Modulatory Properties of Aloe secundiflora’s Methanolic Extracts on Targeted Genes in Colorectal Cancer Management
Abstract
:Simple Summary
Abstract
1. Introduction
1.1. Background Information on Colon Cancer and Prevention Approaches
1.2. Phytoconstituent Biomolecules Present in A. secundiflora
2. Materials and Methods
2.1. Colorectal Cancer Cell Lines (Caco-2 Cell Lines)
2.2. Plant Extract Extraction Using Methanol and Region of Acquisition
2.3. Dissipation of Plant Extracts in DMSO
2.4. Passaging Caco-2 Cell Lines for Bioassays
2.5. Exposure of Caco-2 Cell Lines to Solvent Extracts
2.6. Isolation of RNA
2.7. Protocol and Equipment Used for qRT-PCR (SYBR Green Protocol)
2.8. qRT-PCR Result Analysis
2.9. Data Analysis
3. Results
3.1. Upregulatory Effects of AS Extracts on CASPS9 Expression
3.2. Downregulatory Effects of AS Extracts on 5-LOX Expression
3.3. Downregulatory Effects of AS Extracts on Bcl2 Expressions
3.4. Downregulatory Effects of AS Extracts on Bcl-xL Gene Expressions
3.5. Downregulatory Effects of AS Extracts on COX-2 Expression at High Concentrations
4. Discussion
4.1. Phytotherapeutic Effects of AS Leaf Extracts on CASPS9 Expression
4.2. Phytotherapeutic Effects of AS Leaf Extracts on 5-LOX Expression
4.3. Phytotherapeutic Effects of AS Leaf Extracts on Bcl2 and Bcl-xL Expression
4.4. Phytotherapeutic Effects of AS Leaf Extracts on COX-2 Expression
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Arnold, C.N.; Goel, A.; Blum, H.E.; Boland, C.R. Molecular pathogenesis of colorectal cancer: Implications for molecular diagnosis. Cancer 2005, 104, 2035–2047. [Google Scholar] [CrossRef] [PubMed]
- Halder, S.; Modak, P.; Sarkar, B.K.; Das, A.; Sarkar, A.P.; Chowdhury, A.R.; Kundu, S.K. Traditionally Used Medicinal Plants with Anticancer Effect: A Review. Int. J. Pharm. Sci. Rev. Res. 2020, 65, 1–13. [Google Scholar] [CrossRef]
- Colussi, D.; Brandi, G.; Bazzoli, F.; Ricciardiello, L. Molecular Pathways Involved in Colorectal Cancer: Implications for Disease Behavior and Prevention. Int. J. Mol. Sci. 2013, 14, 16365–16385. [Google Scholar] [CrossRef]
- Carvalho, C.; Marinho, A.; Leal, B.; Bettencourt, A.; Boleixa, D.; Almeida, I.; Farinha, F.; Costa, P.P.; Vasconcelos, C.; Silva, B.M. Association between vitamin D receptor (VDR) gene polymorphisms and systemic lupus erythematosus in Portuguese patients. Lupus 2015, 24, 846–853. [Google Scholar] [CrossRef] [PubMed]
- Macharia, J.M.; Kaposztas, Z.; Varjas, T.; Budán, F.; Zand, A.; Bodnar, I.; Bence, R.L. Targeted lactate dehydrogenase genes silencing in probiotic lactic acid bacteria: A possible paradigm shift in colorectal cancer treatment? Biomed. Pharmacother. 2023, 160, 114371. [Google Scholar] [CrossRef] [PubMed]
- Hashemzaei, M.; Delarami Far, A.; Yari, A.; Heravi, R.E.; Tabrizian, K.; Taghdisi, S.M.; Sadegh, S.E.; Tsarouhas, K.; Kouretas, D.; Tzanakakis, G.; et al. Anticancer and apoptosis-inducing effects of quercetin in vitro and in vivo. Oncol. Rep. 2017, 38, 819–828. [Google Scholar] [CrossRef] [PubMed]
- Macharia, J.M.; Mwangi, R.W.; Rozmann, N.; Zsolt, K.; Varjas, T.; Uchechukwu, P.O.; Wagara, I.N.; Raposa, B.L. Medicinal plants with anti-colorectal cancer bioactive compounds: Potential game-changers in colorectal cancer management. Biomed. Pharmacother. 2022, 153, 113383. [Google Scholar] [CrossRef]
- Macharia, J.M.; Káposztás, Z.; Bence, R.L. Medicinal Characteristics of Withania somnifera L. in Colorectal Cancer Management. Pharmaceuticals 2023, 16, 915. [Google Scholar] [CrossRef]
- Kaur, R.; Kaur, H. The Antimicrobial activity of essential oil and plant extracts of Woodfordia fruticosa. Arch. Appl. Sci. Res. 2011, 2, 373–383. [Google Scholar]
- Macharia, J.M.; Ngure, V.; Emődy, B.; Király, B.; Káposztás, Z.; Rozmann, N.; Erdélyi, A.; Raposa, B. Pharmacotherapeutic Potential of Aloe secundiflora against Colorectal Cancer Growth and Proliferation. Pharmaceutics 2023, 15, 1558. [Google Scholar] [CrossRef]
- Diriba, T.F.; Deresa, E.M. Botanical description, ethnomedicinal uses, phytochemistry, and pharmacological activities of genus Kniphofia and Aloe: A review. Arab. J. Chem. 2022, 15, 104111. [Google Scholar] [CrossRef]
- Kaingu, F.; Kibor, A.; Waihenya, R.; Shivairo, R.; Mungai, L. Efficacy of Aloe secundiflora Crude Extracts on Ascaridia galli in Vitro. Sustain. Agric. Res. 2012, 2, 49. [Google Scholar] [CrossRef]
- Puia, A.; Puia, C.; Moiș, E.; Graur, F.; Fetti, A.; Florea, M. The phytochemical constituents and therapeutic uses of genus Aloe: A review. Not. Bot. Horti Agrobot. Cluj-Napoca 2021, 49, 12332. [Google Scholar] [CrossRef]
- Okemo, P.; Kirimuhuzya, C.; Otieno, J.N.; Magadula, J.J.; Mariita, R.M.; Orodho, J. Methanolic extracts of Aloe secundiflora Engl. inhibits in vitro growth of tuberculosis and diarrhea-causing bacteria. Pharmacogn. Res. 2011, 3, 95–99. [Google Scholar] [CrossRef] [PubMed]
- Induli, M.; Cheloti, M.; Wasuna, A.; Wekesa, I.; Wanjohi, J.M.; Byamukama, R.; Heydenrich, M.; Makayoto, M.; Yenesew, A. Naphthoquinones from the roots of Aloe secundiflora. Phytochem. Lett. 2012, 5, 506–509. [Google Scholar] [CrossRef]
- Simpson, D.; Amos, S. Other Plant Metabolites. Pharmacognosy 2017, 267–280. [Google Scholar] [CrossRef]
- Patel, K.; Patel, D.K. Medicinal importance, pharmacological activities, and analytical aspects of aloin: A concise report. J. Acute Dis. 2013, 2, 262–269. [Google Scholar] [CrossRef]
- Pan, Q.; Pan, H.; Lou, H.; Xu, Y.; Tian, L. Inhibition of the angiogenesis and growth of Aloin in human colorectal cancer in vitro and in vivo. Cancer Cell Int. 2013, 13, 1–9. [Google Scholar] [CrossRef]
- Cardarelli, M.; Rouphael, Y.; Pellizzoni, M.; Colla, G.; Lucini, L. Profile of bioactive secondary metabolites and antioxidant capacity of leaf exudates from eighteen Aloe species. Ind. Crop. Prod. 2017, 108, 44–51. [Google Scholar] [CrossRef]
- Rachuonyo, H.O.; Ogola, P.E.; Arika, W.M.; Wambani, J.R. Efficacy of Crude Leaf Extracts of Aloe secundiflora on Selected Enteric Bacterial Pathogens and Candida albicans. J. Antimicrob. Agents 2016, 2, 2. [Google Scholar] [CrossRef]
- Waithaka, P.N.; Gathuru, E.M.; Githaiga, B.M.; Kazungu, R.Z. Antimicrobial Properties of Aloe vera, Aloe volkensii and Aloe secundiflora from Egerton University. Acta Sci. Microbiol. 2018, 1, 6–10. [Google Scholar]
- Thornberry, N.A.; Lazebnik, Y. Caspases: Enemies within. Science 1998, 281, 1312–1316. [Google Scholar] [CrossRef] [PubMed]
- Raff, M. Cell suicide for beginners. Nature 1998, 396, 119–122. [Google Scholar] [CrossRef] [PubMed]
- Prabhu, A. Anti-angiogenic, apoptotic and matrix metalloproteinase inhibitory activity of Withania somnifera (ashwagandha) on lung adenocarcinoma cells. Phytomedicine 2021, 90, 153639. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.N.; Wu, W.K.K.; Shin, V.Y.; Bruce, I.C.; Wong, B.C.Y.; Cho, C.H. Dual inhibition of 5-LOX and COX-2 suppresses colon cancer formation promoted by cigarette smoke. Carcinogenesis 2005, 26, 827–834. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Zhu, C.; Qiang, H.; Zhou, X.; Zhou, G. Enhancing antitumor effects in pancreatic cancer cells by combined use of COX-2 and 5-LOX inhibitors. Biomed. Pharmacother. 2011, 65, 486–490. [Google Scholar] [CrossRef]
- Rådmark, O.; Shimizu, T.; Jörnvall, H.; Samuelsson, B. Leukotriene A4 hydrolase in human leukocytes. Purification and properties. J. Biol. Chem. 1984, 259, 12339–12345. [Google Scholar] [CrossRef]
- American Type Culture Collection. Caco-2 [Caco2]—HTB-37|ATCC 2022. Available online: https://www.atcc.org/products/htb-37 (accessed on 17 May 2023).
- Nelson, V.K.; Sahoo, N.K.; Sahu, M.; Sudhan, H.H.; Pullaiah, C.P.; Muralikrishna, K.S. In vitro anticancer activity of Eclipta alba whole plant extract on colon cancer cell HCT-116. BMC Complement. Med. Ther. 2020, 20, 1–8. [Google Scholar] [CrossRef]
- Saravanakumar, D.S.D.; Karthiba, L.K.L.; Ramjegathesh, R.R.R.; Prabakar, K.P.K.; Raguchander, T.R.T. Characterization of Bioactive Compounds from Botanicals for the Management of Plant Diseases. In Sustainable Crop Disease Management Using Natural Products; CABI: Wallingford, UK, 2015; pp. 1–18. [Google Scholar] [CrossRef]
- Sangweni, N.F.; Dludla, P.V.; Chellan, N.; Mabasa, L.; Sharma, J.R.; Johnson, R. The Implication of Low Dose Dimethyl Sulfoxide on Mitochondrial Function and Oxidative Damage in Cultured Cardiac and Cancer Cells. Molecules 2021, 26, 7305. [Google Scholar] [CrossRef]
- Doak, S.H.; Zaïr, Z.M. Real-Time Reverse-Transcription Polymerase Chain Reaction: Technical Considerations for Gene Expression Analysis. Methods Mol. Biol. 2012, 817, 251–270. [Google Scholar] [CrossRef]
- Morimoto, Y.; Takada, K.; Takeuchi, O.; Watanabe, K.; Hirohara, M.; Hamamoto, T.; Masuda, Y. Bcl-2/Bcl-xL inhibitor navitoclax increases the antitumor effect of Chk1 inhibitor prexasertib by inducing apoptosis in pancreatic cancer cells via inhibition of Bcl-xL but not Bcl-2. Mol. Cell. Biochem. 2020, 472, 187–198. [Google Scholar] [CrossRef] [PubMed]
- Sjöström, J.; Bergh, J. How apoptosis is regulated, and what goes wrong in cancer. BMJ 2001, 322, 1538–1539. [Google Scholar] [CrossRef] [PubMed]
- Wong, B.C.Y.; Zhu, G.H.; Lam, S.K. Aspirin induced apoptosis in gastric cancer cells. Biomed. Pharmacother. 1999, 53, 315–318. [Google Scholar] [CrossRef] [PubMed]
- Martin, C.; Connelly, A.; Keku, T.O.; Mountcastle, S.B.; Galanko, J.; Woosley, J.T.; Schliebe, B.; Lund, P.; Sandler, R.S. Nonsteroidal anti-inflammatory drugs, apoptosis, and colorectal adenomas. Gastroenterology 2002, 123, 1770–1777. [Google Scholar] [CrossRef]
- Yang, H.; Dou, Q.P. Targeting apoptosis pathway with natural terpenoids: Implications for treatment of breast and prostate cancer. Curr. Drug Targets 2010, 11, 733–744. [Google Scholar] [CrossRef]
- Larrosa, M.; Tomás-Barberán, F.A.; Espín, J.C. The dietary hydrolysable tannin punicalagin releases ellagic acid that induces apoptosis in human colon adenocarcinoma Caco-2 cells by using the mitochondrial pathway. J. Nutr. Biochem. 2006, 17, 611–625. [Google Scholar] [CrossRef]
- Jiang, X.-P.; Jin, S.; Shao, W.; Zhu, L.; Yan, S.; Lu, J. Saponins of Marsdenia Tenacissima promotes apoptosis of hepatocellular carcinoma cells through damaging mitochondria then activating cytochrome C/Caspase-9/Caspase-3 pathway. J. Cancer 2022, 13, 2855–2862. [Google Scholar] [CrossRef]
- Elekofehinti, O.O.; Iwaloye, O.; Olawale, F.; Ariyo, E.O. Saponins in Cancer Treatment: Current Progress and Future Prospects. Pathophysiology 2021, 28, 250–272. [Google Scholar] [CrossRef]
- Cheng, Y.; He, W.; He, Y. Gleditsia Saponin C Induces A549 Cell Apoptosis via Caspase-Dependent Cascade and Suppresses Tumor Growth on Xenografts Tumor Animal Model. Front. Pharmacol. 2018, 8, 988. [Google Scholar] [CrossRef]
- Vetrivel, P.; Kim, S.M.; Saralamma, V.V.G.; Ha, S.E.; Kim, E.H.; Min, T.S.; Kim, G.S. Function of flavonoids on different types of programmed cell death and its mechanism: A review. J. Biomed. Res. 2019, 33, 363–370. [Google Scholar] [CrossRef]
- Soumaoro, L.T.; Iida, S.; Uetake, H.; Ishiguro, M.; Takagi, Y.; Higuchi, T.; Yasuno, M.; Enomoto, M.; Sugihara, K. Expression of 5-Lipoxygenase in human colorectal cancer. World J. Gastroenterol. 2006, 12, 6355–6360. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, J.; Myers, C.E. Inhibition of arachidonate 5-lipoxygenase triggers massive apoptosis in human prostate cancer cells. Proc. Natl. Acad. Sci. USA 1998, 95, 13182–13187. [Google Scholar] [CrossRef]
- Öhd, J.F.; Nielsen, C.K.; Campbell, J.; Landberg, G.; Löfberg, H.; Sjölander, A. Expression of the leukotriene D4 receptor CysLT1, COX-2, and other cell survival factors in colorectal adenocarcinomas. Gastroenterology 2003, 124, 57–70. [Google Scholar] [CrossRef] [PubMed]
- Gupta, S.; Srivastava, M.; Ahmad, N.; Sakamoto, K.; Bostwick, D.G.; Mukhtar, H. Lipoxygenase-5 is overexpressed in prostate adenocarcinoma. Cancer 2001, 91, 737–743. [Google Scholar] [CrossRef] [PubMed]
- Avis, I.; Hong, S.H.; Martínez, A.; Moody, T.; Choi, Y.H.; Trepel, J.; Das, R.; Jett, M.; Mulshine, J.L. Five-lipoxygenase inhibitors can mediate apoptosis in human breast cancer cell lines through complex eicosanoid interactions. FASEB J. 2001, 15, 2007–2009. [Google Scholar] [CrossRef]
- Hoque, A.; Lippman, S.M.; Wu, T.T.; Xu, Y.; Liang, Z.D.; Swisher, S. Increased 5-lipoxygenase expression and induction of apoptosis by its inhibitors in esophageal cancer: A potential target for prevention. Carcinogenesis 2005, 26, 785–791. [Google Scholar] [CrossRef]
- Romano, M.; Clària, J. Cyclooxygenase-2 and 5-lipoxygenase converging functions on cell proliferation and tumor angiogenesis: Implications for cancer therapy. FASEB J. 2003, 17, 1986–1995. [Google Scholar] [CrossRef]
- Romano, M.; Catalano, A.; Nutini, M.; D’Urbano, E.; Crescenzi, C.; Claria, J.; Libner, R.; Davi, G.; Procopio, A. 5-Lipoxygenase regulates malignant mesothelial cell survival: Involvement of vascular endothelial growth factor. FASEB J. 2001, 15, 2326–2336. [Google Scholar] [CrossRef]
- Gamero, A.M.; Young, H.A.; Wiltrout, R.H. Inactivation of Stat3 in tumor cells: Releasing a brake on immune responses against cancer? Cancer Cell 2004, 5, 111–112. [Google Scholar] [CrossRef]
- Johnston, P.A.; Grandis, J.R. STAT3 SIGNALING: Anticancer Strategies and Challenges. Mol. Interv. 2011, 11, 18–26. [Google Scholar] [CrossRef]
- Chen, J.; Wang, J.; Lin, L.; He, L.; Wu, Y.; Zhang, L.; Yi, Z.; Chen, Y.; Pang, X.; Liu, M. Inhibition of STAT3 Signaling Pathway by Nitidine Chloride Suppressed the Angiogenesis and Growth of Human Gastric Cancer. Mol. Cancer Ther. 2012, 11, 277–287. [Google Scholar] [CrossRef] [PubMed]
- Rahman, N.; Khan, H.; Zia, A.; Khan, A.; Fakhri, S.; Aschner, M.; Gul, K.; Saso, L. Bcl-2 Modulation in p53 Signaling Pathway by Flavonoids: A Potential Strategy towards the Treatment of Cancer. Int. J. Mol. Sci. 2021, 22, 11315. [Google Scholar] [CrossRef] [PubMed]
- Macharia, J.M.; Mwangi, R.W.; Szabó, I.; Zand, A.; Kaposztas, Z.; Varjas, T.; Rozmann, N.; Raposa, B.L. Regulatory activities of Warbugia ugandensis ethanolic extracts on colorectal cancer-specific genome expression dose-dependently. Biomed. Pharmacother. 2023, 166, 115325. [Google Scholar] [CrossRef] [PubMed]
- Ezziyyani, M. Advances in Intelligent Systems and Computing 1103 Advanced Intelligent Systems for Sustainable Development (AI2SD’2019) Volume 2-Advanced Intelligent Systems for Sustainable Development Applied to Agriculture and Health, Conference Proceeding Held in Marrakech, Morocco, from 8 to 11 July 2019. Available online: https://link.springer.com/conference/aisd (accessed on 18 May 2023).
- Lindsey, K.L.; Jäger, A.K.; Viljoen, A.M.; van Wyk, B.-E. Cyclooxygenase inhibitory activity of Aloe species. S. Afr. J. Bot. 2002, 68, 47–50. [Google Scholar] [CrossRef]
- Luo, X.; Zhang, H.; Wei, X.; Shi, M.; Fan, P.; Xie, W.; Zhang, Y.; Xu, N. Aloin Suppresses Lipopolysaccharide-Induced Inflammatory Response and Apoptosis by Inhibiting the Activation of NF-κB. Molecules 2018, 23, 517. [Google Scholar] [CrossRef]
- Capes, I.C.; Universidade, U.; Lib, D. Copyrighted I. Inhibitory, and Free Radical Scavenging Effects of Rumex nepalensis. Planta Medicaica 2010, 1564–1569. [Google Scholar]
- Park, M.-Y.; Kwon, H.-J.; Sung, M.-K. Evaluation of Aloin and Aloe-Emodin as Anti-Inflammatory Agents in Aloe by Using Murine Macrophages. Biosci. Biotechnol. Biochem. 2009, 73, 828–832. [Google Scholar] [CrossRef]
Plant | Phytoconstituents Present in Roots | Phytoconstituents Present in Leaves | Ref. |
---|---|---|---|
Aloe secundiflora | Anthraquinones (Chrysophanol, Helminthosporin, Aloe-emodin, Aloesaponarin II, and Aloesaponarin I), laccaic acid D, methyl ester, and asphodelin. Naphthoquinones (5-hydroxy-3,6-dimethoxy-2-methylnaphthalene-1,4-dione and 5,8-dihydroxy-3-methoxy-2-methylnaphthalene-1,4-dione) | Phenols such as anthrones (aloenin, aloenin B, isobarbaloin, barbaloin, and other aloin derivatives), chromones and phenylpyrones, Alkaloids, Saponin, Tannins, Flavonoids (nthoxanthins, flavanones, flavanols, flavans, and anthocyanidin), Steroids, Cardiac Glycosides, Aloeresin, Anthraquinones Aloin, Hydro-xyaloins, Polyphenols, and Terpenoids | [14,15,16,19,20,21] |
Primer ID | Forward Primer | Reverse Primer |
---|---|---|
COX-2 | CGGTGAAACTCTGGCTAGACAG | GCAAACCGTAGATGCTCAGGGA |
5-LOX | GGAGAACCTGTTCATCAACCGC | CAGGTCTTCCTGCCAGTGATTC |
Bcl2 | ATCGCCCTGTGGATGACTGAGT | GCCAGGAGAAATCAAACAGAGGC |
Bcl-xL | GCCACTTACCTGAATGACCACC | AACCAGCGGTTGAAGCGTTCCT |
Casp9 | GTTTGAGGACCTTCGACCAGCT | CAACGTACCAGGAGCCACTCTT |
HPRT1 | TGCTTCTCCTCAGCTTCA | CTCAGGAGGAGGAAGCC |
Dependent Variable | (I) Conc | (J) Conc | Mean Difference (I–J) | Std. Error | Sig. | 95% Confidence Interval | |
---|---|---|---|---|---|---|---|
Lower Bound | Upper Bound | ||||||
COX2 | 0.00 | 0.50 | −0.0011000 | 0.0050780 | 0.996 | −0.017362 | 0.015162 |
1.00 | −0.0030333 | 0.0050780 | 0.930 | −0.019295 | 0.013228 | ||
2.00 | −0.0018333 | 0.0050780 | 0.983 | −0.018095 | 0.014428 | ||
0.50 | 0.00 | 0.0011000 | 0.0050780 | 0.996 | −0.015162 | 0.017362 | |
1.00 | −0.0019333 | 0.0050780 | 0.980 | −0.018195 | 0.014328 | ||
2.00 | −0.0007333 | 0.0050780 | 0.999 | −0.016995 | 0.015528 | ||
1.00 | 0.00 | 0.0030333 | 0.0050780 | 0.930 | −0.013228 | 0.019295 | |
0.50 | 0.0019333 | 0.0050780 | 0.980 | −0.014328 | 0.018195 | ||
2.00 | 0.0012000 | 0.0050780 | 0.995 | −0.015062 | 0.017462 | ||
2.00 | 0.00 | 0.0018333 | 0.0050780 | 0.983 | −0.014428 | 0.018095 | |
0.50 | 0.0007333 | 0.0050780 | 0.999 | −0.015528 | 0.016995 | ||
1.00 | −0.0012000 | 0.0050780 | 0.995 | −0.017462 | 0.015062 | ||
Lox5 | 0.00 | 0.50 | 0.2052000 * | 0.0596828 | 0.036 | 0.014075 | 0.396325 |
1.00 | 0.2887667 * | 0.0596828 | 0.006 | 0.097641 | 0.479892 | ||
2.00 | 0.3763333 * | 0.0596828 | 0.001 | 0.185208 | 0.567459 | ||
0.50 | 0.00 | −0.2052000 * | 0.0596828 | 0.036 | −0.396325 | −0.014075 | |
1.00 | 0.0835667 | 0.0596828 | 0.533 | −0.107559 | 0.274692 | ||
2.00 | 0.1711333 | 0.0596828 | 0.080 | −0.019992 | 0.362259 | ||
1.00 | 0.00 | −0.2887667 * | 0.0596828 | 0.006 | −0.479892 | −0.097641 | |
0.50 | −0.0835667 | 0.0596828 | 0.533 | −0.274692 | 0.107559 | ||
2.00 | 0.0875667 | 0.0596828 | 0.497 | −0.103559 | 0.278692 | ||
2.00 | 0.00 | −0.3763333 * | 0.0596828 | 0.001 | −0.567459 | −0.185208 | |
0.50 | −0.1711333 | 0.0596828 | 0.080 | −0.362259 | 0.019992 | ||
1.00 | −0.0875667 | 0.0596828 | 0.497 | −0.278692 | 0.103559 | ||
Bcl2 | 0.00 | 0.50 | −0.0001333 | 0.0007605 | 0.998 | −0.002569 | 0.002302 |
1.00 | 0.0003333 | 0.0007605 | 0.970 | −0.002102 | 0.002769 | ||
2.00 | 0.0014333 | 0.0007605 | 0.306 | −0.001002 | 0.003869 | ||
0.50 | 0.00 | 0.0001333 | 0.0007605 | 0.998 | −0.002302 | 0.002569 | |
1.00 | 0.0004667 | 0.0007605 | 0.925 | −0.001969 | 0.002902 | ||
2.00 | 0.0015667 | 0.0007605 | 0.244 | −0.000869 | 0.004002 | ||
1.00 | 0.00 | −0.0003333 | 0.0007605 | 0.970 | −0.002769 | 0.002102 | |
0.50 | −0.0004667 | 0.0007605 | 0.925 | −0.002902 | 0.001969 | ||
2.00 | 0.0011000 | 0.0007605 | 0.508 | −0.001335 | 0.003535 | ||
2.00 | 0.00 | −0.0014333 | 0.0007605 | 0.306 | −0.003869 | 0.001002 | |
0.50 | −0.0015667 | 0.0007605 | 0.244 | −0.004002 | 0.000869 | ||
1.00 | −0.0011000 | 0.0007605 | 0.508 | −0.003535 | 0.001335 | ||
Bcl-xL | 0.00 | 0.50 | −0.7222000 | 0.4281958 | 0.389 | −2.093434 | 0.649034 |
1.00 | −0.2432333 | 0.4281958 | 0.939 | −1.614467 | 1.128000 | ||
2.00 | 0.0371000 | 0.4281958 | 1.000 | −1.334134 | 1.408334 | ||
0.50 | 0.00 | 0.7222000 | 0.4281958 | 0.389 | −0.649034 | 2.093434 | |
1.00 | 0.4789667 | 0.4281958 | 0.689 | −0.892267 | 1.850200 | ||
2.00 | 0.7593000 | 0.4281958 | 0.351 | −0.611934 | 2.130534 | ||
1.00 | 0.00 | 0.2432333 | 0.4281958 | 0.939 | −1.128000 | 1.614467 | |
0.50 | −0.4789667 | 0.4281958 | 0.689 | −1.850200 | 0.892267 | ||
2.00 | 0.2803333 | 0.4281958 | 0.911 | −1.090900 | 1.651567 | ||
2.00 | 0.00 | −0.0371000 | 0.4281958 | 1.000 | −1.408334 | 1.334134 | |
0.50 | −0.7593000 | 0.4281958 | 0.351 | −2.130534 | 0.611934 | ||
1.00 | −0.2803333 | 0.4281958 | 0.911 | −1.651567 | 1.090900 | ||
CASPS9 | 0.00 | 0.50 | 0.8094667 * | 0.1002133 | 0.000 | .488548 | 1.130385 |
1.00 | 0.7833000 * | 0.1002133 | 0.000 | .462382 | 1.104218 | ||
2.00 | 0.7052000 * | 0.1002133 | 0.000 | .384282 | 1.026118 | ||
0.50 | 0.00 | −0.8094667 * | 0.1002133 | 0.000 | −1.130385 | −0.488548 | |
1.00 | −0.0261667 | 0.1002133 | 0.993 | −0.347085 | 0.294752 | ||
2.00 | −0.1042667 | 0.1002133 | 0.732 | −0.425185 | 0.216652 | ||
1.00 | 0.00 | −0.7833000 * | 0.1002133 | 0.000 | −1.104218 | −0.462382 | |
0.50 | 0.0261667 | 0.1002133 | 0.993 | −0.294752 | 0.347085 | ||
2.00 | −0.0781000 | 0.1002133 | 0.862 | −0.399018 | 0.242818 | ||
2.00 | 0.00 | −0.7052000 * | 0.1002133 | 0.000 | −1.026118 | −0.384282 | |
0.50 | 0.1042667 | 0.1002133 | 0.732 | −0.216652 | 0.425185 | ||
1.00 | 0.0781000 | 0.1002133 | 0.862 | −0.242818 | 0.399018 |
Target Genes | Sum of Squares | df | Mean Square | F | Sig. | |
---|---|---|---|---|---|---|
COX2 | Between Groups | 0.000 | 3 | 0.000 | 0.126 | 0.942 |
Within Groups | 0.000 | 8 | 0.000 | |||
Total | 0.000 | 11 | ||||
Lox5 | Between Groups | 0.233 | 3 | 0.078 | 14.554 | 0.001 |
Within Groups | 0.043 | 8 | 0.005 | |||
Total | 0.276 | 11 | ||||
Bcl2 | Between Groups | 0.000 | 3 | 0.000 | 1.748 | 0.235 |
Within Groups | 0.000 | 8 | 0.000 | |||
Total | 0.000 | 11 | ||||
Bcl-xL | Between Groups | 1.100 | 3 | 0.367 | 1.333 | 0.330 |
Within Groups | 2.200 | 8 | 0.275 | |||
Total | 3.300 | 11 | ||||
Caspase9 | Between Groups | 1.338 | 3 | 0.446 | 29.603 | 0.000 |
Within Groups | 0.121 | 8 | 0.015 | |||
Total | 1.458 | 11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Macharia, J.M.; Varjas, T.; Mwangi, R.W.; Káposztás, Z.; Rozmann, N.; Pintér, M.; Wagara, I.N.; Raposa, B.L. Modulatory Properties of Aloe secundiflora’s Methanolic Extracts on Targeted Genes in Colorectal Cancer Management. Cancers 2023, 15, 5002. https://doi.org/10.3390/cancers15205002
Macharia JM, Varjas T, Mwangi RW, Káposztás Z, Rozmann N, Pintér M, Wagara IN, Raposa BL. Modulatory Properties of Aloe secundiflora’s Methanolic Extracts on Targeted Genes in Colorectal Cancer Management. Cancers. 2023; 15(20):5002. https://doi.org/10.3390/cancers15205002
Chicago/Turabian StyleMacharia, John M., Timea Varjas, Ruth W. Mwangi, Zsolt Káposztás, Nóra Rozmann, Márton Pintér, Isabel N. Wagara, and Bence L. Raposa. 2023. "Modulatory Properties of Aloe secundiflora’s Methanolic Extracts on Targeted Genes in Colorectal Cancer Management" Cancers 15, no. 20: 5002. https://doi.org/10.3390/cancers15205002
APA StyleMacharia, J. M., Varjas, T., Mwangi, R. W., Káposztás, Z., Rozmann, N., Pintér, M., Wagara, I. N., & Raposa, B. L. (2023). Modulatory Properties of Aloe secundiflora’s Methanolic Extracts on Targeted Genes in Colorectal Cancer Management. Cancers, 15(20), 5002. https://doi.org/10.3390/cancers15205002