Immune Checkpoint Inhibitors Targeting the PD-1/PD-L1 Pathway in Advanced, Recurrent Endometrial Cancer: A Scoping Review with SWOT Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
- (i)
- ultramutated EC defined by pathogenic mutations within the DNA polymerase epsilon (POLE) catalytic subunit, present in around 10% of endometrioid ECs;
- (ii)
- mismatch repair deficient (MMRd) EC, which corresponds to a microsatellite instability-high (MSI-H) phenotype and presents in around 40% of endometrioid and 2% of serous ECs;
- (iii)
- copy number low tumours exhibiting low somatic copy number alterations (SCNAs) associated with wild-type TP53, frequently associated with PTEN, PIK3CA, and KRAS mutations, and present in low-grade endometrioid EC; and
- (iv)
- copy number high tumours characterised by near universal TP53 mutations and high SCNAs, most commonly occurring in serous EC.
2. Materials and Methods
2.1. Inclusion Criteria
2.2. Exclusion Criteria
2.3. Data Extraction
2.4. Quality Assessment
3. Results
Study | Phase and Intervention | Patient Cohort | Response % | Survival Data (Median/ % Survival/HR) | Total TRAE any Grade/TRAE ≥Grade 3 (%) | Specific IRAE ≥Grade 3 (%) |
---|---|---|---|---|---|---|
Choi et al., 2020 [34] | Retrospective single institute Pembrolizumab 200 mg IV every 3 weeks until progression/toxicity | 31 5 MMRd or MSI-H 45% ≥3 prior lines chemotherapy | ORR 40; CR 20; PR 20 | PFS 2.5 months; OS 14.3 months | 64.5/9.6 | 9.6 (1 patient death of new onset interstitial lung disease) |
Lui et al., 2019 [40] | Phase Ia Atezolizumab 15 mg/kg IV every 3 weeks until progression/toxicity | 15 1 MSI-H, 12 MSS, 3 unknown status 53.3% ≥2 prior lines chemotherapy 66.7% prior radiation | ORR 13.3 (2 patients); CR 0; PR 13.3 1 responder MSI-H, 1 unknown, both had ≥ 5% PD-L1 expression | PFS 1.4 months; OS 9.6 months DOR in responders 7.3 and 16.3 months | 46.7/20 | 13.4 |
Oakin et al., The GARNET Trial, 2020 [38] | Phase I Dostarlimab 500 mg IV every 3 weeks for 4 doses, then 1000 mg every 6 weeks until disease progression | 264 108 MMRd/MSI-H and 156 MMRp/MSS 11% ≥3 prior lines chemotherapy 65% prior radiation | MMRd/MSI-H ORR 43.4; CR 10.4; PR 33 MMRp/MSS ORR 14.1; CR 1.9; PR 12.1 | KM estimates 1-year OS MMRd 90.9% vs. MMRp 62.1% | 67.6/16.6 | 7.6 |
Ott et al., The KEYNOTE-028 Trial., 2017 [21] | Phase Ib Pembrolizumab 10 mg/kg every 2 weeks until progression/toxicity | 24 PD-L1 positive 1 MSI-H, 18 MSS 41.6% ≥3 prior lines chemotherapy | ORR 13; CR 0; PR 13; SD 13 | 1-year PFS 14.3%; 1-year OS 53% Median OS and PFS NR | 54.2/16.7 | 8.3 |
Tamura et al., 2019 [37] | Phase II Nivolumab 240 mg IV every 2 weeks until disease progression/toxicity | 22 2 MSI-H, 6 MSS 17% ≥3 prior lines chemotherapy 17% prior radiation | ORR 22.7 MSI-H 100, MSS 0 | PFS 3.2 months; OS 8.7 months PFS MSI-H NRPFS MSS 2.2 months | 61/17 | 8 |
O’Malley et al., The KEYNOTE-158 Trial., 2020 [33] | Phase II Pembrolizumab 200 mg IV every 3 weeks for 2 years or until progression | 79 All MSI-H/MMRd 28% ≥3 prior lines chemotherapy 71% prior radiation | ORR 48; CR 14; PR 34 | PFS 13.1 months; median OS NR KM estimates 1-year OS 88% | 76/12 | 7 |
Konstantinopoulos et al., 2019 [39] | Phase II Avelumab 10 mg/kg IV every 2 weeks until progression/toxicity | 31 15 MMRd 16 MMRp 41.9% ≥3 prior lines chemotherapy | MMRd ORR 26.7; CR 6.6; PR 20 MMRp ORR 6.2; CR 0; PR 6.25 | PFS 4.4 months; median OS NR | 71/19.4 | 12.9 |
Antill et al., 2021 [22] | Phase II Durvalumab 1500 mg IV every 4 weeks until progression/toxicity | 71 35 MMRp and 36 MMRd progressed after ≥ 1 line of therapy 42% ≥2 prior lines chemotherapy 66% prior radiation | MMRd: ORR 47; CR 16.6; PR 30.5 MMRp: ORR 3; CR 0; PR 3 | MMRd PFS 8.3 months; median OS NR; 1-year OS 71% MMRp PFS 1.8 months; OS 12 months; 1-year OS 51% | 21/3 19.7 Improvement to QoL: MMRd 25; MMRp 9 Improvement of pain: MMRd 33; MMRp 10 | 3 |
Bellone et al., 2021 [32] | Phase II Pembrolizumab 200 mg IV every 3 weeks until progression/toxicity | 24 MSI-H 6 harboured Lynch-like MMRd and 18 sporadic (MLH1 promoter methylation) Median 1 prior line systemic therapy range 1–5) | ORR 58 (100 in Lynch-like; 44 in sporadic) | 3-year PFS 100% Lynch-like and 30% sporadic | Not reported/6.8 | Not reported |
Fader et al., 2016 [31] Abstract | Phase II Pembrolizumab 10 mg/kg IV every 2 weeks | 9 MMRd failed ≥2 previous therapies | ORR 56; CR 11.1; PR 44.4 | 1-year OS 89%, median OS NR | Not reported | Not reported |
Le et al., 2017 [30] | Phase II Pembrolizumab 10 mg/kg IV every 2 weeks | 86 MMRd multiple tumours 15 MMRd EC 47% ≥3 prior lines chemotherapy for all tumour types | EC ORR 53; CR 20; PR 33 | PFS 18.1 months Median OS NR all tumour types | 74/26 all tumour types | 21 across all tumour types |
Makker et al., 2020 [41] | Phase Ib/II Lenvatinib 20 mg OD + pembrolizumab 200 mg IV every 3 weeks | 108 11 MSI-H/MMRd; 94 MSS/MMRp, 3 no molecular data 37% ≥2 prior lines chemotherapy | Total cohort: ORR 38.9; CR 7.4; PR 31.5 MSI-H/MMRd: ORR 63.6 MSS/MMRp: ORR 37.2 | MSI-H/MMRd: PFS 7.4 months; median OS NR MSS/MMRp: PFS 7.4 months; OS 16.4 months | 97.2/69.4 | 40.3 (2 treatment related deaths of sepsis and intracranial haemorrhage) |
Taylor et al., 2020 [43] | Phase Ib/II Lenvatinib 20 mg OD + pembrolizumab 200 mg IV every 3 weeks | 23 ECs (molecular status unknown) 74% ≥2 prior lines chemotherapy | ORR 52; CR 9; PR 44 | PFS 9.7 months | 97/67 | 62 |
How et al., 2021 [42] | Single-institution, retrospective cohort study Lenvatinib (14 mg or 20 mg) + pembrolizumab | 70 1 MSI-H, 69 MSS 16 = 20 mg 54 = 14 mg Median lines prior systemic therapy 2 (range 1–9) | Lenvatinib 20 mg: ORR 28.6; CR 0; PR 28.6 Lenvatinib 14 mg: ORR 38.2; CR 4.3; PR 34 No significant difference | Lenvatinib 20 mg: PFS 3.2 months; OS 8.6 months Lenvatinib 14 mg: PFS 5.5 months; OS 9.4 months | Not reported. 32.9% hospitalisation due to TRAE Treatment discontinued due to lenvatinib dose: 82.9% (20 mg) and 38.6% (14 mg) | Not reported |
Makker et al., The KEYNOTE-775 Trial, 2022 [23] | Phase III RCT Lenvatinib 20 mg OD + pembrolizumab 200 mg IV every 3 weeks (LP) versus CT doxorubicin and paclitaxel | 827 667 MMRp 130 MMRd 77.5% prior 1 line chemotherapy 43.5% prior radiation | Lenvatinib + pembrolizumab vs. CT; ORR total cohort 31.9 vs. 14.7 MMRp: 30.3 vs. 15.5 MMRd: 40.0 vs. 12.0 | Lenvatinib + pembrolizumab vs. chemotherapy Total cohort: PFS 7.2 vs. 3.8 months (HR 0.56) MMRp: PFS 6.6 vs. 3.8 months (HR 0.60) | Lenvatinib + pembrolizumab 99.8/88.9 Chemotherapy 99.5/72.7 No difference in long term QoL scores | 44.5 Not applicable |
Quality Analysis
4. SWOT Analysis of ICI in EC Patients
4.1. Strengths
4.2. Weaknesses
4.3. Opportunities
4.3.1. ICI Combined with Approved Cancer Therapy
4.3.2. Dual ICI Therapy
4.3.3. ICI Combinations with Novel Therapies
4.4. Threats
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Term | Search |
---|---|
Endometrial cancer | (Endometrial cancer) |
Immune checkpoint inhibitor | AND (immune checkpoint)) OR (anti-PD-1)) OR (anti-PD-L1) OR ((pembrolizumab)) OR (Atezolizumab)) OR (Dostarlimab)) OR (Durvalumab)) OR (Avelumab)) OR (Lenvatinib) |
References
- Bhaskaran, K.; Douglas, I.; Forbes, H.; dos-Santos-Silva, I.; Leon, D.A.; Smeeth, L. Body-mass index and risk of 22 specific cancers: A population-based cohort study of 5·24 million UK adults. Lancet 2014, 384, 755–765. [Google Scholar] [CrossRef]
- Cancer Research UK Uterine Cancer Statistics | Cancer Research UK. Available online: https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/uterine-cancer (accessed on 28 April 2023).
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Dyba, T.; Randi, G.; Bettio, M.; Gavin, A.; Visser, O.; Bray, F. Cancer incidence and mortality patterns in Europe: Estimates for 40 countries and 25 major cancers in 2018. Eur. J. Cancer 2018, 103, 356–387. [Google Scholar] [CrossRef]
- Concin, N.; Matias-Guiu, X.; Vergote, I.; Cibula, D.; Mirza, M.R.; Marnitz, S.; Ledermann, J.; Bosse, T.; Chargari, C.; Fagotti, A.; et al. ESGO/ESTRO/ESP guidelines for the management of patients with endometrial carcinoma. Int. J. Gynecol. Cancer 2020, 31, 12–39. [Google Scholar] [CrossRef] [PubMed]
- Clarke, B.A.; Gilks, C.B. Endometrial carcinoma: Controversies in histopathological assessment of grade and tumour cell type. J. Clin. Pathol. 2010, 63, 410–415. [Google Scholar] [CrossRef] [PubMed]
- Gilks, C.B.; Oliva, E.; Soslow, R.A. Poor interobserver reproducibility in the diagnosis of high-grade endometrial carcinoma. Am. J. Surg. Pathol. 2013, 37, 874–881. [Google Scholar] [CrossRef] [PubMed]
- Getz, G.; Gabriel, S.B.; Cibulskis, K.; Lander, E.; Sivachenko, A.; Sougnez, C.; Lawrence, M.; Kandoth, C.; Dooling, D.; Fulton, R.; et al. Integrated genomic characterization of endometrial carcinoma. Nature 2013, 500, 242. [Google Scholar] [CrossRef]
- Kommoss, S.; McConechy, M.K.; Kommoss, F.; Leung, S.; Bunz, A.; Magrill, J.; Britton, H.; Kommoss, F.; Grevenkamp, F.; Karnezis, A.; et al. Final validation of the ProMisE molecular classifier for endometrial carcinoma in a large population-based case series. Ann. Oncol. 2018, 29, 1180–1188. [Google Scholar] [CrossRef]
- McConechy, M.K.; Talhouk, A.; Leung, S.; Chiu, D.; Yang, W.; Senz, J.; Reha-Krantz, L.J.; Lee, C.H.; Huntsman, D.G.; Gilks, C.B.; et al. Endometrial Carcinomas with POLE Exonuclease Domain Mutations Have a Favorable Prognosis. Clin. Cancer Res. 2016, 22, 2865–2873. [Google Scholar] [CrossRef]
- Billingsley, C.C.; Cohn, D.E.; Mutch, D.G.; Hade, E.M.; Goodfellow, P.J. Prognostic Significance of POLE Exonuclease Domain Mutations in High-Grade Endometrioid Endometrial Cancer on Survival and Recurrence: A Subanalysis. Int. J. Gynecol. Cancer 2016, 26, 933–938. [Google Scholar] [CrossRef]
- The United States National Library of Medicine Refining Adjuvant Treatment IN Endometrial Cancer Based on Molecular Features-Full Text View-ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/NCT05255653 (accessed on 1 March 2023).
- Waldman, A.D.; Fritz, J.M.; Lenardo, M.J. A guide to cancer immunotherapy: From T cell basic science to clinical practice. Nat. Rev. Immunol. 2020, 20, 651–668. [Google Scholar] [CrossRef]
- Chemnitz, J.M.; Parry, R.V.; Nichols, K.E.; June, C.H.; Riley, J.L. SHP-1 and SHP-2 associate with immunoreceptor tyrosine-based switch motif of programmed death 1 upon primary human T cell stimulation, but only receptor ligation prevents T cell activation. J. Immunol. 2004, 173, 945–954. [Google Scholar] [CrossRef] [PubMed]
- Qin, W.; Hu, L.; Zhang, X.; Jiang, S.; Li, J.; Zhang, Z.; Wang, X. The Diverse Function of PD-1/PD-L Pathway Beyond Cancer. Front. Immunol. 2019, 10, 2298. [Google Scholar] [CrossRef] [PubMed]
- Hamid, O.; Robert, C.; Daud, A.; Hodi, F.S.; Hwu, W.J.; Kefford, R.; Wolchok, J.D.; Hersey, P.; Joseph, R.; Weber, J.S.; et al. Five-year survival outcomes for patients with advanced melanoma treated with pembrolizumab in KEYNOTE-001. Ann. Oncol. 2019, 30, 582–588. [Google Scholar] [CrossRef]
- Garon, E.B.; Hellmann, M.D.; Rizvi, N.A.; Carcereny, E.; Leighl, N.B.; Ahn, M.J.; Eder, J.P.; Balmanoukian, A.S.; Aggarwal, C.; Horn, L.; et al. Five-year overall survival for patients with advanced non-small-cell lung cancer treated with pembrolizumab: Results from the phase i KEYNOTE-001 study. J. Clin. Oncol. 2019, 37, 2518–2527. [Google Scholar] [CrossRef]
- Le, D.T.; Kim, T.W.; van Cutsem, E.; Geva, R.; Jäger, D.; Hara, H.; Burge, M.; O’Neil, B.; Kavan, P.; Yoshino, T.; et al. Phase II Open-Label Study of Pembrolizumab in Treatment-Refractory, Microsatellite Instability-High/Mismatch Repair-Deficient Metastatic Colorectal Cancer: KEYNOTE-164. J. Clin. Oncol. 2020, 38, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Marabelle, A.; Le, D.T.; Ascierto, P.A.; Di Giacomo, A.M.; de Jesus-Acosta, A.; Delord, J.P.; Geva, R.; Gottfried, M.; Penel, N.; Hansen, A.R.; et al. Efficacy of Pembrolizumab in Patients with Noncolorectal High Microsatellite Instability/Mismatch Repair-Deficient Cancer: Results from the Phase II KEYNOTE-158 Study. J. Clin. Oncol. 2020, 38, 1–10. [Google Scholar] [CrossRef]
- Oaknin, A.; Tinker, A.V.; Gilbert, L.; Samouëlian, V.; Mathews, C.; Brown, J.; Barretina-Ginesta, M.-P.; Moreno, V.; Gravina, A.; Abdeddaim, C.; et al. Clinical Activity and Safety of the Anti–Programmed Death 1 Monoclonal Antibody Dostarlimab for Patients with Recurrent or Advanced Mismatch Repair–Deficient Endometrial Cancer: A Nonrandomized Phase 1 Clinical Trial. JAMA Oncol. 2020, 6, 1766–1772. [Google Scholar] [CrossRef]
- National Institute for Health and Care Excellence. Dostarlimab for Previously Treated Advanced or Recurrent Endometrial Cancer with High Microsatellite Instability or Mismatch Repair Deficiency | Guidance | NICE. Available online: https://www.nice.org.uk/guidance/ta779/chapter/1-Recommendations (accessed on 26 March 2022).
- Ott, P.A.; Bang, Y.J.; Berton-Rigaud, D.; Elez, E.; Pishvaian, M.J.; Rugo, H.S.; Puzanov, I.; Mehnert, J.M.; Aung, K.L.; Lopez, J.; et al. Safety and antitumor activity of pembrolizumab in advanced programmed death ligand 1–positive endometrial cancer: Results from the KEYNOTE-028 study. J. Clin. Oncol. 2017, 35, 2535–2541. [Google Scholar] [CrossRef]
- Antill, Y.; Kok, P.S.; Robledo, K.; Yip, S.; Cummins, M.; Smith, D.; Spurdle, A.; Barnes, E.; Lee, Y.C.; Friedlander, M.; et al. Original research: Clinical activity of durvalumab for patients with advanced mismatch repair-deficient and repair-proficient endometrial cancer. A nonrandomized phase 2 clinical trial. J. Immunother. Cancer 2021, 9, e002255. [Google Scholar] [CrossRef]
- Makker, V.; Colombo, N.; Casado Herráez, A.; Santin, A.D.; Colomba, E.; Miller, D.S.; Fujiwara, K.; Pignata, S.; Baron-Hay, S.; Ray-Coquard, I.; et al. Lenvatinib plus Pembrolizumab for Advanced Endometrial Cancer. N. Engl. J. Med. 2022, 386, 437–448. [Google Scholar] [CrossRef]
- Marth, C.; Tarnawski, R.; Tyulyandina, A.; Pignata, S.; Gilbert, L.; Kaen, D.; Rubio, M.J.; Frentzas, S.; Beiner, M.; Magallanes-Maciel, M.; et al. Phase 3, randomized, open-label study of pembrolizumab plus lenvatinib versus chemotherapy for first-line treatment of advanced or recurrent endometrial cancer: ENGOT-en9/LEAP-001. Int. J. Gynecol. Cancer 2022, 32, 93–100. [Google Scholar] [CrossRef] [PubMed]
- National Institute for Health and Care Excellence. Pembrolizumab with Lenvatinib for Previously Treated Advanced or Recurrent Endometrial Cancer Technology Appraisal Guidance. 2023. Available online: https://www.nice.org.uk/guidance/ta904/documents/final-appraisal-determination-document#:~:text=2.1%20Pembrolizumab%20(Keytruda%2C%20MSD),who%20are%20not%20candidates%20for (accessed on 1 June 2023).
- Bai, R.; Chen, N.; Li, L.; Du, N.; Bai, L.; Lv, Z.; Tian, H.; Cui, J. Mechanisms of Cancer Resistance to Immunotherapy. Front. Oncol. 2020, 10, 1290. [Google Scholar] [CrossRef] [PubMed]
- Rallis, K.S.; Hillyar, C.R.T.; Sideris, M.; Davies, J.K. T-cell-based Immunotherapies for Haematological Cancers, Part A: A SWOT Analysis of Immune Checkpoint Inhibitors (ICIs) and Bispecific T-Cell Engagers (BiTEs). Anticancer Res. 2021, 41, 1123–1141. [Google Scholar] [CrossRef]
- Espinós, J.J.; Fabregues, F.; Fontes, J.; García-Velasco, J.A.; Llácer, J.; Requena, A.; Checa, M.; Bellver, J. Impact of chronic endometritis in infertility: A SWOT analysis. Reprod. Biomed. Online 2021, 42, 939–951. [Google Scholar] [CrossRef] [PubMed]
- Viswanathan, M.; Ansari, M.T.; Berkamn, N.D.; Chang, S.; Santaguida, P.L.; Shamliyan, T.; Singh, K.; Tsertsvadze, A.; Treadwell, J.R. Assessing the Risk of Bias of Individual Studies in Systematic Reviews of Healthcare Interventions. In Methods Guide for Effectiveness and Comparative Effectiveness Reviews [Internet]; Agency for Healthcare Research and Quality (US): Rockville, MD, USA, 2012; Bookshelf ID NBK91433. [Google Scholar]
- Le, D.T.; Durham, J.N.; Smith, K.N.; Wang, H.; Bartlett, B.R.; Aulakh, L.K.; Lu, S.; Kemberling, H.; Wilt, C.; Luber, B.S.; et al. Mismatch repair deficiency predicts response of solid tumors to PD-1 blockade. Science 2017, 357, 409–413. [Google Scholar] [CrossRef] [PubMed]
- Fader, A.N.; Diaz, L.A.; Armstrong, D.K.; Tanner, E.J.; Uram, J.; Eyring, A.; Wang, H.; Fisher, G.; Greten, T.; Le, D. Preliminary results of a phase II study: PD-1 blockade in mismatch repair–deficient, recurrent or persistent endometrial cancer. Gynecol. Oncol. 2016, 141, 206–207. [Google Scholar] [CrossRef]
- Bellone, S.; Roque, D.M.; Siegel, E.R.; Buza, N.; Hui, P.; Bonazzoli, E.; Guglielmi, A.; Zammataro, L.; Nagarkatti, N.; Zaidi, S.; et al. A phase II evaluation of pembrolizumab in recurrent microsatellite instability-high (MSI-H) endometrial cancer patients with Lynch-like versus MLH-1 methylated characteristics (NCT02899793). Ann. Oncol. 2021, 32, 1045–1046. [Google Scholar] [CrossRef]
- O’Malley, D.M.; Bariani, G.M.; Cassier, P.A.; Marabelle, A.; Hansen, A.R.; De Jesus Acosta, A.; Miller, W.H.; Safra, T.; Italiano, A.; Mileshkin, L.; et al. Pembrolizumab in Patients with Microsatellite Instability–High Advanced Endometrial Cancer: Results From the KEYNOTE-158 Study. J. Clin. Oncol. 2022, 40, 752–761. [Google Scholar] [CrossRef]
- Choi, M.C.; Moon, Y.W.; Jung, S.G.; Park, H.; Joo, W.D.; Song, S.H.; Lee, C.; Kim, G.; Kim, K.A. Real-World Experience with Pembrolizumab Treatment in Patients with Heavily Treated Recurrent Gynecologic Malignancies. Yonsei Med. J. 2020, 61, 844. [Google Scholar] [CrossRef]
- Freshwater, T.; Kondic, A.; Ahamadi, M.; Li, C.H.; de Greef, R.; de Alwis, D.; Stone, J.A. Evaluation of dosing strategy for pembrolizumab for oncology indications. J. Immunother. Cancer 2017, 5, 43. [Google Scholar] [CrossRef]
- O’Malley, D.M.; Bariani, G.M.; Cassier, P.A.; Marabelle, A.; Hansen, A.R.; De Jesus Acosta, A.; Miller, W.H.; Safra, T.; Italiano, A.; Mileshkin, L.; et al. Health-related quality of life with pembrolizumab monotherapy in patients with previously treated advanced microsatellite instability high/mismatch repair deficient endometrial cancer in the KEYNOTE-158 study. Gynecol. Oncol. 2022, 166, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Tamura, K.; Hasegawa, K.; Katsumata, N.; Matsumoto, K.; Mukai, H.; Takahashi, S.; Nomura, H.; Minami, H. Efficacy and safety of nivolumab in Japanese patients with uterine cervical cancer, uterine corpus cancer, or soft tissue sarcoma: Multicenter, open-label phase 2 trial. Cancer Sci. 2019, 110, 2894. [Google Scholar] [CrossRef] [PubMed]
- Oaknin, A.; Gilbert, L.; Tinker, A.V.; Brown, J.; Mathews, C.; Press, J.; Sabatier, R.; O’Malley, D.M.; Samouelian, V.; Boni, V.; et al. Original research: Safety and antitumor activity of dostarlimab in patients with advanced or recurrent DNA mismatch repair deficient/microsatellite instability-high (dMMR/MSI-H) or proficient/stable (MMRp/MSS) endometrial cancer: Interim results from GARNET—A phase I, single-arm study. J. Immunother. Cancer 2022, 10, 3777. [Google Scholar] [CrossRef]
- Konstantinopoulos, P.A.; Luo, W.; Liu, J.F.; Gulhan, D.C.; Krasner, C.; Ishizuka, J.J.; Gockley, A.A.; Buss, M.; Growdon, W.B.; Crowe, H.; et al. Phase II study of avelumab in patients with mismatch repair deficient and mismatch repair proficient recurrent/persistent endometrial cancer. J. Clin. Oncol. 2019, 37, 2786–2794. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.F.; Gordon, M.; Veneris, J.; Braiteh, F.; Balmanoukian, A.; Eder, J.P.; Oaknin, A.; Hamilton, E.; Wang, Y.; Sarkar, I.; et al. Safety, clinical activity and biomarker assessments of atezolizumab from a Phase I study in advanced/recurrent ovarian and uterine cancers. Gynecol. Oncol. 2019, 154, 314–322. [Google Scholar] [CrossRef]
- Makker, V.; Taylor, M.H.; Aghajanian, C.; Oaknin, A.; Mier, J.; Cohn, A.L.; Romeo, M.; Bratos, R.; Brose, M.S.; DiSimone, C.; et al. Lenvatinib Plus Pembrolizumab in Patients with Advanced Endometrial Cancer. J. Clin. Oncol. 2020, 38, 2981–2992. [Google Scholar] [CrossRef]
- How, J.A.; Patel, S.; Fellman, B.; Lu, K.H.; Hwu, P.; Ramondetta, L.M.; Westin, S.N.; Fleming, N.D.; Soliman, P.T.; Jazaeri, A.A. Toxicity and efficacy of the combination of pembrolizumab with recommended or reduced starting doses of lenvatinib for treatment of recurrent endometrial cancer. Gynecol. Oncol. 2021, 162, 24–31. [Google Scholar] [CrossRef]
- Taylor, M.H.; Lee, C.H.; Makker, V.; Rasco, D.; Dutcus, C.E.; Wu, J.; Stepan, D.E.; Shumaker, R.C.; Motzer, R.J. Phase Ib/II trial of lenvatinib plus pembrolizumab in patients with advanced renal cell carcinoma, endometrial cancer, and other selected advanced solid tumors. J. Clin. Oncol. 2020, 38, 1154–1163. [Google Scholar] [CrossRef]
- Miller, D.S.; Blessing, J.A.; Lentz, S.S.; Waggoner, S.E.; Mackey, D. A phase II trial of topotecan in patients with advanced, persistent, or recurrent endometrial carcinoma: A gynecologic oncology group study. Gynecol. Oncol. 2002, 87, 247–251. [Google Scholar] [CrossRef] [PubMed]
- Muggia, F.M.; Blessing, J.A.; Sorosky, J.; Reid, G.C. Phase II trial of the pegylated liposomal doxorubicin in previously treated metastatic endometrial cancer: A Gynecologic Oncology Group study. J. Clin. Oncol. 2002, 20, 2360–2364. [Google Scholar] [CrossRef] [PubMed]
- Van Weelden, W.J.; Massuger, L.F.A.G.; Pijnenborg, J.M.A.; Romano, A. Anti-estrogen Treatment in Endometrial Cancer: A Systematic Review. Front. Oncol. 2019, 9, 359. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.K.; Lakomy, D.S.; McDonald, Y.; Kapp, D.S. Long-term durable responses after pembrolizumab immunotherapy for recurrent, resistant endometrial cancer. Gynecol. Oncol. Rep. 2020, 33, 100581. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.Y.; Johnson, D.B.; Davis, E.J. Toxicities associated with PD-1/PD-L1 blockade. Cancer J. 2018, 24, 36. [Google Scholar] [CrossRef] [PubMed]
- Haslam, A.; Prasad, V. Estimation of the Percentage of US Patients with Cancer Who Are Eligible for and Respond to Checkpoint Inhibitor Immunotherapy Drugs. JAMA Netw. Open 2019, 2, e192535. [Google Scholar] [CrossRef] [PubMed]
- Cristescu, R.; Mogg, R.; Ayers, M.; Albright, A.; Murphy, E.; Yearley, J.; Sher, X.; Liu, X.Q.; Lu, H.; Nebozhyn, M.; et al. Pan-tumor genomic biomarkers for PD-1 checkpoint blockade-based immunotherapy. Science 2018, 362, eaar3593. [Google Scholar] [CrossRef] [PubMed]
- Chan, T.A.; Yarchoan, M.; Jaffee, E.; Swanton, C.; Quezada, S.A.; Stenzinger, A.; Peters, S. Development of tumor mutation burden as an immunotherapy biomarker: Utility for the oncology clinic. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2019, 30, 44–56. [Google Scholar] [CrossRef] [PubMed]
- Yoshihara, K.; Shahmoradgoli, M.; Martínez, E.; Vegesna, R.; Kim, H.; Torres-Garcia, W.; Treviño, V.; Shen, H.; Laird, P.W.; Levine, D.A.; et al. Inferring tumour purity and stromal and immune cell admixture from expression data. Nat. Commun. 2013, 4, 2612. [Google Scholar] [CrossRef]
- Jin, W.; Yang, Q.; Chi, H.; Wei, K.; Zhang, P.; Zhao, G.; Chen, S.; Xia, Z.; Li, X. Ensemble deep learning enhanced with self-attention for predicting immunotherapeutic responses to cancers. Front. Immunol. 2022, 13, 1025330. [Google Scholar] [CrossRef]
- Saâda-Bouzid, E.; Defaucheux, C.; Karabajakian, A.; Coloma, V.P.; Servois, V.; Paoletti, X.; Even, C.; Fayette, J.; Guigay, J.; Loirat, D.; et al. Hyperprogression during anti-PD-1/PD-L1 therapy in patients with recurrent and/or metastatic head and neck squamous cell carcinoma. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2017, 28, 1605–1611. [Google Scholar] [CrossRef]
- Kim, C.G.; Kim, K.H.; Pyo, K.H.; Xin, C.F.; Hong, M.H.; Ahn, B.C.; Kim, Y.; Choi, S.J.; Yoon, H.I.; Lee, J.G.; et al. Hyperprogressive disease during PD-1/PD-L1 blockade in patients with non-small-cell lung cancer. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2019, 30, 1104–1113. [Google Scholar] [CrossRef]
- Kanjanapan, Y.; Day, D.; Wang, L.; Al-Sawaihey, H.; Abbas, E.; Namini, A.; Siu, L.L.; Hansen, A.; Razak, A.A.; Spreafico, A.; et al. Hyperprogressive disease in early-phase immunotherapy trials: Clinical predictors and association with immune-related toxicities. Cancer 2019, 125, 1341–1349. [Google Scholar] [CrossRef] [PubMed]
- Kim, C.G.; Kim, C.; Yoon, S.E.; Kim, K.H.; Choi, S.J.; Kang, B.; Kim, H.R.; Park, S.H.; Shin, E.C.; Kim, Y.Y.; et al. Hyperprogressive disease during PD-1 blockade in patients with advanced hepatocellular carcinoma. J. Hepatol. 2021, 74, 350–359. [Google Scholar] [CrossRef] [PubMed]
- Downing, M.J.; Papke, D.J.; Tyekucheva, S.; Mutter, G.L. A New Classification of Benign, Premalignant, and Malignant Endometrial Tissues Using Machine Learning Applied to 1413 Candidate Variables. Int. J. Gynecol. Pathol. 2020, 39, 333–343. [Google Scholar] [CrossRef] [PubMed]
- Champiat, S.; Dercle, L.; Ammari, S.; Massard, C.; Hollebecque, A.; Postel-Vinay, S.; Chaput, N.; Eggermont, A.M.; Marabelle, A.; Soria, J.-C.; et al. Hyperprogressive Disease Is a New Pattern of Progression in Cancer Patients Treated by Anti-PD-1/PD-L1. Clin. Cancer Res. 2017, 23, 1920–1928. [Google Scholar] [CrossRef] [PubMed]
- Kato, S.; Goodman, A.; Walavalkar, V.; Barkauskas, D.A.; Sharabi, A.; Kurzrock, R. Hyperprogressors after Immunotherapy: Analysis of Genomic Alterations Associated with Accelerated Growth Rate. Clin. Cancer Res. 2017, 23, 4242–4250. [Google Scholar] [CrossRef]
- Kang, Y.K.; Reck, M.; Nghiem, P.; Feng, Y.; Plautz, G.; Kim, H.R.; Owonikoko, T.K.; Boku, N.; Chen, L.T.; Lei, M.; et al. Original research: Assessment of hyperprogression versus the natural course of disease development with nivolumab with or without ipilimumab versus placebo in phase III, randomized, controlled trials. J. Immunother. Cancer 2022, 10, 4273. [Google Scholar] [CrossRef]
- Ribic, C.M.; Sargent, D.J.; Moore, M.J.; Thibodeau, S.N.; French, A.J.; Goldberg, R.M.; Hamilton, S.R.; Laurent-Puig, P.; Gryfe, R.; Shepherd, L.E.; et al. Tumor microsatellite-instability status as a predictor of benefit from fluorouracil-based adjuvant chemotherapy for colon cancer. N. Engl. J. Med. 2003, 349, 247–257. [Google Scholar] [CrossRef]
- Li, Y.; Ma, Y.; Wu, Z.; Zeng, F.; Song, B.; Zhang, Y.; Li, J.; Lui, S.; Wu, M. Tumor Mutational Burden Predicting the Efficacy of Immune Checkpoint Inhibitors in Colorectal Cancer: A Systematic Review and Meta-Analysis. Front. Immunol. 2021, 12, 751407. [Google Scholar] [CrossRef]
- Galluzzi, L.; Humeau, J.; Buqué, A.; Zitvogel, L.; Kroemer, G. Immunostimulation with chemotherapy in the era of immune checkpoint inhibitors. Nat. Rev. Clin. Oncol. 2020, 17, 725–741. [Google Scholar] [CrossRef]
- Eldershaw, S.; Verma, K.; Croft, W.; Rai, T.; Kinsella, F.A.M.; Stephens, C.; Chen, H.; Nunnick, J.; Zuo, J.; Malladi, R.; et al. Lymphopenia-induced lymphoproliferation drives activation of naive T cells and expansion of regulatory populations. iScience 2021, 24, 102164. [Google Scholar] [CrossRef]
- Lutsiak, M.E.C.; Semnani, R.T.; De Pascalis, R.; Kashmiri, S.V.S.; Schlom, J.; Sabzevari, H. Inhibition of CD4+25+ T regulatory cell function implicated in enhanced immune response by low-dose cyclophosphamide. Blood 2005, 105, 2862–2868. [Google Scholar] [CrossRef] [PubMed]
- United States National Library of Medicine. Testing the Addition of the Immunotherapy Drug Pembrolizumab to the Usual Chemotherapy Treatment (Paclitaxel and Carboplatin) in Stage III-IV or Recurrent Endometrial Cancer-Full Text View-ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/NCT03914612 (accessed on 31 October 2022).
- United States National Library of Medicine. Atezolizumab Trial in Endometrial Cancer-AtTEnd-Full Text View-ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/NCT03603184?term=NCT03603184&draw=1&rank=1 (accessed on 31 October 2022).
- Huang, A.C.; Postow, M.A.; Orlowski, R.J.; Mick, R.; Bengsch, B.; Manne, S.; Xu, W.; Harmon, S.; Giles, J.R.; Wenz, B.; et al. T-cell invigoration to tumour burden ratio associated with anti-PD-1 response. Nature 2017, 545, 60–65. [Google Scholar] [CrossRef]
- Dovedi, S.J.; Cheadle, E.J.; Popple, A.L.; Poon, E.; Morrow, M.; Stewart, R.; Yusko, E.C.; Sanders, C.M.; Vignali, M.; Emerson, R.O.; et al. Fractionated Radiation Therapy Stimulates Antitumor Immunity Mediated by Both Resident and Infiltrating Polyclonal T-cell Populations when Combined with PD-1 Blockade. Clin. Cancer Res. 2017, 23, 5514–5526. [Google Scholar] [CrossRef] [PubMed]
- Welsh, J.W.; Heymach, J.V.; Guo, C.; Menon, H.; Klein, K.; Cushman, T.R.; Verma, V.; Hess, K.R.; Shroff, G.; Tang, C.; et al. Phase 1/2 Trial of Pembrolizumab and Concurrent Chemoradiation Therapy for Limited-Stage SCLC. J. Thorac. Oncol. 2020, 15, 1919–1927. [Google Scholar] [CrossRef] [PubMed]
- Shaverdian, N.; Lisberg, A.E.; Bornazyan, K.; Veruttipong, D.; Goldman, J.W.; Formenti, S.C.; Garon, E.B.; Lee, P. Previous radiotherapy and the clinical activity and toxicity of pembrolizumab in the treatment of non-small-cell lung cancer: A secondary analysis of the KEYNOTE-001 phase 1 trial. Lancet. Oncol. 2017, 18, 895–903. [Google Scholar] [CrossRef]
- Koller, K.M.; Mackley, H.B.; Liu, J.; Wagner, H.; Talamo, G.; Schell, T.D.; Pameijer, C.; Neves, R.I.; Anderson, B.; Kokolus, K.M.; et al. Improved survival and complete response rates in patients with advanced melanoma treated with concurrent ipilimumab and radiotherapy versus ipilimumab alone. Cancer Biol. Ther. 2017, 18, 36–42. [Google Scholar] [CrossRef]
- Tree, A.C.; Jones, K.; Hafeez, S.; Sharabiani, M.T.A.; Harrington, K.J.; Lalondrelle, S.; Ahmed, M.; Huddart, R.A. Dose-limiting Urinary Toxicity with Pembrolizumab Combined with Weekly Hypofractionated Radiation Therapy in Bladder Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2018, 101, 1168–1171. [Google Scholar] [CrossRef]
- De Boer, S.M.; Powell, M.E.; Mileshkin, L.; Katsaros, D.; Bessette, P.; Haie-Meder, C.; Ottevanger, P.B.; Ledermann, J.A.; Khaw, P.; Colombo, A.; et al. Adjuvant chemoradiotherapy versus radiotherapy alone for women with high-risk endometrial cancer (PORTEC-3): Final results of an international, open-label, multicentre, randomised, phase 3 trial. Lancet Oncol. 2018, 19, 295–309. [Google Scholar] [CrossRef]
- Luke, J.J.; Lemons, J.M.; Karrison, T.G.; Pitroda, S.P.; Melotek, J.M.; Zha, Y.; Al-Hallaq, H.A.; Arina, A.; Khodarev, N.N.; Janisch, L.; et al. Safety and Clinical Activity of Pembrolizumab and Multisite Stereotactic Body Radiotherapy in Patients with Advanced Solid Tumors. J. Clin. Oncol. 2018, 36, 1611. [Google Scholar] [CrossRef]
- Van Gorp, T.; Mirza, M.R.; Lortholary, A.; Cibula, D.; Walther, A.; Savarese, A.; Barretina-Ginesta, M.P.; Ortaç, F.; Papadimitriou, C.; Bodnar, L.; et al. ENGOT-en11/GOG-3053/KEYNOTE-B21: Phase 3 study of pembrolizumab or placebo in combination with adjuvant chemotherapy with/without radiotherapy in patients with newly diagnosed high-risk endometrial cancer. J. Clin. Oncol. 2021, 39, TPS5608. [Google Scholar] [CrossRef]
- Kim, C.; Wang, X.D.; Yu, Y. Parp1 inhibitors trigger innate immunity via parp1 trapping-induced DNA damage response. Elife 2020, 9, 1–47. [Google Scholar] [CrossRef] [PubMed]
- Maiorano, B.A.; Lorusso, D.; Maiorano, M.F.P.; Ciardiello, D.; Parrella, P.; Petracca, A.; Cormio, G.; Maiello, E. The Interplay between PARP Inhibitors and Immunotherapy in Ovarian Cancer: The Rationale behind a New Combination Therapy. Int. J. Mol. Sci. 2022, 23, 3871. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.; Wang, L.; Cong, Z.; Amoozgar, Z.; Kiner, E.; Xing, D.; Orsulic, S.; Matulonis, U.; Goldberg, M.S. The PARP1 inhibitor BMN 673 exhibits immunoregulatory effects in a Brca1−/− murine model of ovarian cancer. Biochem. Biophys. Res. Commun. 2015, 463, 551–556. [Google Scholar] [CrossRef] [PubMed]
- Konstantinopoulos, P.A.; Waggoner, S.E.; Vidal, G.A.; Mita, M.M.; Fleming, G.F.; Holloway, R.W.; Van Le, L.; Sachdev, J.C.; Chapman-Davis, E.; Colon-Otero, G.; et al. TOPACIO/Keynote-162 (NCT02657889): A phase 1/2 study of niraparib + pembrolizumab in patients (pts) with advanced triple-negative breast cancer or recurrent ovarian cancer (ROC)—Results from ROC cohort. J. Clin. Oncol. 2018, 36, 106. [Google Scholar] [CrossRef]
- Drew, Y.; de Jonge, M.; Hong, S.H.; Park, Y.H.; Wolfer, A.; Brown, J.; Ferguson, M.; Gore, M.E.; Alvarez, R.H.; Gresty, C.; et al. An open-label, phase II basket study of olaparib and durvalumab (MEDIOLA): Results in germline BRCA-mutated (gBRCAm) platinum-sensitive relapsed (PSR) ovarian cancer (OC). Gynecol. Oncol. 2018, 149, 246–247. [Google Scholar] [CrossRef]
- Portela, S.; Cunningham, A.; Laios, A.; Hutson, R.; Theophilou, G. Breast Cancer Patients at Increased Risk of Developing Type II Endometrial Cancer: Relative and Absolute Risk Estimation and Implications for Counseling. Cureus 2021, 13, e12981. [Google Scholar] [CrossRef]
- Lee, M.; Eng, G.; Barbari, S.R.; Deshpande, V.; Shcherbakova, P.V.; Gala, M.K. Homologous Recombination Repair Truncations Predict Hypermutation in Microsatellite Stable Colorectal and Endometrial Tumors. Clin. Transl. Gastroenterol. 2020, 11, e00149. [Google Scholar] [CrossRef]
- Shiro Takamatsu, A.; Brown, J.; Yamaguchi, K.; Hamanishi, J.; Yamanoi, K.; Takaya, H.; Kaneyasu, T.; Mori, S.; Mandai, M.; Matsumura, N. The utility of homologous recombination deficiency biomarkers across cancer types. medRxiv 2021. [Google Scholar] [CrossRef]
- Siedel, J.H.; Ring, K.L.; Hu, W.; Dood, R.L.; Wang, Y.; Baggerly, K.; Darcy, K.M.; Conrads, T.P.; Gallagher, S.; Tshiaba, P.; et al. Clinical Significance of Homologous Recombination Deficiency Score Testing in Endometrial Cancer. Gynecol. Oncol. 2021, 160, 777. [Google Scholar] [CrossRef]
- Miyasaka, A.; Oda, K.; Ikeda, Y.; Wada-Hiraike, O.; Kashiyama, T.; Enomoto, A.; Hosoya, N.; Koso, T.; Fukuda, T.; Inaba, K.; et al. Anti-tumor activity of olaparib, a poly (ADP-ribose) polymerase (PARP) inhibitor, in cultured endometrial carcinoma cells. BMC Cancer 2014, 14, 1–10. [Google Scholar] [CrossRef]
- Janzen, D.Y.; Paik, D.Y.; Rosales, M.A.; Yep, B.; Cheng, D.; Witte, O.N.; Kayadibi, H.; Christopher, C.M.; Jung, M.E.; Faull, K.; et al. Low levels of circulating estrogen sensitize PTEN-null endometrial tumors to poly (ADP-ribose) polymerase (PARP) inhibition in vivo. Mol. Cancer Ther. 2013, 12, 2917. [Google Scholar] [CrossRef]
- You, B.; Leary, A.; Rodrigues, M.; Follana, P.; Abdeddaim, C.; Joly, F.; Bin, S.; Villeneuve, L.; Alexandre, M.; Boutitie, F.; et al. Abstract CT005: Safety and efficacy of olaparib combined to metronomic cyclophosphamide and metformin in recurrent advanced/metastatic endometrial cancer patients: ENDOLA trial. Cancer Res. 2022, 82, CT005. [Google Scholar] [CrossRef]
- Post, C.C.B.; Westermann, A.M.; Boere, I.A.; Witteveen, P.O.; Ottevanger, P.B.; Sonke, G.S.; Lalisang, R.I.; Putter, H.; Meershoek-Klein Kranenbarg, E.; Braak, J.P.B.M.; et al. Efficacy and safety of durvalumab with olaparib in metastatic or recurrent endometrial cancer (phase II DOMEC trial). Gynecol. Oncol. 2022, 165, 223–229. [Google Scholar] [CrossRef]
- Kato, Y.; Tabata, K.; Kimura, T.; Yachie-Kinoshita, A.; Ozawa, Y.; Yamada, K.; Ito, J.; Tachino, S.; Hori, Y.; Matsuki, M.; et al. Lenvatinib plus anti-PD-1 antibody combination treatment activates CD8+ T cells through reduction of tumor-associated macrophage and activation of the interferon pathway. PLoS ONE 2019, 14, e0212513. [Google Scholar] [CrossRef]
- Lheureux, S.; Matei, D.E.; Konstantinopoulos, P.A.; Wang, B.X.; Gadalla, R.; Block, M.S.; Jewell, A.; Gaillard, S.L.; McHale, M.; McCourt, C.; et al. Original research: Translational randomized phase II trial of cabozantinib in combination with nivolumab in advanced, recurrent, or metastatic endometrial cancer. J. Immunother. Cancer 2022, 10, e004233. [Google Scholar] [CrossRef] [PubMed]
- ClinicalTrials.Gov Cabozantinib and Dostarlimab in Recurrent Gynecologic Carcinosarcoma-Full Text View-ClinicalTrials.gov. Available online: https://www.clinicaltrials.gov/ct2/show/NCT05559879 (accessed on 21 February 2023).
- Moghaddam, S.M.; Amini, A.; Morris, D.L.; Pourgholami, M.H. Significance of vascular endothelial growth factor in growth and peritoneal dissemination of ovarian cancer. Cancer Metastasis Rev. 2012, 31, 143–162. [Google Scholar] [CrossRef] [PubMed]
- Holland, C.M.; Day, K.; Evans, A.; Smith, S.K. Expression of the VEGF and angiopoietin genes in endometrial atypical hyperplasia and endometrial cancer. Br. J. Cancer 2003, 89, 891–898. [Google Scholar] [CrossRef] [PubMed]
- Terme, M.; Pernot, S.; Marcheteau, E.; Sandoval, F.; Benhamouda, N.; Colussi, O.; Dubreuil, O.; Carpentier, A.F.; Tartour, E.; Taieb, J. VEGFA-VEGFR pathway blockade inhibits tumor-induced regulatory T-cell proliferation in colorectal cancer. Cancer Res. 2013, 73, 539–549. [Google Scholar] [CrossRef]
- Voron, T.; Colussi, O.; Marcheteau, E.; Pernot, S.; Nizard, M.; Pointet, A.-L.; Latreche, S.; Bergaya, S.; Benhamouda, N.; Tanchot, C.; et al. VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors. J. Exp. Med. 2015, 212, 139–148. [Google Scholar] [CrossRef] [PubMed]
- Bradley, W.H.; Hayes, M.P.; Taylor, N.; Rader, J.S.; Bishop, E.; Hopp, E.; McAlarnen, L.A.; Liegl, M.; Simpson, P.; Uyar, D. An open label, nonrandomized, multisite phase II trial combining bevacizumab, atezolizumab, and rucaparib for the treatment of previously treated recurrent and progressive endometrial cancer. J. Clin. Oncol. 2022, 40, 5510. [Google Scholar] [CrossRef]
- Zimmer, A.S.; Nichols, E.; Cimino-Mathews, A.; Peer, C.; Cao, L.; Lee, M.J.; Kohn, E.C.; Annunziata, C.M.; Lipkowitz, S.; Trepel, J.B.; et al. A phase I study of the PD-L1 inhibitor, durvalumab, in combination with a PARP inhibitor, olaparib, and a VEGFR1–3 inhibitor, cediranib, in recurrent women’s cancers with biomarker analyses. J. Immunother. Cancer 2019, 7, 197. [Google Scholar] [CrossRef] [PubMed]
- United States National Library of Medicine. Phase II Study of Atezolizumab + Bevacizumab in Endometrial Cancer-Full Text View-ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/NCT03526432?term=NCT03526432&draw=2&rank=1 (accessed on 31 October 2022).
- Hodi, F.S.; Chesney, J.; Pavlick, A.C.; Robert, C.; Grossmann, K.F.; McDermott, D.F.; Linette, G.P.; Meyer, N.; Giguere, J.K.; Agarwala, S.S.; et al. Combined nivolumab and ipilimumab versus ipilimumab alone in patients with advanced melanoma: 2-year overall survival outcomes in a multicentre, randomised, controlled, phase 2 trial. Lancet Oncol. 2016, 17, 1558–1568. [Google Scholar] [CrossRef] [PubMed]
- Rubinstein, M.M.; Caird, I.; Zhou, Q.; Iasonos, A.; Friedman, C.F.; Cadoo, K.A.; Konner, J.A.; O’Cearbhaill, R.E.; Tew, W.P.; Zamarin, D.; et al. A phase II trial of durvalumab with or without tremelimumab in patients with persistent or recurrent endometrial carcinoma and endometrial carcinosarcoma. J. Clin. Oncol. 2019, 37, 5582. [Google Scholar] [CrossRef]
- United States National Library of Medicine. Testing Nivolumab with or Without Ipilimumab in Deficient Mismatch Repair System (dMMR) Recurrent Endometrial Carcinoma-Full Text View-ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/NCT05112601 (accessed on 31 October 2022).
- Senol, S.; Ceyran, A.B.; Aydin, A.; Zemheri, E.; Ozkanli, S.; Kösemetin, D.; Sehitoglu, I.; Akalin, I. Folate receptor α expression and significance in endometrioid endometrium carcinoma and endometrial hyperplasia. Int. J. Clin. Exp. Pathol. 2015, 8, 5633. [Google Scholar]
- Vergote, I.B.; Marth, C.; Coleman, R.L. Role of the folate receptor in ovarian cancer treatment: Evidence, mechanism, and clinical implications. Cancer Metastasis Rev. 2015, 34, 41–52. [Google Scholar] [CrossRef]
- Moore, K.N.; Oza, A.M.; Colombo, N.; Oaknin, A.; Scambia, G.; Lorusso, D.; Konecny, G.E.; Banerjee, S.; Murphy, C.G.; Tanyi, J.L.; et al. Phase III, randomized trial of mirvetuximab soravtansine versus chemotherapy in patients with platinum-resistant ovarian cancer: Primary analysis of FORWARD I. Ann. Oncol. 2021, 32, 757–765. [Google Scholar] [CrossRef]
- United States National Library of Medicine. A Study of Mirvetuximab Soravtansine vs. Investigator’s Choice of Chemotherapy in Platinum-Resistant, Advanced High-Grade Epithelial Ovarian, Primary Peritoneal, or Fallopian Tube Cancers with High Folate Receptor-Alpha Expression-Full Text View-ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/NCT04209855 (accessed on 31 October 2022).
- Altwerger, G.; Bonazzoli, E.; Bellone, S.; Egawa-Takata, T.; Menderes, G.; Pettinella, F.; Bianchi, A.; Riccio, F.; Feinberg, J.; Zammataro, L.; et al. In Vitro and In Vivo Activity of IMGN853, an Antibody-Drug Conjugate Targeting Folate Receptor Alpha Linked to DM4, in Biologically Aggressive Endometrial Cancers. Mol. Cancer Ther. 2018, 17, 1003–1011. [Google Scholar] [CrossRef]
- Skaletskyaya, A.; Ponte, J.; Chittenden, T.; Setiady, Y. Treatment of Tumor Cells with Mirvetuximab Soravtansine, a FRα-Targeting Antibody-Drug Conjugate (ADC), Activates Monocytes Through Fc-FcγR Interaction and Immunogenic Cell Death. Presented at the Society for Immunotherapy of Cancers Annual Meeting, National Harbor, MD, USA, 13–16 November 2016; Available online: https://www.immunogen.com/wp-content/uploads/2018/05/ImmunoGen_SITC_2016_poster_316.pdf (accessed on 2 March 2023).
- Porter, R.L.; Veneris, J.T.; Tayob, N.; West, G.; Polak, M.; Gardner, J.; Campos, S.M.; Krasner, C.N.; Lee, E.K.; Liu, J.F.; et al. A phase 2, two-stage study of mirvetuximab soravtansine (IMGN853) in combination with pembrolizumab in patients with microsatellite stable (MSS) endometrial cancer (EC). J. Clin. Oncol. 2021, 39, TPS5611. [Google Scholar] [CrossRef]
- United States National Library of Medicine. A Study of Targeted Agents with Atezolizumab for Patients with Recurrent or Persistent Endometrial Cancer-Full Text View-ClinicalTrials.gov. Available online: https://clinicaltrials.gov/ct2/show/NCT04486352 (accessed on 31 October 2022).
- Johnston, R.J.; Comps-Agrar, L.; Hackney, J.; Yu, X.; Huseni, M.; Yang, Y.; Park, S.; Javinal, V.; Chiu, H.; Irving, B.; et al. The immunoreceptor TIGIT regulates antitumor and antiviral CD8(+) T cell effector function. Cancer Cell 2014, 26, 923–937. [Google Scholar] [CrossRef]
- Whelan, S.; Ophir, E.; Kotturi, M.F.; Levy, O.; Ganguly, S.; Leung, L.; Vaknin, I.; Kumar, S.; Dassa, L.; Hansen, K.; et al. PVRIG and PVRL2 Are Induced in Cancer and Inhibit CD8+ T-cell Function. Cancer Immunol. Res. 2019, 7, 257. [Google Scholar] [CrossRef]
- Rodriguez-Abreu, D.; Johnson, M.L.; Hussein, M.A.; Cobo, M.; Patel, A.J.; Secen, N.M.; Lee, K.H.; Massuti, B.; Hiret, S.; Yang, J.C.-H.; et al. Primary analysis of a randomized, double-blind, phase II study of the anti-TIGIT antibody tiragolumab (tira) plus atezolizumab (atezo) versus placebo plus atezo as first-line (1L) treatment in patients with PD-L1-selected NSCLC (CITYSCAPE). J. Clin. Oncol. 2020, 38, 9503. [Google Scholar] [CrossRef]
- Hamarsheh, S.; Groß, O.; Brummer, T.; Zeiser, R. Immune modulatory effects of oncogenic KRAS in cancer. Nat. Commun. 2020, 11, 5439. [Google Scholar] [CrossRef] [PubMed]
- Porta, C.; Paglino, C.; Mosca, A. Targeting PI3K/Akt/mTOR Signaling in Cancer. Front. Oncol. 2014, 4, 64. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, M.C.; Er, E.E.; Blenis, J. The Ras-ERK and PI3K-mTOR pathways: Cross-talk and compensation. Trends Biochem. Sci. 2011, 36, 320–328. [Google Scholar] [CrossRef]
- Coleman, R.L.; Sill, M.W.; Thaker, P.H.; Bender, D.P.; Street, D.; McGuire, W.P.; Johnston, C.M.; Rotmensch, J. A phase II evaluation of selumetinib (AZD6244, ARRY-142886), a selective MEK-1/2 inhibitor in the treatment of recurrent or persistent endometrial cancer: An NRG Oncology/Gynecologic Oncology Group study. Gynecol. Oncol. 2015, 138, 30–35. [Google Scholar] [CrossRef]
- Oza, A.M.; Elit, L.; Tsao, M.S.; Kamel-Reid, S.; Biagi, J.; Provencher, D.M.; Gotlieb, W.H.; Hoskins, P.J.; Ghatage, P.; Tonkin, K.S.; et al. Phase II study of temsirolimus in women with recurrent or metastatic endometrial cancer: A trial of the NCIC Clinical Trials Group. J. Clin. Oncol. 2011, 29, 3278–3285. [Google Scholar] [CrossRef]
- Tsoref, D.; Welch, S.; Lau, S.; Biagi, J.; Tonkin, K.; Martin, L.A.; Ellard, S.; Ghatage, P.; Elit, L.; MacKay, H.J.; et al. Phase II study of oral ridaforolimus in women with recurrent or metastatic endometrial cancer. Gynecol. Oncol. 2014, 135, 184–189. [Google Scholar] [CrossRef]
- Slomovitz, B.M.; Lu, K.H.; Johnston, T.; Coleman, R.L.; Munsell, M.; Broaddus, R.R.; Walker, C.; Ramondetta, L.M.; Burke, T.W.; Gershenson, D.M.; et al. A phase 2 study of the oral mammalian target of rapamycin inhibitor, everolimus, in patients with recurrent endometrial carcinoma. Cancer 2010, 116, 5415–5419. [Google Scholar] [CrossRef]
- Westin, S.N.; Sill, M.W.; Coleman, R.L.; Waggoner, S.; Moore, K.N.; Mathews, C.A.; Martin, L.P.; Modesitt, S.C.; Lee, S.; Ju, Z.; et al. Safety Lead-In of the MEK Inhibitor Trametinib in Combination with GSK2141795, an AKT Inhibitor, in Patients with Recurrent Endometrial Cancer: An NRG Oncology/GOG Study. Gynecol. Oncol. 2019, 155, 420. [Google Scholar] [CrossRef]
- Yang, L.; Huang, F.; Mei, J.; Wang, X.; Zhang, Q.; Wang, H.; Xi, M.; You, Z. Post-transcriptional control of PD-L1 expression by 17β-estradiol via PI3K/Akt signaling pathway in ERα-positive cancer cell lines. Int. J. Gynecol. Cancer 2017, 27, 196. [Google Scholar] [CrossRef]
- Schmid, P.; Savas, P.; Espinosa, E.; Boni, V.; Italiano, A.; White, S.; Cheng, K.; Lam, L.; Robert, L.; Laliman, V.; et al. Abstract PS12-28: Phase 1b study evaluating a triplet combination of ipatasertib (IPAT), atezolizumab, and a taxane as first-line therapy for locally advanced/metastatic triple-negative breast cancer (TNBC). Cancer Res. 2021, 81, PS12-28. [Google Scholar] [CrossRef]
- Roy, B.; Friesen, W.J.; Tomizawa, Y.; Leszyk, J.D.; Zhuo, J.; Johnson, B.; Dakka, J.; Trotta, C.R.; Xue, X.; Mutyam, V.; et al. Ataluren stimulates ribosomal selection of near-cognate tRNAs to promote nonsense suppression. Proc. Natl. Acad. Sci. USA 2016, 113, 12508–12513. [Google Scholar] [CrossRef] [PubMed]
- Bokhari, A.; Jonchere, V.; Lagrange, A.; Bertrand, R.; Svrcek, M.; Marisa, L.; Buhard, O.; Greene, M.; Demidova, A.; Jia, J.; et al. Targeting nonsense-mediated mRNA decay in colorectal cancers with microsatellite instability. Oncogenesis 2018, 7, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Verma, V.; Sprave, T.; Haque, W.; Simone, C.B.; Chang, J.Y.; Welsh, J.W.; Thomas, C.R. A systematic review of the cost and cost-effectiveness studies of immune checkpoint inhibitors. J. Immunother. Cancer 2018, 6, 128. [Google Scholar] [CrossRef]
- The British Association of Gynaecological Pathologist Molecular Classification Endometrial Cancer Testing Guidance. Available online: https://www.bgcs.org.uk/wp-content/uploads/2022/04/BAGP-POLE-testing-in-Endometrial-cancer-v1.1-2022-04-08.pdf (accessed on 2 January 2023).
- National Institute for Health and Care Excellence. Assessing Cost Effectiveness | The Guidelines Manual | Guidance | NICE. Available online: https://www.nice.org.uk/process/pmg6/chapter/assessing-cost-effectiveness (accessed on 13 July 2022).
- National Institute for Health and Care Excellence. Pembrolizumab for Adjuvant Treatment of Completely Resected Stage 3 Melanoma. 2022. Available online: https://www.nice.org.uk/guidance/ta766 (accessed on 1 May 2023).
- Brown, T.A.; Byrd, K.; Vreeland, T.J.; Clifton, G.T.; Jackson, D.O.; Hale, D.F.; Herbert, G.S.; Myers, J.W.; Greene, J.M.; Berry, J.S.; et al. Final analysis of a phase I/IIa trial of the folate-binding protein-derived E39 peptide vaccine to prevent recurrence in ovarian and endometrial cancer patients. Cancer Med. 2019, 8, 4678–4687. [Google Scholar] [CrossRef]
- Cartun, Z.; Kunz, W.G.; Heinzerling, L.; Tomsitz, D.; Guertler, A.; Westphalen, C.B.; Ricke, J.; Weir, W.; Unterrainer, M.; Mehrens, D. Cost-effectiveness of Response-Adapted De-escalation of Immunotherapy in Advanced Melanoma. JAMA Dermatol. 2022, 158, 1387–1393. [Google Scholar] [CrossRef]
- Johnson, M.L.; Braiteh, F.; Grilley-Olson, J.E.; Chou, J.; Davda, J.; Forgie, A.; Li, R.; Jacobs, I.; Kazazi, F.; Hu-Lieskovan, S. Assessment of Subcutaneous vs Intravenous Administration of Anti–PD-1 Antibody PF-06801591 in Patients with Advanced Solid Tumors: A Phase 1 Dose-Escalation Trial. JAMA Oncol. 2019, 5, 999. [Google Scholar] [CrossRef]
- Li, J.; Deng, Y.; Zhang, W.; Zhou, A.P.; Guo, W.; Yang, J.; Yuan, Y.; Zhu, L.; Qin, S.; Xiang, S.; et al. Subcutaneous envafolimab monotherapy in patients with advanced defective mismatch repair/microsatellite instability high solid tumors. J. Hematol. Oncol. 2021, 14, 95. [Google Scholar] [CrossRef]
NCT Number | Description | No. Patients | Study Status | Study Name |
---|---|---|---|---|
NCT03914612 | CPP or CP + pembrolizumab | 590 MMRp 220 MMRd | Recruiting | NRG GY018 |
NCT03981796 | CPP or CP + dostarlimab +/− niraparib or placebo | 740 | Active, recruitment period completed | RUBY |
NCT03603184 | CPP or CP + atezolizumab | 550 | Active, recruitment period completed | AtTEND |
NCT04269200 | CPP or durvalumab +/− olaparib maintenance or placebo | 699 | Recruiting | DUO-E |
NCT05201547 | CPP or CP + dostarlimab | 142 MMRD | Recruiting | DOMENCIA |
NCT Number | Phase | Description | No. Patients | Inclusion | Study Name |
---|---|---|---|---|---|
NCT03932409 Recruiting | Ib | Pembrolizumab + vaginal cuff brachytherapy + chemotherapy | 40 | High-risk EC | FIERCE |
NCT04014530 Recruiting | Exp | Pembrolizumab + ataluren | 47 | MMRd metastatic EC | ATAPEMBRO |
NCT03835819 Recruiting | II | Pembrolizumab + mirvetuximab soravtansine | 35 | MSS/MMRp recurrent EC | - |
NCT03526432 Active, not recruiting | II | Atezolizumab + bevacizumab | 55 | Advanced (III/IV) or recurrent EC | - |
NCT04486352 Recruiting | Ib/II | Atezolizumab + bevacizumab or ipatasertib (AKT inhibitor) or talazoparib (PARPi) or tiragolumab (anti-TIGIT) | 100 | Advanced (III/IV) or recurrent EC PIK3CA/AKT1/PTEN-altered tumours for ipatasertib cohort | EndoMAP |
NCT04444193 Unknown | Exp | Durvalumab + lenvatinib | 20 | Advanced (III/IV) or recurrent EC | DULECT-2020-2 |
NCT03660826 Recruiting | II | Durvalumab + olaparib or durvalumab + cediranib maleate (VEGFR-2 kinase inhibitor) or cediranib maleate + olaparib or as single agents | 120 | Recurrent or refractory EC | - |
NCT03015129 Active, not recruiting | II | Durvalumab monotherapy or durvalumab + tremelimumab (anti-CTLA-4) | 80 | Recurrent EC | - |
NCT05112601 Recruiting | II | Ipilimumab (anti-CTLA-4) + nivolumab | 12 | MMRd recurrent EC | - |
NCT03367741 Active, not recruiting | II | Nivolumab monotherapy or nivolumab + cabozantinib (tyrosine kinase inhibitor) | 84 | Advanced (III/IV) or recurrent EC | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Johnson, R.L.; Ganesan, S.; Thangavelu, A.; Theophilou, G.; de Jong, D.; Hutson, R.; Nugent, D.; Broadhead, T.; Laios, A.; Cummings, M.; et al. Immune Checkpoint Inhibitors Targeting the PD-1/PD-L1 Pathway in Advanced, Recurrent Endometrial Cancer: A Scoping Review with SWOT Analysis. Cancers 2023, 15, 4632. https://doi.org/10.3390/cancers15184632
Johnson RL, Ganesan S, Thangavelu A, Theophilou G, de Jong D, Hutson R, Nugent D, Broadhead T, Laios A, Cummings M, et al. Immune Checkpoint Inhibitors Targeting the PD-1/PD-L1 Pathway in Advanced, Recurrent Endometrial Cancer: A Scoping Review with SWOT Analysis. Cancers. 2023; 15(18):4632. https://doi.org/10.3390/cancers15184632
Chicago/Turabian StyleJohnson, Racheal Louise, Subhasheenee Ganesan, Amudha Thangavelu, Georgios Theophilou, Diederick de Jong, Richard Hutson, David Nugent, Timothy Broadhead, Alexandros Laios, Michele Cummings, and et al. 2023. "Immune Checkpoint Inhibitors Targeting the PD-1/PD-L1 Pathway in Advanced, Recurrent Endometrial Cancer: A Scoping Review with SWOT Analysis" Cancers 15, no. 18: 4632. https://doi.org/10.3390/cancers15184632
APA StyleJohnson, R. L., Ganesan, S., Thangavelu, A., Theophilou, G., de Jong, D., Hutson, R., Nugent, D., Broadhead, T., Laios, A., Cummings, M., & Orsi, N. M. (2023). Immune Checkpoint Inhibitors Targeting the PD-1/PD-L1 Pathway in Advanced, Recurrent Endometrial Cancer: A Scoping Review with SWOT Analysis. Cancers, 15(18), 4632. https://doi.org/10.3390/cancers15184632