, Arab Bafrani M, Sotoudeh H. Radiomics: The New Promise for Differentiating Progression, Recurrence, Pseudoprogression, and Radionecrosis in Glioma and Glioblastoma Multiforme. Cancers. 2023; 15(18):4429. https://doi.org/10.3390/cancers15184429
Chicago/Turabian StyleAlizadeh, Mohammadreza, Nima Broomand Lomer, Mobin Azami, Mohammad Khalafi, Parnian Shobeiri, Melika Arab Bafrani, and Houman Sotoudeh. 2023. "Radiomics: The New Promise for Differentiating Progression, Recurrence, Pseudoprogression, and Radionecrosis in Glioma and Glioblastoma Multiforme" Cancers 15, no. 18: 4429. https://doi.org/10.3390/cancers15184429
APA StyleAlizadeh, M., Broomand Lomer, N., Azami, M., Khalafi, M., Shobeiri, P., Arab Bafrani, M., & Sotoudeh, H. (2023). Radiomics: The New Promise for Differentiating Progression, Recurrence, Pseudoprogression, and Radionecrosis in Glioma and Glioblastoma Multiforme. Cancers, 15(18), 4429. https://doi.org/10.3390/cancers15184429