Vital Signs in Palliative Care: A Scoping Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Search Strategy
2.2. Study Eligibility Criteria
2.3. Data Management and Synthesis
3. Results
3.1. Search Results
3.2. Overview of Studies
3.3. Results of Prognostication Studies
3.4. Results of Non-Prognostication Studies
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Oxford English Dictionary. Available online: https://www.oed.com/ (accessed on 8 May 2023).
- Neff, T.A. Routine oximetry. A fifth vital sign? Chest 1988, 94, 227. [Google Scholar] [CrossRef] [PubMed]
- Campbell, J.N. The fifth vital sign revisited. Pain 2016, 157, 3–4. [Google Scholar] [CrossRef] [PubMed]
- Williams, B. The National Early Warning Score: From concept to NHS implementation. Clin. Med. 2022, 22, 499–505. [Google Scholar]
- Olsson, T.; Terent, A.; Lind, L. Rapid Emergency Medicine score: A new prognostic tool for in-hospital mortality in nonsurgical emergency department patients. J. Intern. Med. 2004, 255, 579–587. [Google Scholar] [CrossRef]
- Veerbeek, L.; van Zuylen, L.; Swart, S.J.; van der Maas, P.J.; van der Heide, A. The last 3 days of life in three different care settings in The Netherlands. Support. Care Cancer 2007, 15, 1117–1123. [Google Scholar] [CrossRef]
- Ellershaw, J.; Wilkinson, S. Care of the Dying. A Pathway to Excellence; Oxford University Press: Oxford, UK, 2003; p. 55. [Google Scholar]
- Seymour, J.E. Revisiting medicalisation and ‘natural’ death. Soc. Sci. Med. 1999, 49, 691–704. [Google Scholar] [CrossRef]
- Sapra, A.; Malik, A.; Bhandari, P. Vital Sign Assessment; StatPearls Publishing: Treasure Island, FL, USA, 2023. Available online: https://www.ncbi.nlm.nih.gov/books/NBK553213/ (accessed on 8 May 2023).
- NHS. Available online: https://www.nhs.uk/common-health-questions/lifestyle/what-is-blood-pressure/ (accessed on 7 May 2023).
- Arksey, H.; O’Malley, L. Scoping studies: Towards a methodological framework. Int. J. Soc. Res. Methodol. 2005, 8, 19–32. [Google Scholar] [CrossRef]
- Peters, M.D.; Marnie, C.; Tricco, A.C.; Pollock, D.; Munn, Z.; Alexander, L.; McInerney, P.; Godfrey, C.M.; Khalil, H. Updated methodological guidance for the conduct of scoping reviews. JBI Evid. Implement. 2021, 19, 3–10. [Google Scholar] [CrossRef] [PubMed]
- McGowan, J.; Strausb, S.; Moherc, D.; Langlois, E.V.; O’Brien, K.K.; Horsley, T.; Aldcroft, A.; Zarin, W.; Garitty, C.M.; Hempel, S.; et al. Reporting scoping reviews—PRISMA ScR extension. J. Clin. Epidemiol. 2020, 123, 177–179. [Google Scholar] [CrossRef]
- National Cancer Institute. Available online: https://www.cancer.gov/publications/dictionaries/cancer-terms/def/advanced-cancer (accessed on 7 May 2023).
- Rosenthal, M.A.; Gebski, V.J.; Kefford, R.F.; Stuart-Harris, R.C. Prediction of life-expectancy in hospice patients: Identification of novel prognostic factors. Palliat. Med. 1993, 7, 199–204. [Google Scholar] [CrossRef]
- Escalante, C.P.; Martin, C.G.; Elting, L.S.; Price, K.J.; Manzullo, E.F.; Weiser, M.A.; Harle, T.S.; Cantor, S.B.; Rubenstein, E.B. Identifying risk factors for imminent death in cancer patients with acute dyspnea. J. Pain Symptom Manag. 2000, 20, 318–325. [Google Scholar] [CrossRef] [PubMed]
- De Miguel Sánchez, C.; Elustondo, S.G.; Estirado, A.; Sánchez, F.V.; de la Rasilla Cooper, C.G.; Romero, A.L.; Otero, A.; Olmos, L.G. Palliative performance status, heart rate and respiratory rate as predictive factors of survival time in terminally ill cancer patients. J. Pain Symptom Manag. 2006, 31, 485–492. [Google Scholar] [CrossRef] [PubMed]
- Lam, P.T.; Leung, M.W.; Tse, C.Y. Identifying prognostic factors for survival in advanced cancer patients: A prospective study. Hong Kong Med. J. 2007, 13, 453–459. [Google Scholar] [PubMed]
- Chiang, J.K.; Lai, N.S.; Wang, M.H.; Chen, S.C.; Kao, Y.H. A proposed prognostic 7-day survival formula for patients with terminal cancer. BMC Public Health 2009, 9, 365. [Google Scholar] [CrossRef] [PubMed]
- Kao, Y.H.; Chen, C.N.; Chiang, J.K.; Chen, S.S.; Huang, W.W. Predicting factors in the last week of survival in elderly patients with terminal cancer: A prospective study in southern Taiwan. J. Formos. Med. Assoc. 2009, 108, 231–239. [Google Scholar] [CrossRef] [PubMed]
- Chiang, J.K.; Cheng, Y.H.; Koo, M.; Kao, Y.H.; Chen, C.Y. A computer-assisted model for predicting probability of dying within 7 days of hospice admission in patients with terminal cancer. Jpn. J. Clin. Oncol. 2010, 40, 449–455. [Google Scholar] [CrossRef]
- Elsayem, A.; Mori, M.; Parsons, H.A.; Munsell, M.F.; Hui, D.; Delgado-Guay, M.O.; Paraskevopoulos, T.; Fadul, N.A.; Bruera, E. Predictors of inpatient mortality in an acute palliative care unit at a comprehensive cancer center. Support. Care Cancer 2010, 18, 67–76. [Google Scholar] [CrossRef]
- Gwilliam, B.; Keeley, V.; Todd, C.; Gittins, M. Development of prognosis in palliative care study (PiPS) predictor models to improve prognostication in advanced cancer: Prospective cohort study. BMJ 2011, 343, d4920. [Google Scholar] [CrossRef]
- Hwang, I.C.; Ahn, H.Y.; Park, S.M.; Shim, J.Y.; Kim, K.K. Clinical changes in terminally ill cancer patients and death within 48 h: When should we refer patients to a separate room? Support. Care Cancer 2013, 21, 835–840. [Google Scholar] [CrossRef]
- Mercadante, S.; Valle, A.; Porzio, G.; Aielli, F.; Adile, C.; Casuccio, A. Prognostic factors of survival in patients with advanced cancer admitted to home care. J. Pain Symptom Manag. 2013, 45, 56–62. [Google Scholar] [CrossRef]
- Ramchandran, K.J.; Shega, J.W.; Von Roenn, J.; Schumacher, M.; Szmuilowicz, E.; Rademaker, A.; Weitner, B.B.; Loftus, P.D.; Chu, I.M.; Weitzman, S. A predictive model to identify hospitalized cancer patients at risk for 30-day mortality based on admission criteria via the electronic medical record. Cancer 2013, 119, 2074–2080. [Google Scholar] [CrossRef]
- Arai, Y.; Okajima, Y.; Kotani, K.; Tamba, K. Prognostication based on the change in the palliative prognostic index for patients with terminal cancer. J. Pain Symptom Manag. 2014, 47, 742–747. [Google Scholar] [CrossRef] [PubMed]
- Bruera, S.; Chisholm, G.; Dos Santos, R.; Crovador, C.; Bruera, E.; Hui, D. Variations in vital signs in the last days of life in patients with advanced cancer. J. Pain Symptom Manag. 2014, 48, 510–517. [Google Scholar] [CrossRef] [PubMed]
- Taylor, P.; Crouch, S.; Howell, D.A.; Dowding, D.W.; Johnson, M.J. Change in physiological variables in the last 2 weeks of life: An observational study of hospital in-patients with cancer. Palliat. Med. 2015, 29, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Chen, Y.T.; Ho, C.T.; Hsu, H.S.; Huang, P.T.; Lin, C.Y.; Liu, C.S.; Li, T.C.; Lin, C.C.; Lin, W.Y. Objective palliative prognostic score among patients with advanced cancer. J. Pain Symptom Manag. 2015, 49, 690–696. [Google Scholar] [CrossRef] [PubMed]
- Chiang, J.K.; Koo, M.; Kao, Y.H. Development of a user-friendly graphic tool to estimate individualized survival curves for advanced cancer patients in hospice care. J. Palliat. Care 2015, 31, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Sato, K.; Yokoi, H.; Tsuneto, S. Shock Index and decreased level of consciousness as terminal cancer patients’ survival time predictors: A retrospective cohort study. J. Pain Symptom Manag. 2016, 51, 220–231.e2. [Google Scholar] [CrossRef]
- Mori, I.; Maeda, I.; Morita, T.; Inoue, S.; Ikenaga, M.; Sekine, R.; Yamaguchi, T.; Hirohashi, T.; Tajima, T.; Watanabe, H. Association Between heart rate and reversibility of the symptom, refractoriness to palliative treatment, and survival in dyspneic cancer patients. J. Pain Symptom Manag. 2020, 60, 87–93. [Google Scholar] [CrossRef] [PubMed]
- Fukui, S.; Ikuta, K.; Maeda, I.; Hattori, S.; Hatano, Y.; Yamakawa, M.; Utsumi, M.; Higami, Y.; Tanaka, H.; Higuchi, A. Association between respiratory and heart rate fluctuations and death occurrence in dying cancer patients: Continuous measurement with a non-wearable monitor. Support. Care Cancer 2022, 30, 77–86. [Google Scholar] [CrossRef] [PubMed]
- Pearse, H.; Nicholson, L.; Bennett, M. Falls in hospices: A cancer network observational study of fall rates and risk factors. Palliat. Med. 2004, 18, 478–481. [Google Scholar] [CrossRef] [PubMed]
- Pavic, M.; Klaas, V.; Theile, G.; Kraft, J.; Tröster, G.; Blum, D.; Guckenberger, M. Mobile health technologies for continuous monitoring of cancer patients in palliative care aiming to predict health status deterioration: A feasibility study. J. Palliat. Med. 2020, 23, 678–685. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, H.; Fukui, S.; Maeda, I.; Hatano, Y.; Higuchi, A.; Higami, Y.; Yamakawa, M.; Utsumi, M. The change over time of vital signs with consideration for opioid use in the last 2 weeks of life among cancer patients in a palliative care unit: Continuous measurement of vital signs using a non-wearable monitor. Cancer Med. 2021, 10, 8799–8807. [Google Scholar] [CrossRef] [PubMed]
- Hamano, J.; Takeuchi, A.; Yamaguchi, T.; Baba, M.; Imai, K.; Ikenaga, M.; Matsumoto, Y.; Sekine, R.; Yamaguchi, T.; Hirohashi, T.; et al. A combination of routine laboratory findings and vital signs can predict survival of advanced cancer patients without physician evaluation: A fractional polynomial model. Eur. J. Cancer 2018, 105, 50–60. [Google Scholar] [CrossRef] [PubMed]
- Dizdar, O.; Demir, M.; Bozbulut, U.B.; Hayran, M.; Kars, A. Cancer chemotherapy: Incidence and predictors of 30-day mortality. BMJ Support. Palliat. Care 2019. [Google Scholar] [CrossRef] [PubMed]
- Goh, Z.N.L.; Chen, M.W.; Cheng, H.T.; Hsu, K.H.; Seak, C.K.; Seak, J.C.; Ling, S.K.; Liao, S.F.; Cheng, T.H.; Sie, Y.D.; et al. Shock index is a validated prediction tool for the short-term survival of advanced cancer patients presenting to the emergency department. J. Pers. Med. 2022, 12, 954. [Google Scholar] [CrossRef]
- Aramrat, C.; Ratanasiri, T.; Gomutbutra, P. Is aggressive care appropriate for patients with cancer complicated by pneumonia? A retrospective chart review in a tertiary hospital. BMC Palliat. Care. 2023, 22, 3. [Google Scholar] [CrossRef] [PubMed]
- Fan, R.; Yang, S.; Bu, X.; Chen, Y.; Wang, Y.; Shen, B.; Qiu, C.; Li, X. Symptomatic features and factors associated with do-not-resuscitate consent in advanced cancer patients admitted to palliative care ward. Am. J. Hosp. Palliat. Care. 2022, 39, 1312–1324. [Google Scholar] [CrossRef] [PubMed]
- Jeong, B.H.; Na, S.J.; Lee, D.S.; Chung, C.R.; Suh, G.Y.; Jeon, K. Readmission and hospital mortality after ICU discharge of critically ill cancer patients. PLoS ONE 2019, 14, e0211240. [Google Scholar] [CrossRef]
- Theile, G.; Klaas, V.; Tröster, G.; Guckenberger, M. mHealth technologies for palliative care patients at the interface of in-patient to outpatient care: Protocol of feasibility study aiming to early predict deterioration of patient’s health status. JMIR Res. Protoc. 2017, 6, e142. [Google Scholar] [CrossRef] [PubMed]
- Thomas, J.R. Normal vital signs as death approaches: Commentary on Bruera et al. J. Pain Symptom Manag. 2014, 48, 499. [Google Scholar] [CrossRef]
- Patel, S.D.; Davies, A.; Laing, E.; Wu, H.; Mendis, J.; Dijk, D.-J. Prognostication in advanced cancer by combining actigraphy-derived rest-activity and sleep parameters with routine clinical data: An exploratory machine learning study. Cancers 2023, 15, 503. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.; Lim, A.; Jang, H.; Jeon, M. Life-Sustaining Treatment decision in palliative care based on electronic health records analysis. J. Clin. Nurs. 2023, 32, 163–173. [Google Scholar] [CrossRef] [PubMed]
Study | Population | Vital Signs Measured | Frequency of Measurement | Significant Findings (Worse Outcome) | Additional Information |
---|---|---|---|---|---|
Rosenthal et al., 1993 [15] | Hospice × 2 Mixed diagnoses (95% cancer patients) n = 148 | Respiratory rate Heart rate Blood pressure Temperature | On admission | Systolic BP <90 mmHg p = 0.049 OR = 0.095 [95% CI: 0.009–0.99] | Median survival 14 days |
Escalante et al., 2000 [16] | Emergency centre “Cancer patients with acute dyspnea” n = 122 | Respiratory rate Heart rate Blood pressure | Time of triage | Multivariate analysis: Respiratory rate >28/min p = 0.0000 OR = 12.72 [95% CI: 3.1–52.8] Heart rate ≥110/min or ≤60/min p = 0.0025 OR = 4.92 [95% CI: 1.4–16.9] | Endpoint survival < 14 days Respiratory and heart rate were parameters in a model of mortality within 7 days |
de Miguel Sanchez et al., 2006 [17] | Home care “Terminally ill cancer patients” n = 98 | Respiratory rate Heart rate Temperature | Weekly | Multivariate analysis: Respiratory rate >24/min p = 0.005 HR = 2.26 [95% CI: 1.28–4.00] Heart rate >100/min p = 0.003 HR = 2.32 [95% CI: 1.33–4.05] | Median survival 32 days |
Lam et al., 2007 [18] | Hospital palliative care unit Patients with “advanced cancer” n = 170 | Heart rate | Enrolment to study | Univariate analysis *: Heart rate >100/min p = 0.009 | Median survival 77 days * Heart rate not predictive on multivariate analysis |
Chiang et al., 2009 [19] | Hospital palliative care unit “Patients with terminal cancer” n = 324 | Respiratory rate Heart rate Temperature | On admission | Multivariate analysis: Respiratory rate ↑ p = 0.004 OR = 1.12 [95% CI: 1.04–1.20] | Endpoint survival < 7 days Respiratory rate was a parameter in a model of mortality within 7 days |
Kao et al., 2009 [20] | Hospital “Elderly patients with terminal cancer” n = 459 | Respiratory rate Heart rate Blood pressure Temperature | On admission (within 24 hr) | Multivariate analysis: Heart rate ↑ p = 0.0155 OR = 1.017 [No CI] Systolic BP ↓ p = 0.011 OR = 0.985 [No CI] | Endpoint survival < 7 days |
Chiang et al., 2010 [21] | Hospital palliative care unit “Patients with terminal cancer” n = 727 | Respiratory rate Heart rate Temperature | On admission | Univariate analysis: Respiratory rate ↑ p = <0.001 OR = 1.08 [95% CI: 1.04–1.12] Heart rate ↑ p = <0.001 OR = 1.02 [95% CI: 1.01–1.03] | Endpoint survival < 7 days Respiratory rate and heart rate were parameters in two computer-assisted models of mortality within 7 days |
Elsayem et al., 2010 [22] | Hospital palliative care unit “Patients with advanced cancer” n = 124 | Respiratory rate Heart rate Blood pressure Temperature Oxygen saturation | On admission | Multivariate analysis: Respiratory rate ≥21/min p = <0.001 OR = 2.15 [95% CI: 1.42–3.26] Heart rate ≥101/min p = <0.001 OR = 2.30 [95% CI: 1.44–3.67] | Predictors of inpatient mortality Use of supplemental oxygen was also a predictor of inpatient mortality |
Gwilliam et al., 2011 [23] | Palliative care services × 18 “Advanced (locally extensive or metastatic) incurable cancer” n = 1018 | Heart rate | Baseline assessment | 14-day prediction of survival Heart rate → * p = <0.001 OR = 0.977 [95% CI: 0.965–0.989] 56-day prediction of survival Heart rate → p = <0.001 OR = 0.978 [95% CI: 0.967–0.988] | Heart rate was a parameter of the so-called “Prognosis in Palliative care Study PIPS” (predictive model of mortality within 14 days/56 days) * Does not state whether heart rate was high or low |
Hwang et al., 2013 [24] | Hospital palliative care unit “Terminally ill cancer patients” n = 181 | Heart rate Blood pressure Temperature Oxygen saturation | Not stated (multiple) | Heart rate ↑ (>20%) p = 0.01 OR = 0.97 [No CI] PPV = 68.8% Systolic BP ↓ (>20 mmHg)/diastolic BP ↓ (>10 mmHg) p = 0.01 OR = 0.96 [No CI] PPV = 78.5% Oxygen saturation <90% p = 0.01 OR = 0.96 [No CI] PPV = 81.2% | Endpoint survival < 2 days |
Mercadante et al., 2013 [25] | Home care “Patients with advanced cancer” n = 374 | Heart rate Blood pressure Temperature | Initial assessment | Multivariate analysis: Heart rate >100/min p = 0.005 OR = 3.1 [95% CI: 1.4–6.9] Systolic BP <100 mmHg p = 0.002 OR = 2.7 [95% CI: 1.6–5.9] | Endpoint survival < 10 days |
Ramchandran et al., 2013 [26] | Hospital “Cancer patients” n = 3062 | Respiratory rate Heart rate Blood pressure Temperature Oxygen saturation | On admission (within 24 hr) | Multivariate analysis: Heart rate ↑ p = 0.0002 OR = 1.019 [95% CI: 1.01–1.03 Systolic BP ↓ p = 0.0024 OR = 0.988 [95% CI: 0.98–1.00] Temperature ↓ p = 0.0169 OR = 0.864 [95% CI: 0.77–0.97] Oxygen saturation ↓ p = 0.0004 OR = 0.906 [95% CI: 0.86–0.96] | Endpoint survival < 30 days Heart rate, systolic BP, temperature, and oxygen saturation were all parameters in the predictive model of mortality within 30 days |
Arai et al., 2014 [27] | Hospital palliative care unit “Patients with terminal cancer” n = 374 | Heart rate Blood pressure Body temperature | On admission | Multivariate analysis: Temperature ↓ p = 0.05 HR = 0.7 [95% CI: 0.5–1.0] | Endpoint survival < 21 days |
Bruera et al., 2014 [28] | Hospital palliative care units × 2 “Patients with advanced cancer” n = 151 | Respiratory rate Heart rate Blood pressure Temperature Oxygen saturation | Twice a day | Heart rate ↑ (>10/min) p = 0.01 OR = 2.0 [95% CI: 1.1–3.2] Systolic BP ↓ (>20 mmHg) p = 0.0004 OR = 2.5 [95% CI: 1.4–4.7] Diastolic BP ↓ (>10 mmHg) p = 0.002 OR = 2.3 [95% CI: 1.4–4.3] Temperature ↑ (>0.5 °C) p = 0.002 OR 2.1 [95% CI: 1.2–3.9] Oxygen saturation ↓ (>8%) p = 0.0003 OR = 3.7 [95% CI: 2.1–10.8] | Endpoint survival < 3 days |
Taylor et al., 2014 [29] | Hospital Patients with “solid tumour malignancy” n = 102 | Respiratory rate Heart rate Blood pressure Oxygen saturation | Not stated (multiple) | Multilevel modelling: Heart rate ↑ p = <0.001 Respiratory rate ↑ p = <0.001 Oxygen saturation ↓ p = <0.001 | Endpoint survival < 14 days |
Chen et al., 2015 [30] | Hospital palliative care unit “Patients with advanced cancer” n = 234 | Heart rate Blood pressure | On admission | Univariate analysis: Heart rate >120/min p = 0.024 OR = 2.10 [95% CI: 1.10–3.40] | Endpoint survival < 7 days Heart rate was a parameter of the so-called “Objective Palliative Prognostic Score” (predictive model of mortality within 7 days) |
Chiang et al., 2015 [31] | Hospital palliative care unit “Advanced cancer patients” n = 286 | Respiratory rate Heart rate Blood pressure Temperature | On admission | Heart rate ↑ p = 0.001 HR = 1.01 [95% CI: 1.01–1.02] | Median survival was 18 days |
Sato et al., 2016 [32] | Hospice “Terminal cancer patients” n = 589 | Respiratory rate Heart rate Blood pressure Temperature Oxygen saturation | Three times a day | Multivariate analysis: Oxygen saturation ↓ (alert patients) p = 0.007 HR = 0.96 [95% CI: 0.93–0.99] | The so-called “Shock index/SI” (heart rate divided by systolic BP) ≥1 was a strong independent risk factor for death |
Mori et al., 2020 [33] | Palliative care services “Terminally ill cancer patients with dyspnea at rest” n = 418 | Respiratory rate Heart rate | Not stated | Heart rate ↑ p = <0.001 | Median survival was 13 days |
Fukui et al., 2022 [34] | Palliative care unit “Dying cancer patients” n = 24 | Respiratory rate Heart rate | Every minute during last 2 weeks of life | Multivariate analysis: Survival < 24 h: Heart rate ↑ p = 0.015 OR = 1.024 [95% CI: 1.005–1.043] Survival < 48 h: Respiratory rate ↑ p = 0.0084 OR = 1.083 [95% CI: 1.021–1.150] Heart rate ↑ p = 0.0005 OR = 1.034 [95% CI: 1.014–1.053] Survival < 72 h: Respiratory rate ↑ p = 0.033 OR = 1.100 [95% CI: 1.008–1.120] Heart rate ↑ p = 0.001 OR = 1.031 [95% CI: 1.013–1.120] | Similar population to Tanaka et al., 2021 |
Goh et al., 2022 [40] | Hospital Patients with “advanced cancer” n = 410 | Respiratory rate Heart rate Blood pressure Temperature | Baseline assessment | Univariate analysis: Respiratory rate ↑ p = <0.0001 OR = 1.1 [95% CI: 1.05–1.16] Heart rate ↑ p = 0.0031 OR = 1.01 [95% CI: 1.00–1.02] Systolic BP ↓ p = <0.0001 OR = 0.95 [95% CI: 0.94–0.96] Diastolic BP ↓ p = <0.0001 OR = 0.95 [95% CI: 0.93–0.96] Temperature ↓ p = <0.0019 OR = 0.74 [95% CI: 0.61–0.90] | Endpoint survival < 60 days “Shock index/SI” (heart rate divided by systolic BP) was a strong independent risk factor for death |
Aramrat et al., 2023 [41] | Hospital Patients with “cancer and pneumonia” n = 245 | Respiratory rate Heart rate Blood pressure Temperature Oxygen saturation | On admission | Multivariate analysis: Oxygen saturation ↓ (<90%) p = 0.038 OR = 2.01 [95% CI: 1.04–3.87] | Median survival was 8 days |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Power, J.; Gouldthorpe, C.; Davies, A. Vital Signs in Palliative Care: A Scoping Review. Cancers 2023, 15, 4641. https://doi.org/10.3390/cancers15184641
Power J, Gouldthorpe C, Davies A. Vital Signs in Palliative Care: A Scoping Review. Cancers. 2023; 15(18):4641. https://doi.org/10.3390/cancers15184641
Chicago/Turabian StylePower, Jenny, Craig Gouldthorpe, and Andrew Davies. 2023. "Vital Signs in Palliative Care: A Scoping Review" Cancers 15, no. 18: 4641. https://doi.org/10.3390/cancers15184641
APA StylePower, J., Gouldthorpe, C., & Davies, A. (2023). Vital Signs in Palliative Care: A Scoping Review. Cancers, 15(18), 4641. https://doi.org/10.3390/cancers15184641