Unlocking Colchicine’s Untapped Potential: A Paradigm Shift in Hepatocellular Carcinoma Prevention
Abstract
:Simple Summary
Abstract
1. Introduction
1.1. Background
1.2. Microtubules and Colchicine’s Action
1.3. Colchicine in Cancer Treatment
1.4. Objective
2. Methods
3. Results
4. Discussion
5. Strengths and Limitations
6. Implications
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hsu, Y.C.; Huang, D.Q.; Nguyen, M.H. Global burden of hepatitis B virus: Current status, missed opportunities and a call for action. Nat. Rev. Gastroenterol. Hepatol. 2023, 20, 524–537. [Google Scholar] [CrossRef]
- Tan, M.; Bhadoria, A.S.; Cui, F.; Tan, A.; Van Holten, J.; Easterbrook, P.; Ford, N.; Han, Q.; Lu, Y.; Bulterys, M.; et al. Estimating the proportion of people with chronic hepatitis B virus infection eligible for hepatitis B antiviral treatment worldwide: A systematic review and meta-analysis. Lancet Gastroenterol. Hepatol. 2021, 6, 106–119. [Google Scholar] [CrossRef]
- Acute Hepatitis. Available online: https://www.cdc.gov.tw/En/Category/ListContent/bg0g_VU_Ysrgkes_KRUDgQ?uaid=gvF-US_HVAZXQLg1VUXkTw (accessed on 1 September 2023).
- Punia, S.; Nair, S.; Shetty, R.S. Health Care Workers and Standard Precautions: Perceptions and Determinants of Compliance in the Emergency and Trauma Triage of a Tertiary Care Hospital in South India. Int. Sch. Res. Not. 2014, 2014, 685072. [Google Scholar] [CrossRef]
- Pappas, S.C.; Fisher, M.M. Preventing hepatitis B in health care workers. Can. Fam. Physician Med. Fam. Can. 1985, 31, 1941–1944. [Google Scholar]
- Hepatitis B. Available online: https://www.who.int/news-room/fact-sheets/detail/hepatitis-b (accessed on 1 September 2023).
- Tian, Y.; Hu, D.; Li, Y.; Yang, L. Development of therapeutic vaccines for the treatment of diseases. Mol. Biomed. 2022, 3, 40. [Google Scholar] [CrossRef]
- Dasgeb, B.; Kornreich, D.; McGuinn, K.; Okon, L.; Brownell, I.; Sackett, D.L. Colchicine: An ancient drug with novel applications. Br. J. Dermatol. 2018, 178, 350–356. [Google Scholar] [CrossRef]
- Zhang, F.S.; He, Q.Z.; Qin, C.H.; Little, P.J.; Weng, J.P.; Xu, S.W. Therapeutic potential of colchicine in cardiovascular medicine: A pharmacological review. Acta Pharmacol. Sin. 2022, 43, 2173–2190. [Google Scholar] [CrossRef]
- Leung, Y.Y.; Yao Hui, L.L.; Kraus, V.B. Colchicine—Update on mechanisms of action and therapeutic uses. Semin. Arthritis Rheum. 2015, 45, 341–350. [Google Scholar] [CrossRef]
- Dalbeth, N.; Lauterio, T.J.; Wolfe, H.R. Mechanism of action of colchicine in the treatment of gout. Clin. Ther. 2014, 36, 1465–1479. [Google Scholar] [CrossRef]
- Kerfant, B.G.; Vassort, G.; Gomez, A.M. Microtubule disruption by colchicine reversibly enhances calcium signaling in intact rat cardiac myocytes. Circ. Res. 2001, 88, E59–E65. [Google Scholar] [CrossRef]
- Parker, A.L.; Kavallaris, M.; McCarroll, J.A. Microtubules and their role in cellular stress in cancer. Front. Oncol. 2014, 4, 153. [Google Scholar] [CrossRef] [PubMed]
- Dhyani, P.; Quispe, C.; Sharma, E.; Bahukhandi, A.; Sati, P.; Attri, D.C.; Szopa, A.; Sharifi-Rad, J.; Docea, A.O.; Mardare, I.; et al. Anticancer potential of alkaloids: A key emphasis to colchicine, vinblastine, vincristine, vindesine, vinorelbine and vincamine. Cancer Cell Int. 2022, 22, 206. [Google Scholar] [CrossRef] [PubMed]
- Zhang, T.; Chen, W.; Jiang, X.; Liu, L.; Wei, K.; Du, H.; Wang, H.; Li, J. Anticancer effects and underlying mechanism of Colchicine on human gastric cancer cell lines in vitro and in vivo. Biosci. Rep. 2019, 39, BSR20181802. [Google Scholar] [CrossRef] [PubMed]
- Forkosh, E.; Kenig, A.; Ilan, Y. Introducing variability in targeting the microtubules: Review of current mechanisms and future directions in colchicine therapy. Pharmacol. Res. Perspect. 2020, 8, e00616. [Google Scholar] [CrossRef]
- Ilan, Y. Microtubules: From understanding their dynamics to using them as potential therapeutic targets. J. Cell Physiol. 2019, 234, 7923–7937. [Google Scholar] [CrossRef]
- Prassanawar, S.S.; Panda, D. Tubulin heterogeneity regulates functions and dynamics of microtubules and plays a role in the development of drug resistance in cancer. Biochem. J. 2019, 476, 1359–1376. [Google Scholar] [CrossRef]
- Diao, L.; Liu, M.Y.; Song, Y.L.; Zhang, X.; Liang, X.; Bao, L. alpha1A and alpha1C form microtubules to display distinct properties mainly mediated by their C-terminal tails. J. Mol. Cell Biol. 2022, 13, 864–875. [Google Scholar] [CrossRef]
- Fletcher, D.A.; Mullins, R.D. Cell mechanics and the cytoskeleton. Nature 2010, 463, 485–492. [Google Scholar] [CrossRef]
- Ali, I.; Yang, W.C. The functions of kinesin and kinesin-related proteins in eukaryotes. Cell Adhes. Migr. 2020, 14, 139–152. [Google Scholar] [CrossRef]
- Schukken, K.M.; Lin, Y.C.; Bakker, P.L.; Schubert, M.; Preuss, S.F.; Simon, J.E.; van den Bos, H.; Storchova, Z.; Colome-Tatche, M.; Bastians, H.; et al. Altering microtubule dynamics is synergistically toxic with spindle assembly checkpoint inhibition. Life Sci. Alliance 2020, 3, e201900499. [Google Scholar] [CrossRef]
- Holland, A.J.; Cleveland, D.W. Boveri revisited: Chromosomal instability, aneuploidy and tumorigenesis. Nat. Rev. Mol. Cell Biol. 2009, 10, 478–487. [Google Scholar] [CrossRef]
- Lukow, D.A.; Sausville, E.L.; Suri, P.; Chunduri, N.K.; Wieland, A.; Leu, J.; Smith, J.C.; Girish, V.; Kumar, A.A.; Kendall, J.; et al. Chromosomal instability accelerates the evolution of resistance to anti-cancer therapies. Dev. Cell 2021, 56, 2427–2439.e4. [Google Scholar] [CrossRef]
- Cronstein, B.N.; Molad, Y.; Reibman, J.; Balakhane, E.; Levin, R.I.; Weissmann, G. Colchicine alters the quantitative and qualitative display of selectins on endothelial cells and neutrophils. J. Clin. Investig. 1995, 96, 994–1002. [Google Scholar] [CrossRef]
- Wordeman, L.; Vicente, J.J. Microtubule Targeting Agents in Disease: Classic Drugs, Novel Roles. Cancers 2021, 13, 5650. [Google Scholar] [CrossRef] [PubMed]
- Mukhtar, E.; Adhami, V.M.; Mukhtar, H. Targeting microtubules by natural agents for cancer therapy. Mol. Cancer Ther. 2014, 13, 275–284. [Google Scholar] [CrossRef] [PubMed]
- Cermak, V.; Dostal, V.; Jelinek, M.; Libusova, L.; Kovar, J.; Rosel, D.; Brabek, J. Microtubule-targeting agents and their impact on cancer treatment. Eur. J. Cell Biol. 2020, 99, 151075. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Chen, J.; Xiao, M.; Li, W.; Miller, D.D. An overview of tubulin inhibitors that interact with the colchicine binding site. Pharm. Res. 2012, 29, 2943–2971. [Google Scholar] [CrossRef]
- Dumontet, C.; Jordan, M.A. Microtubule-binding agents: A dynamic field of cancer therapeutics. Nat. Rev. Drug Discov. 2010, 9, 790–803. [Google Scholar] [CrossRef]
- Cheng, Z.; Lu, X.; Feng, B. A review of research progress of antitumor drugs based on tubulin targets. Transl. Cancer Res. 2020, 9, 4020–4027. [Google Scholar] [CrossRef]
- McLoughlin, E.C.; O’Boyle, N.M. Colchicine-Binding Site Inhibitors from Chemistry to Clinic: A Review. Pharmaceuticals 2020, 13, 8. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.Y.; Kuo, C.H.; Wu, D.C.; Chuang, W.L. Anticancer effects of clinically acceptable colchicine concentrations on human gastric cancer cell lines. Kaohsiung J. Med. Sci. 2016, 32, 68–73. [Google Scholar] [CrossRef]
- Lin, Z.Y.; Wu, C.C.; Chuang, Y.H.; Chuang, W.L. Anti-cancer mechanisms of clinically acceptable colchicine concentrations on hepatocellular carcinoma. Life Sci. 2013, 93, 323–328. [Google Scholar] [CrossRef]
- Flores, J.E.; Thompson, A.J.; Ryan, M.; Howell, J. The Global Impact of Hepatitis B Vaccination on Hepatocellular Carcinoma. Vaccines 2022, 10, 793. [Google Scholar] [CrossRef] [PubMed]
- Kao, J.H. Hepatitis B vaccination and prevention of hepatocellular carcinoma. Best Pract. Res. Clin. Gastroenterol. 2015, 29, 907–917. [Google Scholar] [CrossRef] [PubMed]
- Adham Foumani, E.; Irani, S.; Shokoohinia, Y.; Mostafaie, A. Colchicine of Colchicum autumnale, A Traditional Anti-Inflammatory Medicine, Induces Apoptosis by Activation of Apoptotic Genes and Proteins Expression in Human Breast (MCF-7) and Mouse Breast (4T1) Cell Lines. Cell J. 2022, 24, 647–656. [Google Scholar] [CrossRef] [PubMed]
- iHi Data Platform. Available online: https://www.cmuh.cmu.edu.tw/CMUHPagesDetail/BigDataCenter/iHiDataPlatform (accessed on 1 September 2023).
- Wu, E.M.; Wong, L.L.; Hernandez, B.Y.; Ji, J.F.; Jia, W.; Kwee, S.A.; Kalathil, S. Gender differences in hepatocellular cancer: Disparities in nonalcoholic fatty liver disease/steatohepatitis and liver transplantation. Hepatoma Res. 2018, 4, 66. [Google Scholar] [CrossRef]
- Nevola, R.; Tortorella, G.; Rosato, V.; Rinaldi, L.; Imbriani, S.; Perillo, P.; Mastrocinque, D.; La Montagna, M.; Russo, A.; Di Lorenzo, G.; et al. Gender Differences in the Pathogenesis and Risk Factors of Hepatocellular Carcinoma. Biology 2023, 12, 984. [Google Scholar] [CrossRef]
- Onikanni, S.A.; Lawal, B.; Bakare, O.S.; Ajiboye, B.O.; Ojo, O.A.; Farasani, A.; Kabrah, S.M.; Batiha, G.E.; Conte-Junior, C.A. Cancer of the Liver and its Relationship with Diabetes mellitus. Technol. Cancer Res. Treat. 2022, 21, 15330338221119743. [Google Scholar] [CrossRef]
- Mantovani, A.; Targher, G. Type 2 diabetes mellitus and risk of hepatocellular carcinoma: Spotlight on nonalcoholic fatty liver disease. Ann. Transl. Med. 2017, 5, 270. [Google Scholar] [CrossRef]
- Li, X.; Wang, X.; Gao, P. Diabetes Mellitus and Risk of Hepatocellular Carcinoma. BioMed Res. Int. 2017, 2017, 5202684. [Google Scholar] [CrossRef]
- Ali Kamkar, M.M.; Ahmad, R.; Alsmadi, O.; Behbehani, K. Insight into the impact of diabetes mellitus on the increased risk of hepatocellular carcinoma: Mini-review. J. Diabetes Metab. Disord. 2014, 13, 57. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Cui, Z.; Zhu, J.; Zhou, P.; Cao, X.; Li, X.; Ma, Y.; He, Q. Colchicine inhibits the proliferation and promotes the apoptosis of papillary thyroid carcinoma cells likely due to the inhibitory effect on HDAC1. Biochem. Biophys. Res. Commun. 2023, 679, 129–138. [Google Scholar] [CrossRef] [PubMed]
Variables | Non-Colchicine | Colchicine | SMD | ||
---|---|---|---|---|---|
(N = 10,353) | (N = 10,353) | ||||
n | % | n | % | ||
Sex | |||||
female | 3196 | 30.87 | 3206 | 30.97 | 0.0021 |
male | 7157 | 69.13 | 7147 | 69.03 | 0.0021 |
Age | |||||
20–40 | 1531 | 14.79 | 1617 | 15.62 | 0.0231 |
41–60 | 4346 | 41.98 | 4477 | 43.24 | 0.0256 |
61–80 | 4476 | 43.23 | 4259 | 41.14 | 0.0425 |
mean age, (SD) | 56.29 | 15.15 | 55.61 | 15.07 | 0.0448 |
Comorbidities | |||||
Diabetes mellitus | 3514 | 33.94 | 3383 | 32.68 | 0.0268 |
Psychoactive substance | 513 | 4.96 | 522 | 5.04 | 0.004 |
Obesity | 172 | 1.66 | 216 | 2.09 | 0.0313 |
Mycoses | 3065 | 29.6 | 3025 | 29.22 | 0.0085 |
Gout | 4598 | 44.41 | 4525 | 43.71 | 0.0142 |
Characteristic | Non-Liver Cancer | Liver Cancer | Univariate Adjusted | Multivariable Adjusted | ||||||
---|---|---|---|---|---|---|---|---|---|---|
n | % | n | % | Crude OR | (95% CI) | p-Value | Adjusted OR | Adjusted OR (95% CI) | p-Value | |
Non-use of COL | 10,027 | 49.84 | 326 | 55.537 | 1 | (reference) | 1 | (reference) | ||
COL | 10,092 | 50.16 | 261 | 44.463 | 0.8 | (0.67, 0.94) ** | 0.007 | 0.81 | (0.69, 0.96) * | 0.01 |
Gender | ||||||||||
Female | 6245 | 31.04 | 157 | 26.746 | 1 | (reference) | 1 | (reference) | ||
Male | 13,874 | 68.96 | 430 | 73.254 | 1.23 | (1.02, 1.48) * | 0.03 | 1.65 | (1.36, 2) *** | <0.001 |
Age group | ||||||||||
20–40 | 3130 | 15.56 | 18 | 3.066 | 1 | (reference) | 1 | (reference) | ||
41–60 | 8623 | 42.86 | 200 | 34.072 | 4.03 | (2.48, 6.54) *** | <0.001 | 4.41 | (2.71, 7.17) *** | <0.001 |
61–80 | 8366 | 41.58 | 369 | 62.862 | 7.67 | (4.77, 12.33) *** | <0.001 | 9.14 | (5.64, 14.82) *** | <0.001 |
Comorbidities (Yes vs. No) | ||||||||||
Diabetes mellitus | 6650 | 33.05 | 247 | 42.078 | 1.47 | (1.25, 1.74) *** | <0.001 | 1.25 | (1.05, 1.49) * | 0.01 |
Psychoactive substance | 1002 | 4.98 | 33 | 5.622 | 1.14 | (0.8, 1.62) | 0.48 | 1.32 | (0.92, 1.9) | 0.14 |
Obesity | 382 | 1.9 | 6 | 1.022 | 0.53 | (0.24, 1.2) | 0.13 | 0.72 | (0.32, 1.63) | 0.43 |
Mycoses | 5945 | 29.55 | 145 | 24.702 | 0.78 | (0.65, 0.95) * | 0.01 | 0.77 | (0.64, 0.93) ** | 0.008 |
Gout | 8905 | 44.26 | 218 | 37.138 | 0.74 | (0.63, 0.88) *** | <0.001 | 0.64 | (0.54, 0.76) *** | <0.001 |
Variables | LC | Crude OR | (95% CI) | Adjusted OR | Adjusted OR (95% CI) | |
---|---|---|---|---|---|---|
n | % | |||||
Non-Colchicine | 326 | 55.54 | 1 | (Reference) | 1 | (Reference) |
Colchicine drug days | ||||||
28–60 | 91 | 15.5 | 0.82 | (0.65, 1.04) | 0.83 | (0.66, 1.06) |
61–120 | 63 | 10.73 | 0.86 | (0.65, 1.12) | 0.9 | (0.68, 1.18) |
>120 | 107 | 18.23 | 0.75 | (0.6, 0.93) ** | 0.75 | (0.6, 0.94) * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lin, J.-J.; Lin, C.-L.; Chen, C.-C.; Lin, Y.-H.; Cho, D.-Y.; Chen, X.; Chen, D.-C.; Chen, H.-Y. Unlocking Colchicine’s Untapped Potential: A Paradigm Shift in Hepatocellular Carcinoma Prevention. Cancers 2023, 15, 5031. https://doi.org/10.3390/cancers15205031
Lin J-J, Lin C-L, Chen C-C, Lin Y-H, Cho D-Y, Chen X, Chen D-C, Chen H-Y. Unlocking Colchicine’s Untapped Potential: A Paradigm Shift in Hepatocellular Carcinoma Prevention. Cancers. 2023; 15(20):5031. https://doi.org/10.3390/cancers15205031
Chicago/Turabian StyleLin, Jung-Ju, Cheng-Li Lin, Chun-Chung Chen, Yu-Hsiang Lin, Der-Yang Cho, XianXiu Chen, Der-Cherng Chen, and Hung-Yao Chen. 2023. "Unlocking Colchicine’s Untapped Potential: A Paradigm Shift in Hepatocellular Carcinoma Prevention" Cancers 15, no. 20: 5031. https://doi.org/10.3390/cancers15205031
APA StyleLin, J. -J., Lin, C. -L., Chen, C. -C., Lin, Y. -H., Cho, D. -Y., Chen, X., Chen, D. -C., & Chen, H. -Y. (2023). Unlocking Colchicine’s Untapped Potential: A Paradigm Shift in Hepatocellular Carcinoma Prevention. Cancers, 15(20), 5031. https://doi.org/10.3390/cancers15205031