Digital Spatial Profiling Identifies the Tumor Periphery as a Highly Active Biological Niche in Clear Cell Renal Cell Carcinoma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Patients and Methods
2.1. Patient Samples and Targeted Next-Generation Sequencing (NGS)
2.2. Digital Spatial Profiling
2.3. Immunohistochemical Staining
2.4. Statistical Analysis and R Packages
3. Results
3.1. DSP of Protein Expression Identifies the Tumor Periphery as an Intratumoral Niche with Upregulation of Various Signaling Nodes and a Unique Cellular Contexture
3.2. Granzyme B Upregulation Characterizes the Tumor Periphery in a Subset of ccRCCs and Correlates with Disease Progression
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Turajlic, S.; Xu, H.; Litchfield, K.; Rowan, A.; Horswell, S.; Chambers, T.; O’Brien, T.; Lopez, J.I.; Watkins, T.B.K.; Nicol, D.; et al. TRACERx Renal Consortium Deterministic Evolutionary Trajectories Influence Primary Tumor Growth: TRACERx Renal. Cell 2018, 173, 595–610.e11. [Google Scholar] [CrossRef] [PubMed]
- Gerlinger, M.; Rowan, A.J.; Horswell, S.; Larkin, J.; Endesfelder, D.; Gronroos, E.; Martinez, P.; Matthews, N.; Stewart, A.; Tarpey, P.; et al. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 2012, 366, 883–892. [Google Scholar] [CrossRef] [PubMed]
- Cahill, D.P.; Kinzler, K.W.; Vogelstein, B.; Lengauer, C. Genetic instability and darwinian selection in tumours. Trends Cell Biol. 1999, 9, M57–M60. [Google Scholar] [CrossRef] [PubMed]
- Marusyk, A.; Almendro, V.; Polyak, K. Intra-tumour heterogeneity: A looking glass for cancer? Nat. Rev. Cancer 2012, 12, 323–334. [Google Scholar] [CrossRef]
- Li, Z.; Seehawer, M.; Polyak, K. Untangling the web of intratumour heterogeneity. Nat. Cell Biol. 2022, 24, 1192–1201. [Google Scholar] [CrossRef]
- Pohl, L.; Friedhoff, J.; Jurcic, C.; Teroerde, M.; Schindler, I.; Strepi, K.; Schneider, F.; Kaczorowski, A.; Hohenfellner, M.; Duensing, A.; et al. Kidney Cancer Models for Pre-Clinical Drug Discovery: Challenges and Opportunities. Front. Oncol. 2022, 12, 889686. [Google Scholar] [CrossRef]
- Hoefflin, R.; Lahrmann, B.; Warsow, G.; Hübschmann, D.; Spath, C.; Walter, B.; Chen, X.; Hofer, L.; Macher-Goeppinger, S.; Tolstov, Y.; et al. Spatial niche formation but not malignant progression is a driving force for intratumoural heterogeneity. Nat. Commun. 2016, 7, ncomms11845. [Google Scholar] [CrossRef]
- Hou, W.; Kaczorowski, A.; Lantwin, P.; Kippenberger, M.; Schütz, V.; Franke, D.; Dieffenbacher, S.C.; Hohenfellner, M.; Duensing, S. Microenvironment-Derived FGF-2 Stimulates Renal Cell Carcinoma Cell Proliferation through Modulation of p27Kip1: Implications for Spatial Niche Formation and Functional Intratumoral Heterogeneity. Pathobiology 2020, 87, 114–124. [Google Scholar] [CrossRef]
- Waclaw, B.; Bozic, I.; Pittman, M.E.; Hruban, R.H.; Vogelstein, B.; Nowak, M.A. A spatial model predicts that dispersal and cell turnover limit intratumour heterogeneity. Nature 2015, 525, 261–264. [Google Scholar] [CrossRef]
- Kim, Y.H.; Choi, Y.W.; Lee, J.; Soh, E.Y.; Kim, J.-H.; Park, T.J. Senescent tumor cells lead the collective invasion in thyroid cancer. Nat. Commun. 2017, 8, 15208–15214. [Google Scholar] [CrossRef]
- Schwarz, S.; Nientiedt, C.; Prigge, E.-S.; Kaczorowski, A.; Geisler, C.; Lucena Porcel, C.; von Knebel Doeberitz, M.; Hohenfellner, M.; Duensing, S. Senescent tumor cells are frequently present at the invasion front—implications for improving disease control in patients with locally advanced prostate cancer. Pathobiology 2023, 90, 312–321. [Google Scholar] [CrossRef] [PubMed]
- Krishna, C.; DiNatale, R.G.; Kuo, F.; Srivastava, R.M.; Vuong, L.; Chowell, D.; Gupta, S.; Vanderbilt, C.; Purohit, T.A.; Liu, M.; et al. Single-cell sequencing links multiregional immune landscapes and tissue-resident T cells in ccRCC to tumor topology and therapy efficacy. Cancer Cell 2021, 39, 662–677.e6. [Google Scholar] [CrossRef] [PubMed]
- Brück, O.; Lee, M.H.; Turkki, R.; Uski, I.; Penttilä, P.; Paavolainen, L.; Kovanen, P.; Järvinen, P.; Bono, P.; Pellinen, T.; et al. Spatial immunoprofiling of the intratumoral and peritumoral tissue of renal cell carcinoma patients. Mod. Pathol. 2021, 34, 2229–2241. [Google Scholar] [CrossRef]
- Şenbabaoğlu, Y.; Gejman, R.S.; Winer, A.G.; Liu, M.; Van Allen, E.M.; de Velasco, G.; Miao, D.; Ostrovnaya, I.; Drill, E.; Luna, A.; et al. Tumor immune microenvironment characterization in clear cell renal cell carcinoma identifies prognostic and immunotherapeutically relevant messenger RNA signatures. Genome Biol. 2016, 17, 231. [Google Scholar] [CrossRef]
- Friedhoff, J.; Schneider, F.; Jurcic, C.; Endris, V.; Kirchner, M.; Sun, A.; Bolnavu, I.; Pohl, L.; Teroerde, M.; Kippenberger, M.; et al. BAP1 and PTEN mutations shape the immunological landscape of clear cell renal cell carcinoma and reveal the intertumoral heterogeneity of T cell suppression: A proof-of-concept study. Cancer Immunol. Immunother. 2022, 72, 1603–1618. [Google Scholar] [CrossRef]
- Yuan, Z.; Yao, J. Harnessing computational spatial omics to explore the spatial biology intricacies. Semin. Cancer Biol. 2023, 95, 25–41. [Google Scholar] [CrossRef]
- Francisco-Cruz, A.; Rocha, P.; Reuben, A.; Krishnan, S.N.; Das, P.; Chen, R.; Quek, K.; Li, J.; Parra, E.R.; Solis, L.M.; et al. Analysis of Immune Intratumor Heterogeneity Highlights Immunoregulatory and Coinhibitory Lymphocytes as Hallmarks of Recurrence in Stage I Non-Small Cell Lung Cancer. Mod. Pathol. 2023, 36, 100028. [Google Scholar] [CrossRef]
- Cheng, J.; Han, Z.; Mehra, R.; Shao, W.; Cheng, M.; Feng, Q.; Ni, D.; Huang, K.; Cheng, L.; Zhang, J. Computational analysis of pathological images enables a better diagnosis of TFE3 Xp11.2 translocation renal cell carcinoma. Nat. Commun. 2020, 11, 1778–1779. [Google Scholar] [CrossRef]
- Mi, H.; Sivagnanam, S.; Betts, C.B.; Liudahl, S.M.; Jaffee, E.M.; Coussens, L.M.; Popel, A.S. Quantitative Spatial Profiling of Immune Populations in Pancreatic Ductal Adenocarcinoma Reveals Tumor Microenvironment Heterogeneity and Prognostic Biomarkers. Cancer Res. 2022, 82, 4359–4372. [Google Scholar] [CrossRef]
- Mi, H.; Bivalacqua, T.J.; Kates, M.; Seiler, R.; Black, P.C.; Popel, A.S.; Baras, A.S. Predictive models of response to neoadjuvant chemotherapy in muscle-invasive bladder cancer using nuclear morphology and tissue architecture. Cell Rep. Med. 2021, 2, 100382. [Google Scholar] [CrossRef]
- Nakhli, R.; Moghadam, P.A.; Mi, H.; Farahani, H.; Baras, A.; Gilks, B.; Bashashati, A. Sparse Multi-Modal Graph Transformer with Shared-Context Processing for Representation Learning of Giga-Pixel Images. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 18–22 June 2023; pp. 11547–11557. [Google Scholar]
- Merritt, C.R.; Ong, G.T.; Church, S.E.; Barker, K.; Danaher, P.; Geiss, G.; Hoang, M.; Jung, J.; Liang, Y.; McKay-Fleisch, J.; et al. Multiplex digital spatial profiling of proteins and RNA in fixed tissue. Nat. Biotechnol. 2020, 38, 586–599. [Google Scholar] [CrossRef]
- Van, T.M.; Blank, C.U. A user’s perspective on GeoMxTM digital spatial profiling. Immuno Oncol. Technol. 2019, 1, 11–18. [Google Scholar] [CrossRef] [PubMed]
- Bates, D.; Mächler, M.; Bolker, B.; Walker, S. Fitting Linear Mixed-Effects Models Using lme4. J. Stat. Soft. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- Gerlinger, M.; Horswell, S.; Larkin, J.; Rowan, A.J.; Salm, M.P.; Varela, I.; Fisher, R.; McGranahan, N.; Matthews, N.; Santos, C.R.; et al. Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing. Nat. Genet. 2014, 46, 225–233. [Google Scholar] [CrossRef] [PubMed]
- Polyak, K.; Haviv, I.; Campbell, I.G. Co-evolution of tumor cells and their microenvironment. Trends Genet. 2009, 25, 30–38. [Google Scholar] [CrossRef]
- Fu, X.; Zhao, Y.; Lopez, J.I.; Rowan, A.; Au, L.; Fendler, A.; Hazell, S.; Xu, H.; Horswell, S.; Shepherd, S.T.C.; et al. Spatial patterns of tumour growth impact clonal diversification in a computational model and the TRACERx Renal study. Nat. Ecol. Evol. 2022, 6, 88–102. [Google Scholar] [CrossRef]
- Miheecheva, N.; Postovalova, E.; Lyu, Y.; Ramachandran, A.; Bagaev, A.; Svekolkin, V.; Galkin, I.; Zyrin, V.; Maximov, V.; Lozinsky, Y.; et al. Multiregional single-cell proteogenomic analysis of ccRCC reveals cytokine drivers of intratumor spatial heterogeneity. Cell Rep. 2022, 40, 111180. [Google Scholar] [CrossRef]
- Hay, Z.L.Z.; Slansky, J.E. Granzymes: The Molecular Executors of Immune-Mediated Cytotoxicity. Int. J. Mol. Sci. 2022, 23, 1833. [Google Scholar] [CrossRef]
- Fridman, W.H.; Zitvogel, L.; Sautès-Fridman, C.; Kroemer, G. The immune contexture in cancer prognosis and treatment. Nat. Rev. Clin. Oncol. 2017, 14, 717–734. [Google Scholar] [CrossRef]
- Jiang, Y.; Li, Y.; Zhu, B. T-cell exhaustion in the tumor microenvironment. Cell Death Dis. 2015, 6, e1792. [Google Scholar] [CrossRef]
- Oudejans, J.J.; Jiwa, N.M.; Kummer, J.A.; Ossenkoppele, G.J.; van Heerde, P.; Baars, J.W.; Kluin, P.M.; Kluin-Nelemans, J.C.; van Diest, P.J.; Middeldorp, J.M.; et al. Activated cytotoxic T cells as prognostic marker in Hodgkin’s disease. Blood 1997, 89, 1376–1382. [Google Scholar] [CrossRef] [PubMed]
- Oudejans, J.J.; Harijadi, H.; Kummer, J.A.; Tan, I.B.; Bloemena, E.; Middeldorp, J.M.; Bladergroen, B.; Dukers, D.F.; Vos, W.; Meijer, C.J.L.M. High numbers of granzyme B/CD8-positive tumour-infiltrating lymphocytes in nasopharyngeal carcinoma biopsies predict rapid fatal outcome in patients treated with curative intent. J. Pathol. 2002, 198, 468–475. [Google Scholar] [CrossRef] [PubMed]
- ten Berge, R.L.; Dukers, D.F.; Oudejans, J.J.; Pulford, K.; Ossenkoppele, G.J.; de Jong, D.; Miseré, J.F.; Meijer, C.J. Adverse effects of activated cytotoxic T lymphocytes on the clinical outcome of nodal anaplastic large cell lymphoma. Blood 1999, 93, 2688–2696. [Google Scholar] [CrossRef] [PubMed]
- Heidegger, I.; Pircher, A.; Pichler, R. Targeting the Tumor Microenvironment in Renal Cell Cancer Biology and Therapy. Front. Oncol. 2019, 9, 490. [Google Scholar] [CrossRef]
- Galon, J.; Mlecnik, B.; Bindea, G.; Angell, H.K.; Berger, A.; Lagorce, C.; Lugli, A.; Zlobec, I.; Hartmann, A.; Bifulco, C.; et al. Towards the introduction of the “Immunoscore” in the classification of malignant tumours. J. Pathol. 2014, 232, 199–209. [Google Scholar] [CrossRef]
- Sadeghirad, H.; Liu, N.; Monkman, J.; Ma, N.; Cheikh, B.B.; Jhaveri, N.; Tan, C.W.; Warkiani, M.E.; Adams, M.N.; Nguyen, Q.; et al. Compartmentalized spatial profiling of the tumor microenvironment in head and neck squamous cell carcinoma identifies immune checkpoint molecules and tumor necrosis factor receptor superfamily members as biomarkers of response to immunotherapy. Front. Immunol. 2023, 14, 1135489. [Google Scholar] [CrossRef]
- Monkman, J.; Kim, H.; Mayer, A.; Mehdi, A.; Matigian, N.; Cumberbatch, M.; Bhagat, M.; Ladwa, R.; Mueller, S.N.; Adams, M.N.; et al. Multi-omic and spatial dissection of immunotherapy response groups in non-small cell lung cancer. Immunology 2023, 169, 487–502. [Google Scholar] [CrossRef]
- Bergholtz, H.; Carter, J.M.; Cesano, A.; Cheang, M.C.U.; Church, S.E.; Divakar, P.; Fuhrman, C.A.; Goel, S.; Gong, J.; Guerriero, J.L.; et al. On Behalf of the GeoMx Breast Cancer Consortium Best Practices for Spatial Profiling for Breast Cancer Research with the GeoMx® Digital Spatial Profiler. Cancers 2021, 13, 4456. [Google Scholar] [CrossRef]
- Carter, J.M.; Polley, M.-Y.C.; Leon-Ferre, R.A.; Sinnwell, J.; Thompson, K.J.; Wang, X.; Ma, Y.; Zahrieh, D.; Kachergus, J.M.; Solanki, M.; et al. Characteristics and Spatially Defined Immune (micro)landscapes of Early-stage PD-L1-positive Triple-negative Breast Cancer. Clin. Cancer Res. 2021, 27, 5628–5637. [Google Scholar] [CrossRef]
- Stewart, R.L.; Matynia, A.P.; Factor, R.E.; Varley, K.E. Spatially-resolved quantification of proteins in triple negative breast cancers reveals differences in the immune microenvironment associated with prognosis. Sci. Rep. 2020, 10, 6598. [Google Scholar] [CrossRef]
- De Filippis, R.; Wölflein, G.; Um, I.H.; Caie, P.D.; Warren, S.; White, A.; Suen, E.; To, E.; Arandjelović, O.; Harrison, D.J. Use of High-Plex Data Reveals Novel Insights into the Tumour Microenvironment of Clear Cell Renal Cell Carcinoma. Cancers 2022, 14, 5387. [Google Scholar] [CrossRef] [PubMed]
- Huang, J.J.; Hsieh, J.J. The Therapeutic Landscape of Renal Cell Carcinoma: From the Dark Age to the Golden Age. Semin. Nephrol. 2020, 40, 28–41. [Google Scholar] [CrossRef] [PubMed]
Patient Characteristics (n = 17) | |
---|---|
Sex, m/f, n | 11/6 |
Age, years, median (range) | 60 (43–82) |
c/p/yTNM stage, n (%) * | |
T1 | 1 (5.9) |
T2 | 3 (17.6) |
T3 | 11 (64.7) |
T4 | 0 (0) |
Tx | 2 (11.8) |
N0 | 8 (47.1) |
N1 | 4 (23.5) |
Nx | 5 (29.4) |
M0 | 6 (35.3) |
M1 | 8 (47.1) |
Mx | 3 (17.6) |
Fuhrman Grade, n (%) | |
1 | 1 (5.9) |
2 | 8 (47.1) |
3 | 5 (29.4) |
4 | 3 (17.6) |
Histology, n (%) | |
Clear Cell | 17 (100) |
Tissue origin, n (%) | |
Primary tumor | 11 (64.7) |
Local recurrence | 1 (5.9) |
Metastatic lesion | 5 (29.4) |
Bone | 1 (20) |
Brain | 2 (40) |
Liver | 1 (20) |
Skin | 1 (20) |
Immune Cell Profiling | Cell Death | MAPK Signaling | PI3K/AKT Signaling |
---|---|---|---|
Beta-2-microglobulin | BAD | EGFR | Pan-AKT |
CD11c | BCL6 | pan-RAS | MET |
CD20 | BCLXL | BRAF | Phospho-AKT1 (S473) |
CD3 | BIM | Phospho-c-RAF (S338) | Phospho-GSK3B (S9) |
CD4 | CD95/Fas | Phospho-JNK (T183/Y185) | Phospho-Tuberin (T1462) |
CD45 | GZMA | Phospho-MEK1 (S217/S221) | Phospho-GSK3A (S21)/Phospho-GSK3B (S9) |
CD56 | p53 | Phospho-p38 MAPK (T180/Y182) | INPP4B |
CD68 | PARP | Phospho-ERK1/2 (T202/Y204) | PLCG1 |
CD8 | Cleaved Caspase 9 Neurofibromin | ERK1/2 Phospho-p90 RSK (T359/S363) | Phospho-PRAS40 (T246) |
CTLA4 | |||
Pan-cytokeratin | |||
Fibronectin | |||
GZMB | |||
HLA-DR | |||
Ki-67 | |||
PD-1 | |||
PD-L1 | |||
SMA | |||
Ms IgG2a | |||
Ms IgG1 | |||
Rb IgG | |||
Histone H3 | |||
S6 | |||
GAPDH |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schneider, F.; Kaczorowski, A.; Jurcic, C.; Kirchner, M.; Schwab, C.; Schütz, V.; Görtz, M.; Zschäbitz, S.; Jäger, D.; Stenzinger, A.; et al. Digital Spatial Profiling Identifies the Tumor Periphery as a Highly Active Biological Niche in Clear Cell Renal Cell Carcinoma. Cancers 2023, 15, 5050. https://doi.org/10.3390/cancers15205050
Schneider F, Kaczorowski A, Jurcic C, Kirchner M, Schwab C, Schütz V, Görtz M, Zschäbitz S, Jäger D, Stenzinger A, et al. Digital Spatial Profiling Identifies the Tumor Periphery as a Highly Active Biological Niche in Clear Cell Renal Cell Carcinoma. Cancers. 2023; 15(20):5050. https://doi.org/10.3390/cancers15205050
Chicago/Turabian StyleSchneider, Felix, Adam Kaczorowski, Christina Jurcic, Martina Kirchner, Constantin Schwab, Viktoria Schütz, Magdalena Görtz, Stefanie Zschäbitz, Dirk Jäger, Albrecht Stenzinger, and et al. 2023. "Digital Spatial Profiling Identifies the Tumor Periphery as a Highly Active Biological Niche in Clear Cell Renal Cell Carcinoma" Cancers 15, no. 20: 5050. https://doi.org/10.3390/cancers15205050
APA StyleSchneider, F., Kaczorowski, A., Jurcic, C., Kirchner, M., Schwab, C., Schütz, V., Görtz, M., Zschäbitz, S., Jäger, D., Stenzinger, A., Hohenfellner, M., Duensing, S., & Duensing, A. (2023). Digital Spatial Profiling Identifies the Tumor Periphery as a Highly Active Biological Niche in Clear Cell Renal Cell Carcinoma. Cancers, 15(20), 5050. https://doi.org/10.3390/cancers15205050