Adjuvant Immunotherapy in Curative Intent Esophageal Cancer Resection Patients: Real-World Experience within an Integrated Health System
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics. CA Cancer J. Clin. 2021, 72, 7–33. [Google Scholar] [CrossRef] [PubMed]
- He, H.; Chen, N.; Hou, Y.; Wang, Z.; Zhang, Y.; Zhang, G.; Fu, J. Trends in the incidence and survival of patietns with esophageal cancer: A SEER database analysis. Thorac. Cancer 2020, 11, 1121–1128. [Google Scholar] [CrossRef]
- Morgan, E.; Soerjomataram, I.; Rumgay, H.; Coleman, H.G.; Thrift, A.P.; Vignat, J.; Laversanne, M.; Ferlay, J.; Arnold, M. The Global Landscape of Esophageal Squamous Cell Carcinoma and Esophageal Adenocarcinoma Incidence and Mortality in 2020 and Projections to 2040: New Estimates from GLOBOCAN 2020. Gastroenterology 2022, 163, 649–658. [Google Scholar] [CrossRef] [PubMed]
- Shaprio, J.; Van Lanschot, J.J.B.; Hulshof, M.C.C.M.; Van Hagen, P.; Van Berge Henegouwen, M.I.; Wijnhoven, B.P.L.; van Laarhoven, H.W.M.; Nieuwenhuijzen, G.A.P.; Hospers, G.A.P.; Bonenkamp, J.J.; et al. Neoadjuvant chemoradiotherapy plus surgery versus surgery alone for oesophageal or junctional cancer (CROSS): Long-term results of a randomized controlled trial. Lancet Oncol. 2015, 16, 1090–1098. [Google Scholar] [CrossRef]
- Van Hagen, P.; Hulshof, M.C.; van Lanschot, J.J.; Steyerberg, E.W.; van Berge Henegouwen, M.I.; Wijnhoven, B.P.L.; Richel, D.J.; Nieuwenthuijzen, G.A.P.; Hospers, G.A.P.; Bonenkamp, J.J.; et al. Preoperative chemoradiotherapy for esophageal or junctional cancer. N. Engl. J. Med. 2012, 366, 2074–2084. [Google Scholar] [CrossRef]
- Kelly, R.J.; Ajani, J.A.; Kuzdal, J.; Zander, T.; Van Cutsem, E.; Piessen, G.; Mendez, G.; Feliciano, J.; Motoyama, S.; Lievre, A.; et al. Adjuvant Nivolumab in Resected Esophageal or Gastroesophageal Junction Cancer. N. Engl. J. Med. 2021, 384, 1191–1203. [Google Scholar] [CrossRef]
- Doki, Y.; Ajani, J.A.; Kato, K.; Xu, J.; Wyrwicz, L.; Motoyama, S.; Ogata, T.; Kawakami, H.; Hsu, C.H.; Adenis, A.; et al. Nivolumab Combination Therapy in Advanced Esophageal Squamous-Cell Carcinoma. N. Engl. J. Med. 2022, 386, 449–462. [Google Scholar] [CrossRef] [PubMed]
- The, S.H.; Uong, S.; Lin, T.Y.; Shiraga, S.; Li, Y.; Gong, I.Y.; Herrinton, L.J.; Li, R.A. Clinical Outcomes Following Regionalization of Gastric Cancer Care in a US Integrated Health Care System. J. Clin. Oncol. 2021, 39, 3364–3376. [Google Scholar]
- Hsu, D.S.; Kumar, N.S.; Le, S.T.; Chang, A.L.; Kazantsev, G.; Spitzer, A.L.; Peng, P.D.; Chang, C.K. Centralization of pancreatic cancer treatment within an integrated healthcare system improves overall survival. Am. J. Surg. 2022, 223, 1035–1039. [Google Scholar] [CrossRef]
- Ely, S.; Alabaster, A.; Dominguez, D.A.; Maxim, C.; Ashiku, S.K.; Patel, A.R.; Velotta, J.B. Effect of Thoracic Surgery Regionalization on 1- and 3-Year Survival after Cancer Esophagectomy. Ann. Surg. 2023, 277, e305–e312. [Google Scholar] [CrossRef] [PubMed]
- Ely, S.; Alabaster, A.; Ashiku, S.K.; Patel, A.; Velotta, J.B. Regionalization of thoracic surgery improves short-term cancer esophagectomy outcomes. J. Thorac. Dis. 2019, 11, 1867–1878. [Google Scholar] [CrossRef]
- Kwak, H.V.; Hsu, D.S.; Le, S.T.; Chang, A.L.; Spitzer, A.L.; Kazantsev, G.B.; Peng, P.D.; Chang, C.K. Pancreatic Neuroendocrine Tumor: Rationale for Centralization in an Integrated Health Care System. Pancreas 2022, 51, 1332–1336. [Google Scholar] [CrossRef]
- Janjigian, Y.Y.; Bendell, J.; Calvo, E.; Kim, J.W.; Ascierto, P.A.; Sharma, P.; Ott, P.A.; Peltola, K.; Jaeger, D.; Evans, J.; et al. CheckMate-032 Study: Efficacy and Safety of Nivolumab and Nivolumab Plus Ipilimumab in Patients with Metastatic Esophagogastric Cancer. J. Clin. Oncol. 2018, 36, 2836–2844. [Google Scholar] [CrossRef]
- Weber, J.; Mandala, M.; Del Vecchio, M.; Gogas, H.J.; Arance, A.M.; Cowey, C.L.; Dalle, S.; Schenker, M.; Chiarion-Sileni, V.; Marquez-Rodas, I.; et al. Adjuvant Nivolumab versus Ipilimumab in Resected Stage III or IV Melanoma. N. Engl. J. Med. 2017, 377, 1824–1835. [Google Scholar] [CrossRef]
- Paoletti, X.; Le Tourneau, C.; Verweij, J.; Siu, L.L.; Seymour, L.; Postel-Vinay, S.; Collette, L.; Rizzo, E.; Ivy, P.; Olmos, D.; et al. Defining dose-limiting toxicity for phase 1 trials of molecularly targeted argents: Results of a DLT-TARGETT international survey. Eur. J. Cancer. 2014, 50, 2050–2056. [Google Scholar] [CrossRef]
- Peron, J.; Maillet, D.; Gan, H.K.; Chen, E.X.; You, B. Adherence to CONSORT adverse event reporting guidelines in randomized clinical trials evaluating systemic cancer therapy: A systematic review. J. Clin. Oncol. 2013, 31, 3957–3963. [Google Scholar] [CrossRef] [PubMed]
- Sivendran, S.; Latif, A.; McBride, R.B.; Stensland, K.D.; Wisnivesky, J.; Haines, L.; Oh, W.K.; Galsky, M.D. Adverse event reporting in cancer clinical trial publications. J. Clin. Oncol. 2014, 32, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.W.; Razak, A.R.; Bedard, P.L.; Siu, L.L.; Hansen, A.R. A systematic review of immune-related adverse event reporting in clinical trials of immune checkpoint inhibitors. Ann. Oncol. 2015, 26, 1824–1829. [Google Scholar] [CrossRef] [PubMed]
- Malone, E.; Barua, R.; Meti, N.; Li, X.; Fazelzad, R.; Hansen, A.R. Quality of patient-reported outcomes in oncology clinical trials using immune checkpoint inhibitors: A systematic review. Cancer Med. 2021, 10, 5031–5040. [Google Scholar] [CrossRef]
- Hirahara, N.; Matsubara, T.; Kaji, S.; Hayashi, H.; Kawakami, K.; Sasaki, Y.; Takao, S.; Takao, N.; Hyakudomi, R.; Yamamoto, T.; et al. Feasibility study of adjuvant chemotherapy with S-1 after curative esophagectomy following neoadjuvant chemotherapy for esophageal cancer. BMC Cancer 2022, 22, 718. [Google Scholar] [CrossRef]
- Rhodin, K.E.; Raman, V.; Jawitz, O.K.; Tong, B.C.; Harpole, D.H.; D’Amico, T.A. The Effect of Timing of Adjuvant Therapy on Survival After Esophagectomy. Ann. Thoracic. Surg. 2020, 110, 1023–1029. [Google Scholar] [CrossRef] [PubMed]
- Guinan, E.M.; Bennett, A.E.; Doyle, S.L.; O’Neill, L.; Gannon, J.; Foley, G.; Elliott, J.A.; O’Sullivan, J.; Reynolds, J.V.; Hussey, J. Measuring the impact of oesophagectomy on physical functioning and physical activity participation: A prospective study. BMC Cancer 2019, 19, 682. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.L.; Li, H.; Zhu, Y.J.; Xu, G. The treatments and postoperative complications of esophageal cancer: A review. J. Cardiothorac. Surg. 2020, 15, 163. [Google Scholar] [CrossRef] [PubMed]
- Murthy, V.H.; Krumholz, H.M.; Gross, C.P. Participation in cancer clinical trials: Race-, sex-, and age-based disparities. JAMA 2004, 291, 2720–2726. [Google Scholar] [CrossRef]
- Unger, J.M.; Hershman, D.L.; Fleury, M.E.; Vaidya, R. Association of Patient Comorbid Conditions with Cancer Clinical Trial Participation. JAMA Oncol. 2019, 5, 326–333. [Google Scholar] [CrossRef]
- Oyer, R.A.; Hurley, P.; Boehmer, L.; Bruinooge, S.S.; Levit, K.; Barrett, N.; Benson, A.; Bernick, L.A.; Byatt, L.; Charlot, M.; et al. Increasing Racial and Ethnic Diversity in Cancer Clinical Trials: An American Society of Clinical Oncology and Association of Community Cancer Centers Joint Research Statement. J. Clin. Oncol. 2022, 40, 2163–2171. [Google Scholar] [CrossRef] [PubMed]
- Unger, J.M.; Vaidya, R.; Hershman, D.L.; Minasian, L.M.; Fleury, M.E. Systematic Review and Meta-Analysis of the Magnitude of Structural, Clinical, and Physician and Patient Barriers to Cancer Clinical Trial Participation. J. Natl. Cancer Inst. 2019, 111, 245–255. [Google Scholar] [CrossRef]
- Duma, N.; Vera Aguilera, J.; Paludo, J.; Haddox, C.L.; Gonzalez, V.M.; Wang, Y.; Leventakos, K.; Hubbard, J.M.; Mansfield, A.S.; Go, R.S.; et al. Representation of Minorities and Women in Oncology Clinical Trials: Review of the Past 14 Years. J. Oncol. Pract. 2018, 14, e1–e10. [Google Scholar] [CrossRef] [PubMed]
- Al-Batran, S.E.; Homann, N.; Pauligk, C.; Goetze, T.O.; Meiler, J.; Kasper, S.; Kopp, H.G.; Mayer, F.; Haag, G.M.; Luley, K.; et al. Perioperative chemotherapy with fluorouracil plus leucovorin, oxaliplatin, and docetaxel versus fluorouracil or capecitabine plus cisplatin and epirubicin for locally advanced, resectable gastric or gastro-oesophageal junction adenocarcinoma (FLOT4): A randomized phase 2/3 trial. Lancet 2019, 393, 1948–1957. [Google Scholar] [PubMed]
- Reynolds, J.V.; Preston, S.R.; O’Neill, B.; Lowery, M.A.; Baeksgaard, L.; Crosby, T.; Cunningham, M.; Cuffe, S.; Griffiths, G.O.; Parker, I.; et al. Trimodality therapy versus perioperative chemotherapy in the management of locally advanced adenocarcinoma of the oesophagus and oesophagogastric junction (Neo-AEGIS): An open-label, randomized, phase 3 trial. Lancet Gastroenterol. Hepatol. 2023, 8, 1015–1027. [Google Scholar] [CrossRef] [PubMed]
- Hoeppner, J.; Lordick, F.; Brunner, T.; Glatz, T.; Bronsert, P.; Rothling, N.; Schmoor, C.; Lorenz, D.; Ell, C.; Hopt, U.T.; et al. ESOPEC: Prospective randomized controlled multicenter phase III trial comparing perioperative chemotherapy (FLOT protocol) to neoadjuvant chemoradiation (CROSS protocol) in patients with adenocarcinoma of the esophagus (NCT02509286). BMC Cancer 2016, 16, 503. [Google Scholar] [CrossRef] [PubMed]
- Donlon, N.E.; Moran, B.; Kamilli, A.; Davern, M.; Sheppard, A.; King, S.; Donohoe, C.L.; Lowery, M.; Cunningham, M.; Ravi, N.; et al. CROSS Versus FLOT Regimens in Esophageal and Esophagogastric Junction Adenocarcinoma: A Propensity-Matched Comparison. Ann. Surg. 2022, 276, 792–798. [Google Scholar] [CrossRef] [PubMed]
- Smyth, E.; Knodler, M.; Giraut, A.; Mauer, M.; Nilsson, M.; Van Grieken, N.; Wagner, A.D.; Moehler, M.; Lordick, F. VESTIGE: Adjuvant Immunotherpy in Patients with Resected Esophageal, Gastroesophageal Junction and Gastric Cancer Following Preoperative Chemotherapy with High Risk for Recurrence (N+ and/or R1): An Open Label Randomized Controlled Phase-2 Study. Front. Oncol. 2020, 9, 1320. [Google Scholar] [CrossRef] [PubMed]
- Smyth, E.; Mauer, M.; Cella, C.; Ben-Aharon, I.; Piessen, G.; Wyrwicz, L.; Al-Haidari, G.; Fletias Kanonnikoff, T.; Boige, V.; Stahl, M.; et al. O-6 EORTC 1707 VESTIGE: Adjuvant immunotherapy in patients (pts) with resected gastroesophageal adenocarcinoma (GEA) following preoperative chemotherapy with high risk for recurrence (ypN+ and/or R1)—An open-label randomized controlled phase II study. Ann. Oncol. 2023, 34, S182–S183. [Google Scholar] [CrossRef]
- Shah, M.A.; Bennouna, J.; Doi, T.; Shen, L.; Kato, K.; Adenis, A.; Mamon, H.J.; Moehler, M.; Fu, X.; Cho, B.C.; et al. KEYNOTE-975 study design: A Phase III study of definitive chemoradiotherapy plus pembrolizumab in patients with esophageal carcinoma. Future Oncol. 2021, 17, 1143–1153. [Google Scholar] [CrossRef]
- Yin, J.; Lin, S.; Fang, Y.; Jiao, H.; Chen, Z.; Tang, H.; Gu, J.; Zhang, S.; Sun, L.; Li, Y.; et al. Neoadjuvant therapy with immunoagent (nivolumab) or placebo plus chemotherapy followed by surgery and adjuvant treatment in subjects with resectable esophageal squamous cell carcinoma: Study protocol of a randomized, multicenter, double blind, phase II trial (NATION-2203 trial). J. Thorac. Dis. 2023, 15, 718–730. [Google Scholar] [PubMed]
- Davis, A.C.; Voelkel, J.L.; Remmers, C.L.; Adams, J.L.; McGlynn, E.A. Comparing Kaiser Permanente Members to the General Population: Implications for Generalizability of Research. Perm. J. 2023, 27, 87–98. [Google Scholar] [CrossRef]
Variables | Total (N = 176) | on Immunotherapy (N = 39) | Not on Immunotherapy (N = 137) | p Value |
---|---|---|---|---|
Year of cancer diagnosis | <0.001 ‡ | |||
2016 | 4 (2.3) | 0 | 4 (2.9) | |
2017 | 26 (14.8) | 6 (15.4) | 20 (14.6) | |
2018 | 50 (28.4) | 3 (7.7) | 47 (34.3) | |
2019 | 48 (27.3) | 11 (28.2) | 37 (27.0) | |
2020 | 30 (17.0) | 8 (20.5) | 22 (16.1) | |
2021 | 18 (10.2) | 11 (28.2) | 7 (5.1) | |
Year of surgery | <0.001 ‡ | |||
2017 | 11 (6.3) | 1 (2.6) | 10 (7.3) | |
2018 | 47 (26.7) | 7 (17.9) | 40 (29.2) | |
2019 | 50 (28.4) | 9 (23.1) | 41 (29.9) | |
2020 | 38 (21.6) | 6 (15.4) | 32 (23.4) | |
2021 | 30 (17.0) | 16 (41.0) | 14 (10.2) | |
Age | 0.282 † | |||
Mean ± standard deviation | 65.1 ± 9.8 | 63.6 ± 11.4 | 65.5 ± 9.3 | |
Minimum-Maximum | 24.0–83.0 | 24.0–83.0 | 30.0–83.0 | |
Sex | 0.500 ‡ | |||
Female | 34 (19.3) | 9 (23.1) | 25 (18.2) | |
Male | 142 (80.7) | 30 (76.9) | 112 (81.8) | |
Race/ethnicity | 0.072 § | |||
White | 122 (69.3) | 23 (59.0) | 99 (72.3) | |
African-American | 6 (3.4) | 2 (5.1) | 4 (2.9) | |
Hispanic | 17 (9.7) | 4 (10.3) | 13 (9.5) | |
Asian/Pacific Islander | 23 (13.1) | 5 (12.8) | 18 (13.1) | |
Native American/Multiracial/Other/Unknown | 8 (4.5) | 5 (12.8) | 3 (2.2) | |
Body mass index | 0.055 † | |||
Mean ± standard deviation | 27.0 ± 5.1 | 25.6 ± 4.9 | 27.4 ± 5.2 | |
Smoking history | 0.976 ‡ | |||
Yes | 13 (7.4) | 3 (7.7) | 10 (7.3) | |
Never | 61 (34.7) | 14 (35.9) | 47 (34.3) | |
Former Smoker | 102 (58.0) | 22 (56.4) | 80 (58.4) | |
Alcohol abuse | 0.103 § | |||
0 | 161 (91.5) | 33 (84.6) | 128 (93.4) | |
1 | 15 (8.5) | 6 (15.4) | 9 (6.6) | |
Charlson Comorbidity Index | 0.727 ‡ | |||
0-3 | 27 (15.3) | 7 (17.9) | 20 (14.6) | |
4-6 | 34 (19.3) | 6 (15.4) | 28 (20.4) | |
7+ | 115 (65.3) | 26 (66.7) | 89 (65.0) | |
Neoadjuvant chemotherapy/radiation | 0.075 § | |||
0 | 13 (7.4) | 0 | 13 (9.5) | |
1 | 163 (92.6) | 39 (100) | 124 (90.5) | |
Operative duration (in minutes) | 0.695 † | |||
Mean ± standard deviation | 225.0 ± 70.1 | 221.1 ± 73.6 | 226.1 ± 69.4 | |
Cancer clinical stage | 0.002 ‡ | |||
I | 57 (32.4) | 5 (12.8) | 52 (38.0) | |
II | 41 (23.3) | 7 (17.9) | 34 (24.8) | |
III | 47 (26.7) | 14 (35.9) | 33 (24.1) | |
IV | 31 (17.6) | 13 (33.3) | 18 (13.1) | |
Early vs. late clinical stage | <0.001 ‡ | |||
I/II | 98 (55.7) | 12 (30.8) | 86 (62.8) | |
III/IV | 78 (44.3) | 27 (69.2) | 51 (37.2) | |
Histology | 0.866 ‡ | |||
Adenocarcinoma | 154 (87.5) | 34 (87.2) | 120 (87.6) | |
Squamous | 20 (11.4) | 5 (12.8) | 15 (10.9) | |
Other | 2 (1.1) | 0 | 2 (1.5) | |
Adjuvant chemotherapy/radiation | <0.001 ‡ | |||
0 | 111 (63.1) | 15 (38.5) | 96 (70.1) | |
1 | 65 (36.9) | 24 (61.5) | 41 (29.9) | |
90 day mortality | 0.351 § | |||
0 | 169 (96.0) | 39 (100) | 130 (94.9) | |
1 | 7 (4.0) | 0 | 7 (5.1) | |
1 year mortality | ||||
0 | 147 (83.5) | 35 (89.7) | 112 (81.8) | 0.235 ‡ |
1 | 29 (16.5) | 4 (10.3) | 25 (18.2) |
Variables | Adjusted Odds Ratio (95% Confidence Interval) | p-Value |
---|---|---|
Age (year) | 1.02 (0.98–1.07) | 0.35 |
Received immunotherapy | 0.54 (0.17–1.73) | 0.30 |
Received adjuvant chemoradiation | 0.91 (0.37–2.24) | 0.84 |
Variables | Nivolumab (N = 19) † | Pembrolizumab (N = 17) | Trastuzumab (N = 11) | Ipilimumab (N = 2) |
---|---|---|---|---|
Adverse event (Y) | 8 | 7 | 3 | 2 |
Type of adverse event | ||||
Colitis | 2 | 1 | ||
Fatigue, loss of appetite, weight loss | 1 | 1 | 2 | |
Hepatitis | 1 | 1 | 1 | |
High LFTs | 1 | |||
Rash | 2 | 1 | 1 | |
Neuropathy | 1 | |||
Diarrhea/UTI/AKI | 1 | |||
Neutropenia | 1 | |||
Pneumonitis | 1 | |||
Decreased LVEF | 1 | |||
Dosing frequency | ||||
q2w | 12 | 6 | ||
q3w | 1 | 13 | 5 | 1 |
q4w | 2 | |||
q6w | 1 | 4 | 1 | |
Unknown | 3 | |||
Completed Treatment (Y) § | 6 | 1 | 1 | 1 |
Variables | Total (N = 16) | on Immunotherapy (N = 10) | Not on Immunotherapy (N = 6) | p Value |
---|---|---|---|---|
Surgery in 2021 | 16 (100) | 10 (100) | 6 (100) | |
Age | 0.735 † | |||
Mean ± standard deviation | 66.8 ± 8.0 | 67.3 ± 9.6 | 65.8 ± 4.7 | |
Sex | 0.093 ‡ | |||
Female | 5 (31.3) | 5 (50.0) | 0 | |
Male | 11 (68.8) | 5 (50.0) | 6 (100) | |
Race/ethnicity | 0.679 ‡ | |||
White | 13 (81.3) | 7 (70.0) | 6 (100) | |
African-American | 1 (6.3) | 1 (10.0) | 0 | |
Asian/Pacific Islander | 2 (12.5) | 2 (20.0) | 0 | |
Body Mass Index | 0.625† | |||
Mean ± standard deviation | 25.9 ± 4.9 | 25.8 ± 6.0 | 26.1 ± 3.0 | |
Smoking history | 0.412 ‡ | |||
Yes | 0 | 0 | 0 | |
Never | 5 (31.3) | 3 (30.0) | 2 (33.3) | |
Former Smoker | 11 (68.8) | 7 (70.0) | 4 (66.7) | |
Alcohol abuse | 0.250 ‡ | |||
0 | 13 (81.3) | 7 (70.0) | 6 (100) | |
1 | 3 (18.8) | 3 (30.0) | 0 | |
Charlson Comorbidity Index | 0.281 ‡ | |||
0–3 | 5 (31.3) | 4 (40.0) | 1 (16.7) | |
4–6 | 1 (6.3) | 1 (16.7) | ||
7+ | 10 (62.5) | 6 (60.0) | 4 (66.7) | |
Neoadjuvant chemotherapy/radiation | 16 (100) | 10 (100) | 6 (100) | |
Operative duration (in min) | 0.082 † | |||
Mean ± standard deviation | 215.3 ± 85.6 | 179.5 ± 32.9 | 274.8 ± 114.9 | |
Histology | 1.000 ‡ | |||
ADENOCARCINOMA | 14 (87.5) | 9 (90.0) | 5 (83.3) | |
SQUAMOUS | 2 (12.5) | 1 (10.0) | 1 (16.7) | |
Adjuvant chemotherapy/radiation | 0.118 ‡ | |||
0 | 10 (62.5) | 8 (80.0) | 2 (33.3) | |
1 | 6 (37.5) | 2 (20.0) | 4 (66.7) | |
Path stage | 0.622 ‡ | |||
II | 3 (18.8) | 1 (10.0) | 2 (33.3) | |
IIIA | 4 (25.0) | 3 (30.0) | 1 (16.7) | |
IIIB | 9 (56.3) | 6 (60.0) | 3 (50.0) | |
Resection | 0.118 ‡ | |||
R0 | 12 (75.0) | 9 (90.0) | 3 (50.0) | |
R1 | 4 (25.0) | 1 (10.0) | 3 (50.0) | |
Lymph Node Yield | 0.785 ‡ | |||
Mean ± standard deviation | 17.1 ± 8.5 | 15.9 ± 4.8 | 19.0 ± 12.9 | |
Min-Max | 4.0–42.0 | 8.0–23.0 | 4.0–42.0 | |
Median (IQR) | 15.0 (13.0–20.5) | 15.0 (13.0–19.0) | 16.0 (13.0–23.0) | |
Died within 30 days of surgery | 0.375 ‡ | |||
0 | 15 (93.8) | 10 (100) | 5 (83.3) | |
1 | 1 (6.3) | 0 | 1 (16.7) | |
Died within 90 days of surgery | 0.375 ‡ | |||
0 | 15 (93.8) | 10 (100) | 5 (83.3) | |
1 | 1 (6.3) | 0 | 1 (16.7) | |
Died within 1 Year of surgery | 0.206 ‡ | |||
0 | 11 (68.8) | 8 (80.0) | 3 (50.0) | |
1 | 5 (31.3) | 2 (20.0) | 3 (50.0) | |
Recurrence | 1.000 ‡ | |||
0 | 4 (25.0) | 3 (30.0) | 1 (16.7) | |
1 | 12 (75.0) | 7 (70.0) | 5 (83.3) | |
Disease Free Survival (in days) | 0.357 † | |||
Mean ± SD | 368.7 ± 300.4 | 434.0 ± 339.0 | 259.8 ± 202.6 | |
Min-Max | 29.0–983.0 | 83.0–983.0 | 29.0–502.0 | |
Median (IQR) | 344.5 (118.0–512.0) | 344.5 (122.0–827.0) | 262.0 (63.0–441.0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwak, H.V.; Banks, K.C.; Hung, Y.-Y.; Alcasid, N.J.; Susai, C.J.; Patel, A.; Ashiku, S.; Velotta, J.B. Adjuvant Immunotherapy in Curative Intent Esophageal Cancer Resection Patients: Real-World Experience within an Integrated Health System. Cancers 2023, 15, 5317. https://doi.org/10.3390/cancers15225317
Kwak HV, Banks KC, Hung Y-Y, Alcasid NJ, Susai CJ, Patel A, Ashiku S, Velotta JB. Adjuvant Immunotherapy in Curative Intent Esophageal Cancer Resection Patients: Real-World Experience within an Integrated Health System. Cancers. 2023; 15(22):5317. https://doi.org/10.3390/cancers15225317
Chicago/Turabian StyleKwak, Hyunjee V., Kian C. Banks, Yun-Yi Hung, Nathan J. Alcasid, Cynthia J. Susai, Ashish Patel, Simon Ashiku, and Jeffrey B. Velotta. 2023. "Adjuvant Immunotherapy in Curative Intent Esophageal Cancer Resection Patients: Real-World Experience within an Integrated Health System" Cancers 15, no. 22: 5317. https://doi.org/10.3390/cancers15225317
APA StyleKwak, H. V., Banks, K. C., Hung, Y. -Y., Alcasid, N. J., Susai, C. J., Patel, A., Ashiku, S., & Velotta, J. B. (2023). Adjuvant Immunotherapy in Curative Intent Esophageal Cancer Resection Patients: Real-World Experience within an Integrated Health System. Cancers, 15(22), 5317. https://doi.org/10.3390/cancers15225317