Exploring Possible Diagnostic Precancerous Biomarkers for Oral Submucous Fibrosis: A Narrative Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Biomarkers of OSF
2.1. Clinical Roles of Potential Biomarkers
2.2. A Potential Protein Biomarker, Ki67
2.3. A Potential Biomarker, CD105
2.4. A Potential Biomarker, p63
2.5. A Potential Biomarker: miRNA-21
3. Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Maymone, M.B.C.; Greer, R.O.; Kesecker, J.; Sahitya, P.C.; Burdine, L.K.; Cheng, A.D.; Maymone, A.C.; Vashi, N.A. Premalignant and malignant oral mucosal lesions: Clinical and pathological findings. J. Am. Acad. Dermatol. 2019, 81, 59–71. [Google Scholar] [CrossRef] [PubMed]
- Qin, X.; Ning, Y.; Zhou, L.; Zhu, Y. Oral submucous fibrosis: Etiological mechanism, malignant transformation, therapeutic approaches and targets. Int. J. Mol. Sci. 2023, 24, 4992. [Google Scholar] [CrossRef] [PubMed]
- Bazarsad, S.; Zhang, X.; Kim, K.Y.; Illeperuma, R.; Jayasinghe, R.D.; Tilakaratne, W.M.; Kim, J. Identification of a combined biomarker for malignant transformation in oral submucous fibrosis. J. Oral Pathol. Med. 2017, 46, 431–438. [Google Scholar] [CrossRef]
- LK, S.; Naik, Z.; Lagali-Jirge, V.; Panwar, A.; Keluskar, V. Salivary lactate dehydrogenase as a potential biomarker in oral potentially malignant disorders and head & neck cancer—A systematic review and meta-analysis. Gulf J. Oncolog. 2023, 1, 78–99. [Google Scholar]
- Winning, T.A.; Townsend, G.C. Oral mucosal embryology and histology. Clin. Dermatol. 2000, 18, 499–511. [Google Scholar] [CrossRef]
- Groeger, S.; Meyle, J. Oral mucosal epithelial cells. Front. Immunol. 2019, 10, 208. [Google Scholar] [CrossRef] [PubMed]
- Shih, Y.H.; Wang, T.H.; Shieh, T.M.; Tseng, Y.H. Oral submucous fibrosis: A review on etiopathogenesis, diagnosis, and therapy. Int. J. Mol. Sci. 2019, 20, 2940. [Google Scholar] [CrossRef]
- Ko, A.M.; Tu, H.P.; Ko, Y.C. Systematic review of roles of arecoline and arecoline N-oxide in oral cancer and strategies to block carcinogenesis. Cells 2023, 12, 1208. [Google Scholar] [CrossRef]
- Kuo, T.M.; Nithiyanantham, S.; Lee, C.P.; Hsu, H.T.; Luo, S.Y.; Lin, Y.Z.; Yeh, K.T.; Ko, Y.C. Arecoline N-oxide regulates oral squamous cell carcinoma development through NOTCH1 and FAT1 expressions. J. Cell. Physiol. 2019, 234, 13984–13993. [Google Scholar] [CrossRef]
- Sharma, S.R.; Chavan, S.; Karjodkar, F.R.; Sansare, K.; Bharathi, S.; Singh, S. Correlation of clinical features in oral submucous fibrosis: A 9-year retrospective study. Ethiop. J. Health Sci. 2022, 32, 137–144. [Google Scholar]
- Preshaw, P.M.; Alba, A.L.; Herrera, D.; Jepsen, S.; Konstantinidis, A.; Makrilakis, K.; Taylor, R. Periodontitis and diabetes: A two-way relationship. Diabetologia 2012, 55, 21–31. [Google Scholar] [CrossRef] [PubMed]
- Parveen, S.; Qahtani, A.S.A.; Halboub, E.; Hazzazi, R.A.A.; Madkhali, I.A.H.; Mughals, A.I.H.; Baeshen, S.A.A.; Moaidi, A.M.; Al-Ak’hali, M.S. Periodontal-systemic disease: A study on medical practitioners’ knowledge and practice. Int. Dent. J. 2023, in press. [Google Scholar] [CrossRef] [PubMed]
- Deraz, O.; Rangé, H.; Boutouyrie, P.; Chatzopoulou, E.; Asselin, A.; Guibout, C.; Van Sloten, T.; Bougouin, W.; Andrieu, M.; Vedié, B.; et al. Oral condition and incident coronary heart disease: A clustering analysis. J. Dent. Res. 2022, 101, 526–533. [Google Scholar] [CrossRef]
- Memon, A.B.; Rahman, A.A.U.; Channar, K.A.; Zafar, M.S.; Kumar, N. Evaluating the oral-health-related quality of life of oral submucous fibrosis patients before and after treatment using the OHIP-14 tool. Int. J. Environ. Res. Public Health 2022, 19, 1821. [Google Scholar] [CrossRef] [PubMed]
- Memon, A.B.; Rahman, A.A.U.; Channar, K.A.; Zafar, M.S.; Kumar, N. Assessing the quality of life of oral submucous fibrosis patients: A cross-sectional study using the WHOQOL-BREF tool. Int. J. Environ. Res. Public Health 2021, 18, 9498. [Google Scholar] [CrossRef]
- Memon, A.B.; Rahman, A.A.U.; Channar, K.A.; Kumar, N. A clinico-demographic evaluation of patients with oral submucous fibrosis: A cross sectional study. J. Pharm. Res. Int. 2021, 33, 22–29. [Google Scholar] [CrossRef]
- Shen, Y.W.; Shih, Y.H.; Fuh, L.J.; Shieh, T.M. Oral submucous fibrosis: A review on biomarkers, pathogenic mechanisms, and treatments. Int. J. Mol. Sci. 2020, 21, 7231. [Google Scholar] [CrossRef]
- Biomarkers Definitions Working Group. Biomarkers and surrogate endpoints: Preferred definitions and conceptual framework. Clin. Pharmacol. Ther. 2001, 69, 89–95. [Google Scholar] [CrossRef]
- Gupta, N.; Rakshit, A.; Srivastava, S.; Suryawanshi, H.; Kumar, P.; Naik, R. Comparative evaluation of micronuclei in exfoliated oral epithelial cells in potentially malignant disorders and malignant lesions using special stains. J. Oral Maxillofac. Pathol. 2019, 23, 157. [Google Scholar] [CrossRef]
- Shridhar, K.; Walia, G.K.; Aggarwal, A.; Gulati, S.; Geetha, A.V.; Prabhakaran, D.; Dhillon, P.K.; Rajaraman, P. DNA methylation markers for oral pre-cancer progression: A critical review. Oral Oncol. 2016, 53, 1–9. [Google Scholar] [CrossRef]
- Zhou, S.; Chen, L.; Mashrah, M.; Zhu, Y.; He, Z.; Hu, Y.; Xiang, T.; Yao, Z.; Guo, F.; Zhang, C. Expression and promoter methylation of Wnt inhibitory factor-1 in the development of oral submucous fibrosis. Oncol. Rep. 2015, 34, 2636–2642. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Chen, L.; Mashrah, M.; Zhu, Y.; Liu, J.; Yang, X.; He, Z.; Wang, L.; Xiang, T.; Yao, Z.; et al. Deregulation of secreted frizzled-related proteins is associated with aberrant β-catenin activation in the carcinogenesis of oral submucous fibrosis. OncoTargets Ther. 2015, 8, 2923–2931. [Google Scholar] [CrossRef]
- Zade, P.R.; Gosavi, S.R.; Hazarey, V.K.; Ganvir, S.M. Matrix metalloproteinases-3 gene-promoter polymorphism as a risk factor in oral submucous fibrosis in an Indian population: A pilot study. J. Investig. Clin. Dent. 2017, 8, e12228. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; Zhu, Y.; Mashrah, M.; Zhang, X.; He, Z.; Yao, Z.; Zhang, C.; Guo, F.; Hu, Y.; Zhang, C. Expression pattern of DKK3, dickkopf WNT signaling pathway inhibitor 3, in the malignant progression of oral submucous fibrosis. Oncol. Rep. 2017, 37, 979–985. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.C.; Liao, Y.W.; Hsieh, P.L.; Chang, Y.C. Targeting lncRNA H19/miR-29b/COL1A1 axis impedes myofibroblast activities of precancerous oral submucous fibrosis. Int. J. Mol. Sci. 2021, 22, 2216. [Google Scholar] [CrossRef]
- Rai, A.; Ahmad, T.; Parveen, S.; Parveen, S.; Faizan, M.I.; Ali, S. Expression of transforming growth factor beta in oral submucous fibrosis. J. Oral Biol. Craniofac. Res. 2020, 10, 166–170. [Google Scholar] [CrossRef]
- Lin, C.Y.; Hsieh, P.L.; Liao, Y.W.; Peng, C.Y.; Yu, C.C.; Lu, M.Y. Arctigenin reduces myofibroblast activities in oral submucous fibrosis by LINC00974 inhibition. Int. J. Mol. Sci. 2019, 20, 1328. [Google Scholar] [CrossRef]
- Liu, C.M.; Liao, Y.W.; Hsieh, P.L.; Yu, C.H.; Chueh, P.J.; Lin, T.; Yang, P.Y.; Yu, C.C.; Chou, M.Y. miR-1246 as a therapeutic target in oral submucosa fibrosis pathogenesis. J. Formos. Med. Assoc. 2019, 118, 1093–1098. [Google Scholar] [CrossRef]
- Fang, C.Y.; Yu, C.C.; Liao, Y.W.; Hsieh, P.L.; Ohiro, Y.; Chu, P.M.; Huang, Y.C.; Yu, C.H.; Tsai, L.L. miR-10b regulated by Twist maintains myofibroblasts activities in oral submucous fibrosis. J. Formos. Med. Assoc. 2020, 119, 1167–1173. [Google Scholar] [CrossRef]
- Liao, Y.W.; Yu, C.C.; Hsieh, P.L.; Chang, Y.C. miR-200b ameliorates myofibroblast transdifferentiation in precancerous oral submucous fibrosis through targeting ZEB2. J. Cell. Mol. Med. 2018, 22, 4130–4138. [Google Scholar] [CrossRef]
- Lu, M.Y.; Yu, C.C.; Chen, P.Y.; Hsieh, P.L.; Peng, C.Y.; Liao, Y.W.; Yu, C.H.; Lin, K.H. miR-200c inhibits the arecoline-associated myofibroblastic transdifferentiation in buccal mucosal fibroblasts. J. Formos. Med. Assoc. 2018, 117, 791–797. [Google Scholar] [CrossRef] [PubMed]
- Kamala, K.A.; Kanetkar, S.R.; Datkhile, K.D.; Sankethguddad, S. Expression of Ki67 as potential biomarker in oral submucous fibrosis: An immunohistochemical study. Indian J. Dent. Res. 2022, 33, 272–276. [Google Scholar] [CrossRef]
- Gadbail, A.R.; Chaudhary, M.; Sarode, S.C.; Gondivkar, S.; Tekade, S.A.; Zade, P.; Hande, A.; Sarode, G.S.; Patil, S. Ki67, CD105, and α-SMA expression supports the transformation relevant dysplastic features in the atrophic epithelium of oral submucous fibrosis. PLoS ONE 2018, 13, e0200171. [Google Scholar] [CrossRef]
- Varun, B.R.; Ranganathan, K.; Rao, U.K.; Joshua, E. Immunohistochemical detection of p53 and p63 in oral squamous cell carcinoma, oral leukoplakia, and oral submucous fibrosis. J. Investig. Clin. Dent. 2014, 5, 214–219. [Google Scholar] [CrossRef] [PubMed]
- Jeyapradha, D.; Saraswathi, T.; Ranganathan, K.; Wilson, K. Comparison of the frequency of sister chromatid exchange in pan chewers and oral submucous fibrosis patients. J. Oral Maxillofac. Pathol. 2011, 15, 278–282. [Google Scholar] [CrossRef]
- Singh, P.; Srivastava, A.N.; Sharma, R.; Mateen, S.; Shukla, B.; Singh, A.; Chandel, S. Circulating microRNA-21 expression as a novel serum biomarker for oral sub-mucous fibrosis and oral squamous cell carcinoma. Asian Pac. J. Cancer Prev. 2018, 19, 1053–1057. [Google Scholar] [PubMed]
- Sivaramakrishnan, M.; Sivapathasundharam, B.; Jananni, M. Evaluation of lactate dehydrogenase enzyme activity in saliva and serum of oral submucous fibrosis patients. J. Oral Pathol. Med. 2015, 44, 449–452. [Google Scholar] [CrossRef]
- Uma Maheswari, T.N.; Nivedhitha, M.S.; Ramani, P. Expression profile of salivary micro RNA-21 and 31 in oral potentially malignant disorders. Braz. Oral Res. 2020, 34, e002. [Google Scholar] [CrossRef]
- Kaur, J.; Politis, C.; Jacobs, R. Salivary 8-hydroxy-2-deoxyguanosine, malondialdehyde, vitamin C, and vitamin E in oral pre-cancer and cancer: Diagnostic value and free radical mechanism of action. Clin. Oral Investig. 2016, 20, 315–319. [Google Scholar] [CrossRef]
- Menon, S.S.; Guruvayoorappan, C.; Sakthivel, K.M.; Rasmi, R.R. Ki-67 protein as a tumour proliferation marker. Clin. Chim. Acta 2019, 491, 39–45. [Google Scholar] [CrossRef]
- Kamala, K.A.; Kanetkar, S.R.; Datkhile, K.D.; Sankethguddad, S. Expression of Ki67 biomarker in oral submucous fibrosis with clinico-pathological correlations: A prospective study. Asian Pac. J. Cancer Prev. 2022, 23, 253–259. [Google Scholar] [CrossRef] [PubMed]
- Uxa, S.; Castillo-Binder, P.; Kohler, R.; Stangner, K.; Müller, G.A.; Engeland, K. Ki-67 gene expression. Cell Death Differ. 2021, 28, 3357–3370. [Google Scholar] [CrossRef] [PubMed]
- Gerdes, J.; Lemke, H.; Baisch, H.; Wacker, H.H.; Schwab, U.; Stein, H. Cell cycle analysis of a cell proliferation-associated human nuclear antigen defined by the monoclonal antibody Ki-67. J. Immunol. 1984, 133, 1710–1715. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Kaufman, P.D. Ki-67: More than a proliferation marker. Chromosoma 2018, 127, 175–186. [Google Scholar] [CrossRef]
- Miller, I.; Min, M.; Yang, C.; Tian, C.; Gookin, S.; Carter, D.; Spencer, S.L. Ki67 is a graded rather than a binary marker of proliferation versus quiescence. Cell Rep. 2018, 24, 1105–1112.e5. [Google Scholar] [CrossRef]
- Ahmed, M. Gastrointestinal neuroendocrine tumors in 2020. World J. Gastrointest. Oncol. 2020, 12, 791–807. [Google Scholar] [CrossRef]
- Gadbail, A.R.; Sarode, S.C.; Chaudhary, M.S.; Gondivkar, S.M.; Tekade, S.A.; Yuwanati, M.; Patil, S. Ki67 labelling index predicts clinical outcome and survival in oral squamous cell carcinoma. J. Appl. Oral Sci. 2021, 29, e20200751. [Google Scholar] [CrossRef]
- Mahapatra, N.; Uma Rao, K.D.; Ranganathan, K.; Joshua, E.; Thavarajah, R. Study of expression of endoglin (CD105) in oral squamous cell carcinoma. J. Oral Maxillofac. Pathol. 2021, 25, 552. [Google Scholar] [CrossRef]
- Dallas, N.A.; Samuel, S.; Xia, L.; Fan, F.; Gray, M.J.; Lim, S.J.; Ellis, L.M. Endoglin (CD105): A marker of tumor vasculature and potential target for therapy. Clin. Cancer Res. 2008, 14, 1931–1937. [Google Scholar] [CrossRef]
- Tzavlaki, K.; Moustakas, A. TGF-β Signaling. Biomolecules 2020, 10, 487. [Google Scholar] [CrossRef]
- Pammar, C.; Nayak, R.S.; Kotrashetti, V.S.; Hosmani, J. Comparison of microvessel density using CD34 and CD105 in oral submucous fibrosis and its correlation with clinicopathological features: An immunohistochemical study. J. Cancer Res. Ther. 2018, 14, 983–988. [Google Scholar] [CrossRef] [PubMed]
- Wan, C.F.; Du, J.; Fang, H.; Li, F.H.; Zhu, J.S.; Liu, Q. Enhancement patterns and parameters of breast cancers at contrast-enhanced US: Correlation with prognostic factors. Radiology 2012, 262, 450–459. [Google Scholar] [CrossRef] [PubMed]
- Gadbail, A.R.; Chaudhary, M.S.; Sarode, S.C.; Gondivkar, S.M.; Belekar, L.; Mankar-Gadbail, M.P.; Dande, R.; Tekade, S.A.; Yuwanati, M.B.; Patil, S. Ki67, CD105 and α-smooth muscle actin expression in disease progression model of oral submucous fibrosis. J. Investig. Clin. Dent. 2019, 10, e12443. [Google Scholar] [CrossRef] [PubMed]
- Gadbail, A.R.; Korde, S.; Chaudhary, M.S.; Sarode, S.C.; Gondivkar, S.M.; Dande, R.; Tekade, S.A.; Yuwanati, M.; Hande, A.; Patil, S. Ki67, CD105, and α-SMA expression supports biological distinctness of oral squamous cell carcinoma arising in the background of oral submucous fibrosis. Asian Pac. J. Cancer Prev. 2020, 21, 2067–2074. [Google Scholar] [CrossRef]
- Choi, W.; Shah, J.B.; Tran, M.; Svatek, R.; Marquis, L.; Lee, I.L.; Yu, D.; Adam, L.; Wen, S.; Shen, Y.; et al. p63 expression defines a lethal subset of muscle-invasive bladder cancers. PLoS ONE 2012, 7, e30206. [Google Scholar] [CrossRef]
- Chilosi, M.; Doglioni, C. Constitutive p63 expression in airway basal cells. A molecular target in diffuse lung diseases. Sarcoidosis Vasc. Diffuse Lung Dis. 2001, 18, 23–26. [Google Scholar]
- Little, N.A.; Jochemsen, A.G. p63. Int. J. Biochem. Cell Biol. 2002, 34, 6–9. [Google Scholar] [CrossRef]
- Chakraborti, S.; Paul, R.R.; Pal, M.; Chatterjee, J.; Das, R.K. Collagen deposition correlates with loss of E-cadherin and increased p63 expression in dysplastic conditions of oral submucous fibrosis. Med. Mol. Morphol. 2022, 55, 20–26. [Google Scholar] [CrossRef]
- Bag, S.; Conjeti, S.; Das, R.K.; Pal, M.; Anura, A.; Paul, R.R.; Ray, A.K.; Sengupta, S.; Chatterjee, J. Computational analysis of p63(+) nuclei distribution pattern by graph theoretic approach in an oral pre-cancer (sub-mucous fibrosis). J. Pathol. Inform. 2013, 4, 35. [Google Scholar] [CrossRef]
- Mundhe, D.; Waghole, R.; Pawar, S.; Mishra, R.; Shetty, A.; Gera, P.; Kannan, S.; Teni, T. Concomitant overexpression of Activin A and p63 is associated with poor outcome in oral cancer patients. J. Oral Pathol. Med. 2020, 49, 876–885. [Google Scholar] [CrossRef]
- Albasri, A.M.; Elkablawy, M.A.; Ansari, I.A.; Alhujaily, A.S.; Khalil, A.A. The prognostic significance of p63 cytoplasmic expression in colorectal cancer. An immunohistochemical study. Saudi Med. J. 2019, 40, 432–439. [Google Scholar] [CrossRef] [PubMed]
- Dioguardi, M.; Spirito, F.; Sovereto, D.; Alovisi, M.; Troiano, G.; Aiuto, R.; Garcovich, D.; Crincoli, V.; Laino, L.; Cazzolla, A.P.; et al. MicroRNA-21 expression as a prognostic biomarker in oral cancer: Systematic review and meta-analysis. Int. J. Environ. Res. Public Health. 2022, 19, 3396. [Google Scholar] [CrossRef] [PubMed]
- Hsieh, P.L.; Chen, S.H.; Huang, Y.F.; Lu, M.Y.; Yu, C.C. The functional roles of microRNAs in the pathogenesis of oral submucous fibrosis. J. Dent. Sci. 2022, 17, 683–687. [Google Scholar] [CrossRef]
- Bonci, D. MicroRNA-21 as therapeutic target in cancer and cardiovascular disease. Recent. Pat. Cardiovasc. Drug Discov. 2010, 5, 156–161. [Google Scholar] [CrossRef]
- Mahmood, N.; Hanif, M.; Ahmed, A.; Jamal, Q.; Mushtaq, S.; Khan, A.; Saqib, M. Circulating miR-21 as a prognostic and predictive biomarker in oral squamous cell carcinoma. Pak. J. Med. Sci. 2019, 35, 1408–1412. [Google Scholar] [CrossRef]
- Fu, X.; Han, Y.; Wu, Y.; Zhu, X.; Lu, X.; Mao, F.; Wang, X.; He, X.; Zhao, Y.; Zhao, Y. Prognostic role of microRNA-21 in various carcinomas: A systematic review and meta-analysis. Eur. J. Clin. Investig. 2011, 41, 1245–1253. [Google Scholar] [CrossRef] [PubMed]
- Maheswari, T.N.U.; Venugopal, A.; Sureshbabu, N.M.; Ramani, P. Salivary micro RNA as a potential biomarker in oral potentially malignant disorders: A systematic review. Ci Ji Yi Xue Za Zhi 2018, 30, 55–60. [Google Scholar]
Specimens | Biomarker in Tissues | Sample Size/Reference | |
---|---|---|---|
Cells | Cytology | Up: micronuclei in exfoliated buccal cells | leukoplakia (n = 15), OSMF (n = 15), and OSCC (n = 15) [18] |
Tissues | DNA | Up: hyper-methylated loci reported in three or more studies included p16, p14, MGMT and DAPK | cell-cycle-control (n = 15), DNA-repair (n = 7), cell-cycle-signaling (n = 4), and apoptosis (n = 3) [19] |
Up: Wnt inhibitory factor-1 promoter methylation | OSCC (n = 55), OSF (n = 45), and normal oral mucosa (n = 15) [20] | ||
Up: secreted frizzled-related proteins (SFRP-1) and SFRP-5 | OSCC (n = 55), OSF (n = 45), and normal oral mucosa (n = 15) [21] | ||
Up: matrix metalloproteinases-3 (MMP-3) polymorphism | OSF (n = 5), OSCC (n = 5), and normal individuals with tobacco and areca nut habit (n = 5) and without (n = 5) [22] | ||
mRNA | Up: Dickkopf WNT signaling pathway inhibitor 3 (DKK3) | OSCC (n = 55), OSF (n = 45), and normal oral mucosa (n = 15) [23] | |
Up: profibrotic lncRNA H19 (alert binding of miR-29b and COL1A1 | BMF (buccal mucosal fibroblast) cell normal (n = 2) and OSF (n = 2) [24] | ||
Up: transforming growth factor β receptor (TGF-βR1 and TGF-βR2) | OSMF (n = 33) and normal (n = 10) [25] | ||
Up: LncRNA LINC00974 | BMFs and fBMFs (fibrotic buccal mucosa fibroblasts) were retrieved from OSF tissues or the normal counterparts of patients [26] | ||
Up: miR-1246 | OSF tissues (n = 20) and BMFs derived from OSF specimen [27] | ||
Up: miR10-b | OSF specimens (n = 20) [28] | ||
Down: miR-200b | biopsy specimens were taken from the histologically normal oral mucosa and fibrotic mucosa at the time of surgical third molar extraction [29] | ||
Down: miR-200c | normal (n = 25) and OSF (n = 25) [30] | ||
Protein | Up: Ki67 | OSMF (n = 35), OSCC (n = 10), and normal (n = 10) [31] | |
Up: CD105 | paraffin-embedded tissues from normal (n = 30) and OSMF (n = 50) [32] | ||
Up: p63 | tissue sections of OSCC (n = 20), leukoplakia (n = 20), OSF (n = 20), and normal (n = 10) [33] | ||
Serum | Cytology | Up: sister chromatid exchange in lymphocytes | male patients who had the habit of chewing pan for 5 or more years (n = 10), male OSF patients who had Pan Parag chewing habit (n = 10) and controls without any chewing habit (n = 10) [34] |
RNA | Up: miRNA-21 | OSCC (n = 20), OSF (n = 20), and normal (n = 40) [35] | |
Protein | Up: lactate dehydrogenase (LDH) | OSMF (n = 30) and normal (n = 30) [36] | |
Down: serum protein, globulin | 250 participants equally divided in 5 groups (OSMF, OL, NS, OM, and HC) [35] | ||
Saliva | RNA | Up: miRNA-21, miRNA-31 | OPMD (n = 36) and normal (n = 36) [37] |
Protein | Up: LDH | OSMF (n = 30) and normal (n = 30) [36] | |
Down: GPx and SOD | OSF (n = 63) and normal (n = 63) [37] | ||
Others | Up: 8-hydroxy-2-deoxyguanosine (8-OHdG) and MDA | OSCC (n = 40), OLP lesions (n = 40), OL (n = 40), OSF (n = 40), and control (n = 40) [38] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
You, J.-R.; Chen, Y.-T.; Hsieh, C.-Y.; Chen, S.-Y.; Lin, T.-Y.; Shih, J.-S.; Chen, G.-T.; Feng, S.-W.; Peng, T.-Y.; Wu, C.-Y.; et al. Exploring Possible Diagnostic Precancerous Biomarkers for Oral Submucous Fibrosis: A Narrative Review. Cancers 2023, 15, 4812. https://doi.org/10.3390/cancers15194812
You J-R, Chen Y-T, Hsieh C-Y, Chen S-Y, Lin T-Y, Shih J-S, Chen G-T, Feng S-W, Peng T-Y, Wu C-Y, et al. Exploring Possible Diagnostic Precancerous Biomarkers for Oral Submucous Fibrosis: A Narrative Review. Cancers. 2023; 15(19):4812. https://doi.org/10.3390/cancers15194812
Chicago/Turabian StyleYou, Jie-Ru, Ya-Ting Chen, Chia-Yu Hsieh, Sin-Yu Chen, Tzu-Yao Lin, Jing-Syuan Shih, Guan-Ting Chen, Sheng-Wei Feng, Tzu-Yu Peng, Chia-Yu Wu, and et al. 2023. "Exploring Possible Diagnostic Precancerous Biomarkers for Oral Submucous Fibrosis: A Narrative Review" Cancers 15, no. 19: 4812. https://doi.org/10.3390/cancers15194812
APA StyleYou, J.-R., Chen, Y.-T., Hsieh, C.-Y., Chen, S.-Y., Lin, T.-Y., Shih, J.-S., Chen, G.-T., Feng, S.-W., Peng, T.-Y., Wu, C.-Y., & Lee, I.-T. (2023). Exploring Possible Diagnostic Precancerous Biomarkers for Oral Submucous Fibrosis: A Narrative Review. Cancers, 15(19), 4812. https://doi.org/10.3390/cancers15194812