A Clinical Viewpoint on the Use of Targeted Therapy in Advanced Gastric Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Molecular Classification of Gastric Cancer
3. Current Targeted Therapies Options for Advanced Gastric Cancer
4. HER2 Overexpression in Gastric Cancer
4.1. Prevalence and Pathogenesis of HER2 Overexpression in Gastric Cancer
4.2. Diagnosis of HER2 Overexpression in Gastric Cancer
4.3. Treatment Options for HER2 Overexpression in Advanced Gastric Cancer
4.4. Clinical Implications, Prognosis, and Survival Rates for HER2 Overexpression in Advanced Gastric Cancer
5. Immune Checkpoint Inhibitors for Gastric Cancer
5.1. Overview of the Mechanism of PD-1/PD-L1 Pathway
5.2. Diagnostic Methods for Immune Checkpoint Inhibitor Therapy
5.2.1. PD-1 and PD-L1 Testing
5.2.2. MSI and MMR Testing
5.3. Treatment Options for PD-1- and PD-L1-Positive Advanced Gastric Cancer
5.4. Challenges and Limitations of Immune Checkpoint Inhibitor Therapy
6. Antiangiogenic Treatment for Advanced Gastric Cancer
6.1. Mechanisms of Action of Anti-VEGFR Antibodies
6.2. Current Anti-VEGFR Treatment Options
6.3. Potential Limitations of Anti-VEGFR Treatment
7. NTRK Rearrangements in Gastric Cancer
7.1. Prevalence of NTRK Gene Alterations in Gastric Cancer
7.2. Detection Methods of NTRK Gene Fusions
7.3. NTRK Gene Fusions as a Target for Gastric Cancer Therapy
8. RET Kinase Alterations in Gastric Cancer
8.1. Detection Methods of RET Gene Alterations
8.2. Treatment Options for RET-Altered Gastric Cancer
9. BRAF Mutation in Gastric Cancer
BRAF V600E Mutation as a Target in Gastric Cancer Treatment
10. Future Considerations
Study Name | KN026 in Combination with Chemotherapy in the Second Line Treatment of HER-2-Positive Advanced or Metastatic Gastric Cancer | A Study of RC48-ADC in Local Advanced or Metastatic Gastric Cancer with the HER2-Overexpression | A Study of Zanidatamab in Combination with Chemotherapy Plus or Minus Tislelizumab in Patients with HER2-Positive Advanced or Metastatic Gastric and Esophageal Cancers (HERIZON-GEA-01) | Study of Tislelizumab in Combination with SOX for the Treatment of Gastric Cancer with Liver Metastases | Safety and Efficacy of Sintilimab in Combination with Chemoradiotherapy Followed by D2 Surgical Resection in Patients with Advanced Gastric Cancer with Retroperitoneal Lymph Node Metastasis | HX008 Plus Irinotecan Versus Placebo Plus Irinotecan as Second-Line Treatment in Advanced Gastric Cancer | A Study to Evaluate the Efficacy and Safety of ONO-4538 in Combination with Ipilimumab and Chemotherapy in Chemotherapy-naïve Participants with HER2-Negative Unresectable Advanced or Recurrent Gastric Cancer |
---|---|---|---|---|---|---|---|
ClinicalTrials.gov Identifier: | NCT05427383 | NCT04714190 | NCT05152147 | NCT05325528 | NCT05002686 | NCT04486651 | NCT05144854 |
Therapeutic agent | KN026 [165] | RC48-ADC [172] | Zanidatamab [174] | Tislelizumab [167] | Sintilimab [179] | HX008 [191] | ONO-4538 [192] |
Classification | anti-HER2 bispecific antibody | anti-HER2 monoclonal antibody-Monomethyl auristatin E (MMAE) conjugate | anti-HER2 antibody and PD-1 monoclonal antibody | PD-1 monoclonal antibody | PD-1 monoclonal antibody | PD-1 monoclonal antibody | PD-1 monoclonal antibody and anti-CTLA-4 monoclonal antibody |
Phase | Phase II, Phase III | Phase III | Phase III | Phase II, Phase III | Phase II, Phase III | Phase III | Phase III |
Population | patients with HER-2-positive advanced or metastatic GC | patients with HER-2-positive locally advanced or metastatic GC | patients with HER-2-positive advanced or metastatic GC and EC | patients with GC with liver metastases | patients with advanced GC with retroperitoneal lymph node metastasis | patients with advanced GC or GEJ adenocarcinoma who have had tumor progression after first-line treatment with platinum and/or fluoropyrimidine therapy | chemotherapy-naïve participants with HER2-negative unresectable advanced or recurrent GC |
Study arm | KN026 + chemotherapy | RC48-ADC | zanidatamab plus CTH with or without tislelizumab | Tislelizumab in combination with SOX (Tegafur + Oxaliplatin) | Sintilimab + chemoradiotherapy followed by D2 surgical resection | HX008 + irinotecan | ONO-4538 + ipilimumab + CTH |
Control arm | placebo + CTH | physician choice standard treatment | standard of care (trastuzumab plus CTH) | NA | NA | placebo + irinotecan | CTH |
Recruitment status | Recruiting | Recruiting | Recruiting | Recruiting | Recruiting | Recruiting | Recruiting |
Primary outcome measures: | PFS according to RECIST 1.1 OS according to RECIST 1.1 | OS | PFS by BICR OS | ORR | 1 year PFS | OS in All Participants OS)in Participants with PD-L1 CPS ≥ 1 | OS |
Study Name | A Trial of SHR1701 Plus Chemotherapy in Patients with Gastric or Gastroesophageal Cancer | A Clinical Trial of a New Combination Treatment, Domvanalimab and Zimberelimab, Plus Chemotherapy, for People with an Upper Gastrointestinal Tract Cancer That Cannot be Removed with Surgery That Has Spread to Other Parts of the Body (STAR-221) | RegoNivo vs. Standard of Care Chemotherapy in AGOC (INTEGRATEIIb) | Ramucirumab Plus FOLFIRI Versus Ramucirumab Plus Paclitaxel in Patients with Advanced or Metastatic Gastric Cancer, Who Failed One Prior Line of Palliative Chemotherapy (RAMIRIS) | Assessment of Ramucirumab Plus Paclitaxel as the Maintenance Versus Continuation of First-line Chemotherapy in Patients with Advanced HER-2 Negative Gastric or Gastroesophageal Junction Cancers (ARMANI) | Bemarituzumab Plus Chemotherapy and Nivolumab Versus Chemotherapy and Nivolumab for FGFR2b Overexpressed Untreated Advanced Gastric and Gastroesophageal Junction Cancer (FORTITUDE-102) | A Study of Evorpacept (ALX148) in Patients with Advanced HER2+ Gastric Cancer (ASPEN-06) |
ClinicalTrials.gov Identifier: | NCT04950322 | NCT05568095 | NCT04879368 | NCT03081143 | NCT02934464 | NCT05111626 | NCT05002127 |
Therapeutic agent | SHR-1701 | Domvanalimab, Zimberelimab | Regorafenib and Nivolumab | Ramucirumab | Ramucirumab | Bemarituzumab | Evorpacept |
Classification | Bifunctional anti-PD-L1/TGF-βRII agent | anti-TIGIT monoclonal antibody and PD-1 monoclonal antibody | multitargeted tyrosine kinase inhibitor and PD-1 monoclonal antibody | anti-VEGFR monoclonal antibody | anti-VEGFR monoclonal antibody | Anti-FGFR2b monoclonal antibody | CD47 antigen inhibitor |
Phase | Phase III | Phase III | Phase III | Phase II, Phase III | Phase III | Phase III | Phase II, Phase III |
Population | Patients with previously untreated, advanced, or metastatic GC or GEJ cancer | participants with locally advanced unresectable or metastatic GC, EC, GEJ cancer | Patients with refractory advanced GEJ cancer | Patients with advanced or metastatic GC, who failed one prior line of palliative CTH | Patients with unresectable locally advanced or metastatic HER-2 negative GC or GEJ cancer, without disease progression, following 3 months of first-line doublet CTH | Patients with FGFR2b overexpressed untreated advanced GC and GEJ Cancer | Patients with metastatic HER2-overexpressing GC and GEJ cancer that has progressed on or after prior HER2-directed therapy and fluoropyrimidine- or platinum-containing chemotherapy and are suitable for chemotherapy (2nd-line or 3rd-line) |
Study arm | SHR-1701 + CAPOX | Domvanalimab + zimberelimab + multiagent CTH | regorafenib + nivolumab | ramucirumab + FOLFIRI | ramucirumab plus paclitaxel, given as switch maintenance, | bemarituzumab + mFOLFOX6 + nivolumab | Evorpacept + trastuzumab + ramucirumab + paclitaxel |
Control arm | Placebo + CAPOX | nivolumab + multiagent CTH | current standard CTH options | paclitaxel + ramucirumab | continuation of first-line chemotherapy, given as per standard clinical practice | placebo plus mFOLFOX6 and nivolumab | Ramucirumab + paclitaxel |
Recruitment status | Recruiting | Recruiting | Recruiting | Recruiting | Recruiting | Recruiting | Recruiting |
Primary outcome measures: | AEs and SAEs in part 1 study PFS in part 2 study assessed based on BICR OS in part 2 study | OS | OS | OS rate at 6 months for Phase II OS and ORR for Phase III | PFS | OS in FGFR2b ≥ 10% 2+/3+ Tumor Cell Staining Participants | ORR per RECIST 1.1 OS |
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Crew, K.D.; Neugut, A.I. Epidemiology of gastric cancer. World J. Gastroenterol. 2006, 12, 354–362. [Google Scholar] [CrossRef] [PubMed]
- Ma, J.; Shen, H.; Kapesa, L.; Zeng, S. Lauren classification and individualized chemotherapy in gastric cancer. Oncol. Lett. 2016, 11, 2959–2964. [Google Scholar] [CrossRef]
- NcicancerStats. Cancer of the Stomach–Cancer Stat Facts: @NCICancerStats. 2023. Available online: https://seer.cancer.gov/statfacts/html/stomach.html (accessed on 23 August 2023).
- Torre, L.A.; Siegel, R.L.; Ward, E.M.; Jemal, A. Global Cancer Incidence and Mortality Rates and Trends—An Update. Cancer Epidemiol. Biomark. Prev. 2016, 25, 16–27. [Google Scholar] [CrossRef]
- Collaborators, G.B.D.S.C. The global, regional, and national burden of stomach cancer in 195 countries, 1990–2017: A systematic analysis for the Global Burden of Disease study 2017. Lancet Gastroenterol. Hepatol. 2020, 5, 42–54. [Google Scholar]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Körfer, J.; Lordick, F.; Hacker, U.T. Molecular Targets for Gastric Cancer Treatment and Future Perspectives from a Clinical and Translational Point of View. Cancers 2021, 13, 5216. [Google Scholar] [CrossRef] [PubMed]
- Zhong, L.; Li, Y.; Xiong, L.; Wang, W.; Wu, M.; Yuan, T.; Yang, S. Small molecules in targeted cancer therapy: Advances, challenges, and future perspectives. Signal Transduct. Target. Ther. 2021, 6, 201. [Google Scholar] [CrossRef]
- Guan, W.-L.; He, Y.; Xu, R.-H. Gastric cancer treatment: Recent progress and future perspectives. J. Hematol. Oncol. 2023, 16, 57. [Google Scholar] [CrossRef]
- Wang, J.; Huang, J.; Wang, H.; Yang, W.; Bai, Q.; Yao, Z.; Li, Q.; Lv, H.; Chen, B.; Nie, C.; et al. Personalized Treatment of Advanced Gastric Cancer Guided by the MiniPDX Model. J. Oncol. 2022, 2022, 1987705. [Google Scholar] [CrossRef]
- The Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 2014, 513, 202–209. [Google Scholar] [CrossRef]
- Tarantino, P.; Mazzarella, L.; Marra, A.; Trapani, D.; Curigliano, G. The evolving paradigm of biomarker actionability: Histology-agnosticism as a spectrum, rather than a binary quality. Cancer Treat. Rev. 2021, 94, 102169. [Google Scholar] [CrossRef]
- Tsimberidou, A.M.; Fountzilas, E.; Nikanjam, M.; Kurzrock, R. Review of precision cancer medicine: Evolution of the treatment paradigm. Cancer Treat. Rev. 2020, 86, 102019. [Google Scholar] [CrossRef] [PubMed]
- Hierro, C.; Matos, I.; Martin-Liberal, J.; Ochoa de Olza, M.; Garralda, E. Agnostic-Histology Approval of New Drugs in Oncology: Are We Already There? Clin. Cancer Res. 2019, 25, 3210–3219. [Google Scholar] [CrossRef]
- Pestana, R.C.; Sen, S.; Hobbs, B.P.; Hong, D.S. Histology-agnostic drug development–considering issues beyond the tissue. Nat. Rev. Clin. Oncol. 2020, 17, 555–568. [Google Scholar] [CrossRef] [PubMed]
- Us_Fda. FDA Approves Pembrolizumab for Adults and Children with TMB-H Solid Tumors|FDA: @US_FDA. 2023. Available online: https://www.fda.gov/drugs/drug-approvals-and-databases/fda-approves-pembrolizumab-adults-and-children-tmb-h-solid-tumors (accessed on 23 August 2023).
- Us_Fda. FDA Grants Accelerated Approval to Dostarlimab-Gxly for dMMR Advanced Solid Tumors|FDA: @US_FDA. 2023. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-dostarlimab-gxly-dmmr-advanced-solid-tumors (accessed on 23 August 2023).
- Us_Fda. FDA Grants Accelerated Approval to Pembrolizumab for First Tissue/Site Agnostic Indication|FDA: @US_FDA. 2023. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-pembrolizumab-first-tissuesite-agnostic-indication (accessed on 23 August 2023).
- Us_Fda. FDA Approves Larotrectinib for Solid Tumors with NTRK Gene Fusions|FDA: @US_FDA. 2023. Available online: https://www.fda.gov/drugs/fda-approves-larotrectinib-solid-tumors-ntrk-gene-fusions-0 (accessed on 23 August 2023).
- Us_Fda. FDA Approves Entrectinib for NTRK Solid Tumors and ROS-1 NSCLC|FDA: @US_FDA. 2023. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-approves-entrectinib-ntrk-solid-tumors-and-ros-1-nsclc (accessed on 23 August 2023).
- Us_Fda. FDA Grants Accelerated Approval to Dabrafenib in Combination with Trametinib for Unresectable or Metastatic Solid Tumors with BRAF V600E Mutation|FDA: @US_FDA. 2023. Available online: https://www.fda.gov/drugs/resources-information-approved-drugs/fda-grants-accelerated-approval-dabrafenib-combination-trametinib-unresectable-or-metastatic-solid (accessed on 23 August 2023).
- Gravalos, C.; Jimeno, A. HER2 in gastric cancer: A new prognostic factor and a novel therapeutic target. Ann. Oncol. 2008, 19, 1523–1529. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Li, L.; Zhang, N.; Wang, Z.; Xu, N.; Linghu, E.; Chai, N. Relationship between HER2 overexpression and long-term outcomes of early gastric cancer: A prospective observational study with a 6-year follow-up. BMC Gastroenterol. 2022, 22, 238. [Google Scholar] [CrossRef] [PubMed]
- Bang, Y.J.; Van Cutsem, E.; Feyereislova, A.; Chung, H.C.; Shen, L.; Sawaki, A.; Lordick, F.; Ohtsu, A.; Omuro, Y.; Satoh, T.; et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): A phase 3, open-label, randomised controlled trial. Lancet 2010, 376, 687–697. [Google Scholar] [CrossRef]
- Coussens, L.; Yang-Feng, T.L.; Liao, Y.-C.; Chen, E.; Gray, A.; McGrath, J.; Seeburg, P.H.; Libermann, T.A.; Schlessinger, J.; Francke, U.; et al. Tyrosine kinase receptor with extensive homology to EGF receptor shares chromosomal location with neu oncogene. Science 1985, 230, 1132–1139. [Google Scholar] [CrossRef]
- Eltze, E.; Wülfing, C.; Von Struensee, D.; Piechota, H.; Buerger, H.; Hertle, L. Cox-2 and Her2/neu co-expression in invasive bladder cancer. Int. J. Oncol. 2005, 26, 1525–1531. [Google Scholar] [CrossRef]
- Ma, C.; Wang, X.; Guo, J.; Yang, B.; Li, Y. Challenges and future of HER2-positive gastric cancer therapy. Front. Oncol. 2023, 13, 1080990. [Google Scholar] [CrossRef]
- Tafe, L.J.; Tsongalis, G.J. The human epidermal growth factor receptor 2 (HER2). Clin. Chem. Lab. Med. 2011, 50, 23–30. [Google Scholar]
- Abrahao-Machado, L.F.; Scapulatempo-Neto, C. HER2 testing in gastric cancer: An update. World J. Gastroenterol. 2016, 22, 4619–4625. [Google Scholar] [CrossRef]
- Galogre, M.; Rodin, D.; Pyatnitskiy, M.; Mackelprang, M.; Koman, I. A review of HER2 overexpression and somatic mutations in cancers. Crit. Rev. Oncol. Hematol. 2023, 186, 103997. [Google Scholar] [CrossRef] [PubMed]
- Iqbal, N.; Iqbal, N. Human Epidermal Growth Factor Receptor 2 (HER2) in Cancers: Overexpression and Therapeutic Implications. Mol. Biol. Int. 2014, 2014, 852748. [Google Scholar] [CrossRef] [PubMed]
- Van Cutsem, E.; Bang, Y.J.; Feng-Yi, F.; Xu, J.M.; Lee, K.W.; Jiao, S.C.; Chong, J.L.; López-Sanchez, R.I.; Price, T.; Gladkov, O.; et al. HER2 screening data from ToGA: Targeting HER2 in gastric and gastroesophageal junction cancer. Gastric Cancer 2015, 18, 476–484. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Martin, C.; Garralda, E.; Echarri, M.J.; Ballesteros, A.; Arcediano, A.; Rodríguez-Peralto, J.L.; Hidalgo, M.; López-Ríos, F. HER2/neu testing for anti-HER2-based therapies in patients with unresectable and/or metastatic gastric cancer. J. Clin. Pathol. 2012, 65, 751–757. [Google Scholar] [CrossRef] [PubMed]
- Janjigian, Y.Y.; Werner, D.; Pauligk, C.; Steinmetz, K.; Kelsen, D.P.; Jäger, E.; Altmannsberger, H.-M.; Robinson, E.; Tafe, L.J.; Tang, L.H.; et al. Prognosis of metastatic gastric and gastroesophageal junction cancer by HER2 status: A European and USA International collaborative analysis. Ann. Oncol. 2012, 23, 2656–2662. [Google Scholar] [CrossRef]
- Yano, T.; Ochiai, A.; Doi, T.; Hashizume, K.; Nakanishi, M.; Ouchi, K.; Ohtsu, A. Expression of HER2 in gastric cancer: Comparison between protein expression and gene amplification using a new commercial kit. J. Clin. Oncol. 2004, 22 (Suppl. 14), 4053. [Google Scholar] [CrossRef]
- Gravalos, C.; Marquez, A.; Colomer, R.; Garcia-Carbonero, R.; Sastre, J.; Rivera, F.; Velasco, A.; Guzman, C. Correlation between HER2/neu overexpression/amplification and clinicopathologic parameters in advanced gastric cancer (AGC) patients (pts): A prospective study. J. Clin. Oncol. 2006, 24 (Suppl. 18), 4089. [Google Scholar] [CrossRef]
- Allgayer, H.; Babic, R.; Gruetzner, K.U.; Tarabichi, A.; Schildberg, F.W.; Heiss, M.M. c-erbB-2 is of independent prognostic relevance in gastric cancer and is associated with the expression of tumor-associated protease systems. J. Clin. Oncol. 2000, 18, 2201–2209. [Google Scholar] [CrossRef]
- Park, D.I.; Yun, J.W.; Park, J.H.; Oh, S.J.; Kim, H.J.; Cho, Y.K.; Jeon, W.K.; Kim, B.I.; Yoo, C.H.; Son, B.H.; et al. HER-2/neu amplification is an independent prognostic factor in gastric cancer. Dig. Dis. Sci. 2006, 51, 1371–1379. [Google Scholar] [CrossRef] [PubMed]
- Rüschoff, J.; Hanna, W.; Bilous, M.; Hofmann, M.; Osamura, R.Y.; Penault-Llorca, F.; van de Vijver, M.; Viale, G. HER2 testing in gastric cancer: A practical approach. Mod. Pathol. 2012, 25, 637–650. [Google Scholar] [CrossRef] [PubMed]
- Reichelt, U.; Duesedau, P.; Tsourlakis, M.C.; Quaas, A.; Link, B.C.; Schurr, P.G.; Kaifi, J.T.; Gros, S.J.; Yekebas, E.F.; Marx, A.; et al. Frequent homogeneous HER-2 amplification in primary and metastatic adenocarcinoma of the esophagus. Mod. Pathol. 2007, 20, 120–129. [Google Scholar] [CrossRef] [PubMed]
- Rüschoff, J.; Dietel, M.; Baretton, G.; Arbogast, S.; Walch, A.; Monges, G.; Chenard, M.-P.; Penault-Llorca, F.; Nagelmeier, I.; Schlake, W.; et al. HER2 diagnostics in gastric cancer-guideline validation and development of standardized immunohistochemical testing. Virchows Arch. 2010, 457, 299–307. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Zhang, X.; Du, Y.; Zhang, Y.; Lu, J.; Hu, W.; Zhao, J. HER2-targeted advanced metastatic gastric/gastroesophageal junction adenocarcinoma: Treatment landscape and future perspectives. Biomark. Res. 2022, 10, 71. [Google Scholar] [CrossRef] [PubMed]
- Yonemura, Y.; Ninomiya, I.; Yamaguchi, A.; Fushida, S.; Kimura, H.; Ohoyama, S.; Miyazaki, I.; Endou, Y.; Tanaka, M.; Sasaki, T. Evaluation of immunoreactivity for erbB-2 protein as a marker of poor short term prognosis in gastric cancer. Cancer Res. 1991, 51, 1034–1038. [Google Scholar]
- Rivera, F.; Romero, C.; Jimenez-Fonseca, P.; Izquierdo-Manuel, M.; Salud, A.; Martínez, E.; Jorge, M.; Arrazubi, V.; Méndez, J.C.; García-Alfonso, P.; et al. Phase II study to evaluate the efficacy of Trastuzumab in combination with Capecitabine and Oxaliplatin in first-line treatment of HER2-positive advanced gastric cancer: HERXO trial. Cancer Chemother. Pharmacol. 2019, 83, 1175–1181. [Google Scholar] [CrossRef]
- Soularue, É.; Cohen, R.; Tournigand, C.; Zaanan, A.; Louvet, C.; Bachet, J.-B.; Hentic, O.; Samalin, E.; Chibaudel, B.; de Gramont, A.; et al. Efficacy and safety of trastuzumab in combination with oxaliplatin and fluorouracil-based chemotherapy for patients with HER2-positive metastatic gastric and gastro-oesophageal junction adenocarcinoma patients: A retrospective study. Bull. Cancer 2015, 102, 324–331. [Google Scholar] [CrossRef]
- Makiyama, A.; Sukawa, Y.; Kashiwada, T.; Kawada, J.; Hosokawa, A.; Horie, Y.; Tsuji, A.; Moriwaki, T.; Tanioka, H.; Shinozaki, K.; et al. Randomized, Phase II Study of Trastuzumab Beyond Progression in Patients with HER2-Positive Advanced Gastric or Gastroesophageal Junction Cancer: WJOG7112G (T-ACT Study). J. Clin. Oncol. 2020, 38, 1919–1927. [Google Scholar] [CrossRef]
- Shitara, K.; Bang, Y.-J.; Iwasa, S.; Sugimoto, N.; Ryu, M.-H.; Sakai, D.; Chung, H.-C.; Kawakami, H.; Yabusaki, H.; Lee, J.; et al. Trastuzumab Deruxtecan in Previously Treated HER2-Positive Gastric Cancer. N. Engl. J. Med. 2020, 382, 2419–2430. [Google Scholar] [CrossRef]
- Chua, T.C.; Merrett, N.D. Clinicopathologic factors associated with HER2-positive gastric cancer and its impact on survival outcomes—A systematic review. Int. J. Cancer. 2012, 130, 2845–2856. [Google Scholar] [CrossRef] [PubMed]
- Yang, X.; Wu, L.; Zhao, K.; Ye, W.; Liu, W.; Wang, Y.; Li, J.; Li, H.; Huang, X.; Zhang, W.; et al. Evaluation of human epidermal growth factor receptor 2 status of breast cancer using preoperative multidetector computed tomography with deep learning and handcrafted radiomics features. Chin. J. Cancer Res. 2020, 32, 175–185. [Google Scholar] [CrossRef]
- Yang, T.; Xu, R.; You, J.; Li, F.; Yan, B.; Cheng, J.-N. Prognostic and clinical significance of HER-2 low expression in early-stage gastric cancer. BMC Cancer 2022, 22, 1168. [Google Scholar] [CrossRef] [PubMed]
- Sukawa, Y.; Yamamoto, H.; Nosho, K.; Ito, M.; Igarashi, H.; Naito, T.; Mitsuhashi, K.; Matsunaga, Y.; Takahashi, T.; Mikami, M.; et al. HER2 expression and PI3K-Akt pathway alterations in gastric cancer. Digestion 2014, 89, 12–17. [Google Scholar] [CrossRef] [PubMed]
- Bartley, A.N.; Washington, M.K.; Ventura, C.B.; Ismaila, N.; Colasacco, C.; Benson, A.B., 3rd; Carrato, A.; Gulley, M.L.; Jain, D.; Kakar, S.; et al. HER2 Testing and Clinical Decision Making in Gastroesophageal Adenocarcinoma: Guideline from the College of American Pathologists, American Society for Clinical Pathology, and American Society of Clinical Oncology. Arch. Pathol. Lab. Med. 2016, 140, 1345–1363. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.W.; Eder, J.P. Prospects for targeting PD-1 and PD-L1 in various tumor types. Oncology 2014, 28 (Suppl. 3), 15–28. [Google Scholar]
- Long, J.; Lin, J.; Wang, A.; Wu, L.; Zheng, Y.; Yang, X.; Wan, X.; Xu, H.; Chen, S.; Zhao, H.; et al. PD-1/PD-L blockade in gastrointestinal cancers: Lessons learned and the road toward precision immunotherapy. J. Hematol. Oncol. 2017, 10, 146. [Google Scholar] [CrossRef]
- Liu, J.; Chen, Z.; Li, Y.; Zhao, W.; Wu, J.; Zhang, Z. PD-1/PD-L1 Checkpoint Inhibitors in Tumor Immunotherapy. Front. Pharmacol. 2021, 12, 731798. [Google Scholar] [CrossRef]
- Topalian, S.L.; Taube, J.M.; Anders, R.A.; Pardoll, D.M. Mechanism-driven biomarkers to guide immune checkpoint blockade in cancer therapy. Nat. Rev. Cancer. 2016, 16, 275–287. [Google Scholar] [CrossRef]
- Buder-Bakhaya, K.; Hassel, J.C. Biomarkers for Clinical Benefit of Immune Checkpoint Inhibitor Treatment-A Review from the Melanoma Perspective and Beyond. Front. Immunol. 2018, 9, 1474. [Google Scholar] [CrossRef]
- Simeone, E.; Ascierto, P.A. Immunomodulating antibodies in the treatment of metastatic melanoma: The experience with anti-CTLA-4, anti-CD137, and anti-PD1. J. Immunotoxicol. 2012, 9, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Yamashita, K.; Iwatsuki, M.; Harada, K.; Koga, Y.; Kiyozumi, Y.; Eto, K.; Hiyoshi, Y.; Ishimoto, T.; Iwagami, S.; Baba, Y.; et al. Can PD-L1 expression evaluated by biopsy sample accurately reflect its expression in the whole tumour in gastric cancer? Br. J. Cancer 2019, 121, 278–280. [Google Scholar] [CrossRef] [PubMed]
- Lian, J.; Zhang, G.; Zhang, Y.; Liu, H.; Zhang, J.; Nan, P.; Tian, W. PD-L1 and HER2 expression in gastric adenocarcinoma and their prognostic significance. Digestive and liver disease: Official journal of the Italian Society of Gastroenterology and the Italian Association for the Study of the Liver. Dig. Liver Dis. 2022, 54, 1419–1427. [Google Scholar] [CrossRef] [PubMed]
- Voutsadakis, I.A. A Systematic Review and Meta-analysis of PD-1 and PD-L1 Inhibitors Monotherapy in Metastatic Gastric and Gastroesophageal Junction Adenocarcinoma. Euroasian J. Hepato-Gastroenterol. 2020, 10, 56. [Google Scholar] [CrossRef]
- Schoemig-Markiefka, B.; Eschbach, J.; Scheel, A.H.; Pamuk, A.; Rueschoff, J.; Zander, T.; Buettner, R.; Schroeder, W.; Bruns, J.C.; Loeser, H.; et al. Optimized PD-L1 scoring of gastric cancer. Gastric cancer: Official journal of the International Gastric Cancer Association and the Japanese Gastric Cancer Association. Gastric Cancer 2021, 24, 1115–1122. [Google Scholar] [CrossRef]
- Chen, X.-J.; Wei, C.-Z.; Lin, J.; Zhang, R.-P.; Chen, G.-M.; Li, Y.-F.; Nie, R.-C.; Chen, Y.-M. Prognostic Significance of PD-L1 Expression in Gastric Cancer Patients with Peritoneal Metastasis. Biomedicines 2023, 11, 2003. [Google Scholar] [CrossRef]
- Xie, T.; Zhang, Z.; Zhang, X.; Qi, C.; Shen, L.; Peng, Z. Appropriate PD-L1 Cutoff Value for Gastric Cancer Immunotherapy: A Systematic Review and Meta-Analysis. Front. Oncol. 2021, 11, 646355. [Google Scholar] [CrossRef]
- Zhai, Q.; Fan, J.; Lin, Q.; Liu, X.; Li, J.; Hong, R.; Wang, S. Tumor stromal type is associated with stromal PD-L1 expression and predicts outcomes in breast cancer. PLoS ONE 2019, 14, e0223325. [Google Scholar] [CrossRef]
- Reck, M.; Rodríguez-Abreu, D.; Robinson, A.G.; Hui, R.; Csőszi, T.; Fülöp, A.; Gottfried, M.; Peled, N.; Tafreshi, A.; Cuffe, S.; et al. Updated Analysis of KEYNOTE-024: Pembrolizumab Versus Platinum-Based Chemotherapy for Advanced Non–Small-Cell Lung Cancer with PD-L1 Tumor Proportion Score of 50% or Greater. J. Clin. Oncol. 2019, 37, 537–546. [Google Scholar] [CrossRef]
- Mastracci, L.; Grillo, F.; Parente, P.; Gullo, I.; Campora, M.; Angerilli, V.; Rossi, C.; Sacramento, M.L.; Pennelli, G.; Vanoli, A.; et al. PD-L1 evaluation in the gastrointestinal tract: From biological rationale to its clinical application. Pathologica 2022, 114, 352–364. [Google Scholar] [CrossRef]
- Peixoto, R.D.; Mathias-Machado, M.C.; Jácome, A.; Gil, M.; Fogacci, J.; Sodré, B.; Passarini, T.; Chaves, A.; Diniz, P.H.; Lino, F.; et al. PD-L1 testing in advanced gastric cancer-what physicians who treat this disease must know-a literature review. J. Gastrointest. Oncol. 2023, 14, 1560–1575. [Google Scholar] [CrossRef] [PubMed]
- Falchetti, M.; Saieva, C.; Lupi, R.; Masala, G.; Rizzolo, P.; Zanna, I.; Ceccarelli, K.; Sera, F.; Mariani-Costantini, R.; Nesi, G.; et al. Gastric cancer with high-level microsatellite instability: Target gene mutations, clinicopathologic features, and long-term survival. Hum. Pathol. 2008, 39, 925–932. [Google Scholar] [CrossRef]
- Halling, K.C.; Harper, J.; Moskaluk, C.A.; Thibodeau, S.N.; Petroni, G.R.; Yustein, A.S.; Tosi, P.; Minacci, C.; Roviello, F.; Piva, P.; et al. Origin of microsatellite instability in gastric cancer. Am. J. Pathol. 1999, 155, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.; Lee, J.; Bang, H.; Kim, S.T.; Park, S.H.; An, J.Y.; Choi, M.G.; Lee, J.H.; Sohn, T.S.; Bae, J.M.; et al. Programmed cell death-ligand 1 expression predicts survival in patients with gastric carcinoma with microsatellite instability. Oncotarget 2017, 8, 13320–13328. [Google Scholar] [CrossRef] [PubMed]
- Parente, P.; Grillo, F.; Vanoli, A.; Macciomei, M.C.; Ambrosio, M.R.; Scibetta, N.; Filippi, E.; Cataldo, I.; Baron, L.; Ingravallo, G.; et al. The Day-To-Day Practice of MMR and MSI Assessment in Colorectal Adenocarcinoma: What We Know and What We Still Need to Explore. Dig. Dis. 2023, 41, 746–756. [Google Scholar] [CrossRef] [PubMed]
- Murphy, K.M.; Zhang, S.; Geiger, T.; Hafez, M.J.; Bacher, J.; Berg, K.D.; Eshleman, J.R. Comparison of the microsatellite instability analysis system and the Bethesda panel for the determination of microsatellite instability in colorectal cancers. J. Mol. Diagn. 2006, 8, 305–311. [Google Scholar] [CrossRef]
- Marginean, E.C.; Melosky, B. Is There a Role for Programmed Death Ligand-1 Testing and Immunotherapy in Colorectal Cancer with Microsatellite Instability? Part I-Colorectal Cancer: Microsatellite Instability, Testing, and Clinical Implications. Arch. Pathol. Lab. Med. 2018, 142, 17–25. [Google Scholar] [CrossRef]
- Becht, E.; de Reyniès, A.; Giraldo, N.A.; Pilati, C.; Buttard, B.; Lacroix, L.; Selves, J.; Sautès-Fridman, C.; Laurent-Puig, P.; Fridman, W.H. Immune and Stromal Classification of Colorectal Cancer Is Associated with Molecular Subtypes and Relevant for Precision Immunotherapy. Clin. Cancer Res. 2016, 22, 4057–4066. [Google Scholar] [CrossRef]
- Li, K.; Luo, H.; Huang, L.; Luo, H.; Zhu, X. Microsatellite instability: A review of what the oncologist should know. Cancer Cell Int. 2020, 20, 16. [Google Scholar] [CrossRef]
- Puliga, E.; Corso, S.; Pietrantonio, F.; Giordano, S. Microsatellite instability in Gastric Cancer: Between lights and shadows. Cancer Treat. Rev. 2021, 95, 102175. [Google Scholar] [CrossRef]
- Lawlor, R.T.; Mattiolo, P.; Mafficini, A.; Hong, S.-M.; Piredda, M.L.; Taormina, S.V.; Malleo, G.; Marchegiani, G.; Pea, A.; Salvia, R.; et al. Tumor Mutational Burden as a Potential Biomarker for Immunotherapy in Pancreatic Cancer: Systematic Review and Still-Open Questions. Cancers 2021, 13, 3119. [Google Scholar] [CrossRef] [PubMed]
- Ratti, M.; Lampis, A.; Hahne, J.C.; Passalacqua, R.; Valeri, N. Microsatellite instability in gastric cancer: Molecular bases, clinical perspectives, and new treatment approaches. Cell Mol. Life Sci. 2018, 75, 4151–4162. [Google Scholar] [CrossRef] [PubMed]
- Le, D.T.; Uram, J.N.; Wang, H.; Bartlett, B.R.; Kemberling, H.; Eyring, A.D.; Skora, A.D.; Luber, B.S.; Azad, N.S.; Laheru, D.; et al. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N. Engl. J. Med. 2015, 372, 2509–2520. [Google Scholar] [CrossRef] [PubMed]
- Marabelle, A.; Le, D.T.; Ascierto, P.A.; Di Giacomo, A.M.; De Jesus-Acosta, A.; Delord, J.P.; Geva, R.; Gottfried, M.; Penel, N.; Hansen, A.R.; et al. Efficacy of Pembrolizumab in Patients with Noncolorectal High Microsatellite Instability/Mismatch Repair-Deficient Cancer: Results from the Phase II KEYNOTE-158 Study. J. Clin. Oncol. 2020, 38, 1–10. [Google Scholar] [CrossRef]
- Marabelle, A.; Fakih, M.; Lopez, J.; Shah, M.; Shapira-Frommer, R.; Nakagawa, K.; Chung, H.C.; Kindler, H.L.; Lopez-Martin, J.A.; Miller, W.H., Jr.; et al. Association of tumour mutational burden with outcomes in patients with advanced solid tumours treated with pembrolizumab: Prospective biomarker analysis of the multicohort, open-label, phase 2 KEYNOTE-158 study. Lancet Oncol. 2020, 21, 1353–1365. [Google Scholar] [CrossRef]
- Messenheimer, D.J.; Jensen, S.M.; Afentoulis, M.E.; Wegmann, K.W.; Feng, Z.; Friedman, D.J.; Gough, M.J.; Urba, W.J.; Fox, B.A. Timing of PD-1 Blockade Is Critical to Effective Combination Immunotherapy with Anti-OX40. Clin. Cancer Res. 2017, 23, 6165–6177. [Google Scholar] [CrossRef]
- ClinicalTrials.gov. Study of Pembrolizumab (MK-3475) Plus Chemotherapy Versus Placebo Plus Chemotherapy in Participants with Gastric or Gastroesophageal Junction (GEJ) Adenocarcinoma (MK-3475-585/KEYNOTE-585). 2023. Available online: https://clinicaltrials.gov/study/NCT03221426 (accessed on 23 August 2023).
- ClinicalTrials.gov. Pembrolizumab/Placebo Plus Trastuzumab Plus Chemotherapy in Human Epidermal Growth Factor Receptor 2 Positive (HER2+) Advanced Gastric or Gastroesophageal Junction (GEJ) Adenocarcinoma (MK-3475-811/KEYNOTE-811). 2023. Available online: https://clinicaltrials.gov/study/NCT03615326 (accessed on 23 August 2023).
- Janjigian, Y.Y.; Kawazoe, A.; Yañez, P.; Li, N.; Lonardi, S.; Kolesnik, O.; Barajas, O.; Bai, Y.; Shen, L.; Tang, Y.; et al. The KEYNOTE-811 trial of dual PD-1 and HER2 blockade in HER2-positive gastric cancer. Nature 2021, 600, 727–730. [Google Scholar] [CrossRef]
- Rha, S.Y.; Oh, D.Y.; Yañez, P.; Bai, Y.; Ryu, M.H.; Lee, J. Pembrolizumab plus chemotherapy versus placebo plus chemotherapy for HER2-negative advanced gastric cancer (KEYNOTE-859): A multicentre, randomised, double-blind, phase 3 trial. Lancet Oncol. 2023, 24, 1181–1195. [Google Scholar] [CrossRef]
- Janjigian, Y.Y.; Shitara, K.; Moehler, M.; Garrido, M.; Salman, P.; Shen, L.; Wyrwicz, L.; Yamaguchi, K.; Skoczylas, T.; Bragagnoli, A.C.; et al. First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric, gastro-oesophageal junction, and oesophageal adenocarcinoma (CheckMate 649): A randomised, open-label, phase 3 trial. Lancet 2021, 398, 27–40. [Google Scholar] [CrossRef]
- Andre, D.B.; Susana, N.B.; Giuseppe, C.; Sara, C.; Hendrik-Tobias, A.; Cyril, A.; Kristeleit, S.; Redondo, A.; Leath, A.; Torres, A.A.; et al. Antitumor activity of dostarlimab in patients with mismatch repair-deficient/microsatellite instability–high tumors: A combined analysis of two cohorts in the GARNET study. J. Linical Oncol. 2021, 39, 2564. [Google Scholar]
- Oaknin, A.; Tinker, A.V.; Gilbert, L.; Samouëlian, V.; Mathews, C.; Brown, J.; Barretina-Ginesta, M.P.; Moreno, V.; Gravina, A.; Abdeddaim, C.; et al. Clinical Activity and Safety of the Anti–Programmed Death 1 Monoclonal Antibody Dostarlimab for Patients with Recurrent or Advanced Mismatch Repair–Deficient Endometrial Cancer: A Nonrandomized Phase 1 Clinical Trial. JAMA Oncol. 2020, 6, 1766–1772. [Google Scholar] [CrossRef] [PubMed]
- Lum, H.Y.J.; Teo, C.B.; Tan, B.K.J.; Chan, Y.H.; Tay, R.Y.K.; En Choo, J.R. Choice of PD-L1 immunohistochemistry assay influences clinical eligibility for gastric cancer immunotherapy. Gastric cancer: Official journal of the International Gastric Cancer Association and the Japanese Gastric Cancer Association. Gastric Cancer 2022, 25, 741–750. [Google Scholar]
- Spirina, L.; Avgustinovich, A.; Afanas’ev, S.; Volkov, M.; Dobrodeev, A.; Cheremisina, O.; Kostromitsky, D. PD-L1 Status in Gastric Cancers, Association with the Transcriptional, Growth Factors, AKT/mTOR Components Change, and Autophagy Initiation. Int. J. Mol. Sci. 2021, 22, 11176. [Google Scholar] [CrossRef] [PubMed]
- Prince, E.A.; Sanzari, J.K.; Pandya, D.; Huron, D.; Edwards, R. Analytical Concordance of PD-L1 Assays Utilizing Antibodies from FDA-Approved Diagnostics in Advanced Cancers: A Systematic Literature Review. JCO Precis. Oncol. 2021, 5, 953–973. [Google Scholar] [CrossRef]
- Powles, T.; Walker, J.; Andrew Williams, J.; Bellmunt, J. The evolving role of PD-L1 testing in patients with metastatic urothelial carcinoma. Cancer Treat. Rev. 2020, 82, 101925. [Google Scholar] [CrossRef]
- Lei, Q.; Wang, D.; Sun, K.; Wang, L.; Zhang, Y. Resistance Mechanisms of Anti-PD1/PDL1 Therapy in Solid Tumors. Front. Cell Dev. Biol. 2020, 8, 672. [Google Scholar] [CrossRef]
- Sun, J.Y.; Zhang, D.; Wu, S.; Xu, M.; Zhou, X.; Lu, X.J.; Ji, J. Resistance to PD-1/PD-L1 blockade cancer immunotherapy: Mechanisms, predictive factors, and future perspectives. Biomark. Res. 2020, 8, 35. [Google Scholar] [CrossRef]
- Hanahan, D.; Weinberg, R.A. The hallmarks of cancer. Cell 2000, 100, 57–70. [Google Scholar] [CrossRef]
- Hurwitz, H.; Fehrenbacher, L.; Novotny, W.; Cartwright, T.; Hainsworth, J.; Heim, W.; Berlin, J.; Baron, A.; Griffing, S.; Holmgren, E.; et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med. 2004, 350, 2335–2342. [Google Scholar] [CrossRef]
- Sandler, A.; Gray, R.; Perry, M.C.; Brahmer, J.; Schiller, J.H.; Dowlati, A.; Lilenbaum, R.; Johnson, D.H. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N. Engl. J. Med. 2006, 355, 2542–2550. [Google Scholar] [CrossRef]
- Motzer, R.J.; Hutson, T.E.; Tomczak, P.; Michaelson, M.D.; Bukowski, R.M.; Rixe, O.; Oudard, S.; Negrier, S.; Szczylik, C.; Kim, S.T.; et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N. Engl. J. Med. 2007, 356, 115–124. [Google Scholar] [CrossRef] [PubMed]
- Llovet, J.M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, J.F.; De Oliveira, A.C. Sorafenib in advanced hepatocellular carcinoma. N. Engl. J. Med. 2008, 359, 378–390. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Zhu, J.; Lu, D. Molecular-targeted first-line therapy for advanced gastric cancer. Cochrane Database Syst. Rev. 2016, 7, Cd011461. [Google Scholar] [CrossRef] [PubMed]
- Grothey, A.; Galanis, E. Targeting angiogenesis: Progress with anti-VEGF treatment with large molecules. Nat. Rev. Clin. Oncol. 2009, 6, 507–518. [Google Scholar] [CrossRef]
- Ferrara, N.; Gerber, H.P.; LeCouter, J. The biology of VEGF and its receptors. Nat. Med. 2003, 9, 669–676. [Google Scholar] [CrossRef]
- Grothey, A.; Ellis, L.M. Targeting angiogenesis driven by vascular endothelial growth factors using antibody-based therapies. Cancer J. 2008, 14, 170–177. [Google Scholar] [CrossRef]
- Hicklin, D.J.; Ellis, L.M. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J. Clin. Oncol. 2005, 23, 1011–1027. [Google Scholar] [CrossRef]
- Fuchs, C.S.; Tomasek, J.; Yong, C.J.; Dumitru, F.; Passalacqua, R.; Goswami, C.; Safran, H.; dos Santos, L.V.; Aprile, G.; Ferry, D.R.; et al. Ramucirumab monotherapy for previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (REGARD): An international, randomised, multicentre, placebo-controlled, phase 3 trial. Lancet 2014, 383, 31–39. [Google Scholar] [CrossRef]
- Wilke, H.; Muro, K.; Van Cutsem, E.; Oh, S.-C.; Bodoky, G.; Shimada, Y.; Hironaka, S.; Sugimoto, N.; Lipatov, O.; Kim, T.-Y.; et al. Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): A double-blind, randomised phase 3 trial. Lancet Oncol. 2014, 15, 1224–1235. [Google Scholar] [CrossRef]
- Klempner, S.J.; Maron, S.B.; Chase, L.; Lomnicki, S.; Wainberg, Z.A.; Catenacci, D.V.T. Initial Report of Second-Line FOLFIRI in Combination with Ramucirumab in Advanced Gastroesophageal Adenocarcinomas: A Multi-Institutional Retrospective Analysis. Oncologist 2019, 24, 475–482. [Google Scholar] [CrossRef]
- Sakai, D.; Boku, N.; Kodera, Y.; Komatsu, Y.; Fujii, M.; Iwasa, S.; Oki, E.; Koizumi, W.; Gamoh, M.; Muro, K.; et al. An intergroup phase III trial of ramucirumab plus irinotecan in third or more line beyond progression after ramucirumab for advanced gastric cancer (RINDBeRG trial). J. Clin. Oncol. 2018, 36 (Suppl. 15), TPS4138. [Google Scholar] [CrossRef]
- Fuchs, C.S.; Shitara, K.; Di Bartolomeo, M.; Lonardi, S.; Al-Batran, S.-E.; Van Cutsem, E.; Ilson, D.H.; Alsina, M.; Chau, I.; Lacy, J.; et al. Ramucirumab with cisplatin and fluoropyrimidine as first-line therapy in patients with metastatic gastric or junctional adenocarcinoma (RAINFALL): A double-blind, randomised, placebo-controlled, phase 3 trial. Lancet Oncol. 2019, 20, 420–435. [Google Scholar] [CrossRef] [PubMed]
- Kamba, T.; McDonald, D.M. Mechanisms of adverse effects of anti-VEGF therapy for cancer. Br. J. Cancer 2007, 96, 1788–1795. [Google Scholar] [CrossRef]
- Zheng, Y.; Zhong, H.; Zhao, F.; Zhou, H.; Mao, C.; Lv, W.; Yuan, M.; Qian, J.; Jiang, H.; Xiao, C.; et al. First-in-human, phase I study of AK109, an anti-VEGFR2 antibody in patients with advanced or metastatic solid tumors. ESMO Open 2023, 8, 101156. [Google Scholar] [CrossRef] [PubMed]
- Haibe, Y.; Kreidieh, M.; El Hajj, H.; Khalifeh, I.; Mukherji, D.; Temraz, S.; Shamseddine, A. Resistance Mechanisms to Anti-angiogenic Therapies in Cancer. Front. Oncol. 2020, 10, 221. [Google Scholar] [CrossRef] [PubMed]
- Amatu, A.; Sartore-Bianchi, A.; Siena, S. NTRK gene fusions as novel targets of cancer therapy across multiple tumour types. ESMO Open 2016, 1, e000023. [Google Scholar] [CrossRef] [PubMed]
- Manea, C.A.; Badiu, D.C.; Ploscaru, I.C.; Zgura, A.; Bacinschi, X.; Smarandache, C.G.; Serban, D.; Popescu, C.G.; Grigorean, V.T.; Botnarciuc, V. A review of NTRK fusions in cancer. Ann. Med. Surg. 2022, 79, 103893. [Google Scholar] [CrossRef]
- Gatalica, Z.; Xiu, J.; Swensen, J.; Vranic, S. Molecular characterization of cancers with NTRK gene fusions. Mod. Pathol. 2019, 32, 147–153. [Google Scholar] [CrossRef]
- Liu, F.; Wei, Y.; Zhang, H.; Jiang, J.; Zhang, P.; Chu, Q. NTRK Fusion in Non-Small Cell Lung Cancer: Diagnosis, Therapy, and TRK Inhibitor Resistance. Front. Oncol. 2022, 12, 864666. [Google Scholar] [CrossRef]
- Solomon, J.P.; Benayed, R.; Hechtman, J.F.; Ladanyi, M. Identifying patients with NTRK fusion cancer. Ann. Oncol. 2019, 30 (Suppl. 8), viii16–viii22. [Google Scholar] [CrossRef]
- Helwick, C. NTRK Fusions in Gastrointestinal Cancers Rare but Responsive to Treatment—The ASCO Post. 2023. Available online: https://ascopost.com/issues/august-10-2020/ntrk-fusions-in-gastrointestinal-cancers-rare-but-responsive-to-treatment/ (accessed on 23 August 2023).
- Forsythe, A.; Zhang, W.; Phillip Strauss, U.; Fellous, M.; Korei, M.; Keating, K. A systematic review and meta-analysis of neurotrophic tyrosine receptor kinase gene fusion frequencies in solid tumors. Ther. Adv. Med. Oncol. 2020, 12, 1758835920975613. [Google Scholar] [CrossRef] [PubMed]
- OncologyPro. Epidemiology of Cancers with NTRK Gene Fusion. 2023. Available online: https://oncologypro.esmo.org/oncology-in-practice/anti-cancer-agents-and-biological-therapy/targeting-ntrk-gene-fusions/overview-of-cancers-with-ntrk-gene-fusion/ntrk-gene-fusions-as-oncogenic-drivers/epidemiology-of-cancers-with-ntrk-gene-fusion (accessed on 23 August 2023).
- Pu, X.; Fu, Y.; Sun, Q.; Li, L.; Kwasi, A.; Ma, Z.; Fan, X.; Sun, B. NTRK gene alterations were enriched in hepatoid or enteroblastic differentiation type of gastric cancer. J. Clin. Pathol. 2023. [Google Scholar] [CrossRef]
- Marchetti, A.; Ferro, B.; Pasciuto, M.P.; Zampacorta, C.; Buttitta, F.; D’Angelo, E. NTRK gene fusions in solid tumors: Agnostic relevance, prevalence and diagnostic strategies. Pathologica 2022, 114, 199–216. [Google Scholar] [CrossRef]
- Shinozaki-Ushiku, A.; Ishikawa, S.; Komura, D.; Seto, Y.; Aburatani, H.; Ushiku, T. The first case of gastric carcinoma with NTRK rearrangement: Identification of a novel ATP1B-NTRK1 fusion. Gastric Cancer 2020, 23, 944–947. [Google Scholar] [CrossRef] [PubMed]
- Okamura, R.; Boichard, A.; Kato, S.; Sicklick, J.K.; Bazhenova, L.; Kurzrock, R. Analysis of NTRK Alterations in Pan-Cancer Adult and Pediatric Malignancies: Implications for NTRK-Targeted Therapeutics. JCO Precis. Oncol. 2018, 2018, 1–20. [Google Scholar] [CrossRef] [PubMed]
- Scott, L.J. Larotrectinib: First Global Approval. Drugs 2019, 79, 201–206. [Google Scholar] [CrossRef]
- Marchiò, C.; Scaltriti, M.; Ladanyi, M.; Iafrate, A.; Bibeau, F.; Dietel, M.; Hechtman, J.; Troiani, T.; López-Rios, F.; Douillard, J.-Y.; et al. ESMO recommendations on the standard methods to detect NTRK fusions in daily practice and clinical research. Ann. Oncol. 2019, 30, 1417–1427. [Google Scholar] [CrossRef]
- Xu, Y.; Shi, X.; Wang, W.; Zhang, L.; Cheung, S.; Rudolph, M.; Brega, N.; Dong, X.; Qian, L.; Wang, L.; et al. Prevalence and clinico-genomic characteristics of patients with TRK fusion cancer in China. npj Precis. Oncol. 2023, 7, 1–12. [Google Scholar] [CrossRef]
- OncologyPro. Importance of Testing Cancers for NTRK Gene Fusions. 2023. Available online: https://oncologypro.esmo.org/oncology-in-practice/anti-cancer-agents-and-biological-therapy/targeting-ntrk-gene-fusions/importance-of-testing-cancers-for-ntrk-gene-fusions (accessed on 23 August 2023).
- Drilon, A.; Laetsch, T.W.; Kummar, S.; DuBois, S.G.; Lassen, U.N.; Demetri, G.D.; Nathenson, M.; Hyman, D.M. Efficacy of Larotrectinib in TRK Fusion-Positive Cancers in Adults and Children. N. Engl. J. Med. 2018, 378, 731–739. [Google Scholar] [CrossRef]
- Doebele, R.C.; Drilon, A.; Paz-Ares, L.; Siena, S.; Shaw, A.T.; Farago, A.F.; Blakely, C.M.; Seto, T.; Cho, B.C.; Tosi, D.; et al. Entrectinib in patients with advanced or metastatic NTRK fusion-positive solid tumours: Integrated analysis of three phase 1-2 trials. Lancet Oncol. 2020, 21, 271–282. [Google Scholar] [CrossRef]
- Zhang, Y.; Sun, J.; Song, Y.; Gao, P.; Wang, X.; Chen, M.; Li, Y.; Wu, Z. Roles of fusion genes in digestive system cancers: Dawn for cancer precision therapy. Crit. Rev. Oncol./Hematol. 2022, 171, 103622. [Google Scholar] [CrossRef] [PubMed]
- Zhao, L.; Wang, N.; Zhang, D.; Jia, Y.; Kong, F. A comprehensive overview of the relationship between RET gene and tumor occurrence. Front. Oncol. 2023, 13, 1090757. [Google Scholar] [CrossRef]
- Verrienti, A.; Grani, G.; Sponziello, M.; Pecce, V.; Damante, G.; Durante, C.; Russo, D.; Filetti, S. Precision oncology for RET-related tumors. Front. Oncol. 2022, 12, 992636. [Google Scholar] [CrossRef] [PubMed]
- Kucharczyk, T.; Krawczyk, P.; Kowalski, D.M.; Płużański, A.; Kubiatowski, T.; Kalinka, E. RET Proto-Oncogene-Not Such an Obvious Starting Point in Cancer Therapy. Cancers 2022, 14, 5298. [Google Scholar] [CrossRef]
- Manié, S.; Santoro, M.; Fusco, A.; Billaud, M. The RET receptor: Function in development and dysfunction in congenital malformation. Trends Genet. 2001, 17, 580–589. [Google Scholar] [CrossRef] [PubMed]
- Carter, D. RET inhibitors: A Treatment for Any RET-Altered Cancer: Cancerwise. 2023. Available online: https://www.mdanderson.org/cancerwise/ret-inhibitors--a-treatment-for-any-ret-altered-cancer.h00-159544479.html (accessed on 23 August 2023).
- Zhu, V.W.; Klempner, S.J.; Ou, S.I. Receptor Tyrosine Kinase Fusions as an Actionable Resistance Mechanism to EGFR TKIs in EGFR-Mutant Non-Small-Cell Lung Cancer. Trends Cancer 2019, 5, 677–692. [Google Scholar] [CrossRef]
- Belli, C.; Anand, S.; Gainor, J.F.; Penault-Llorca, F.; Subbiah, V.; Drilon, A.; Andrè, F.; Curigliano, G. Progresses Toward Precision Medicine in RET-altered Solid Tumors. Clin. Cancer Res. 2020, 26, 6102–6111. [Google Scholar] [CrossRef]
- Subbiah, A.A.-D.; Jason, R.; Vivek, S. The landscape of RET alterations from 56,970 adult patients with cancer: Clinical implications. J. Clin. Oncol. 2019, 37, 3106. [Google Scholar] [CrossRef]
- De Groot, J.W.; Links, T.P.; Plukker, J.T.; Lips, C.J.; Hofstra, R.M. RET as a diagnostic and therapeutic target in sporadic and hereditary endocrine tumors. Endocr. Rev. 2006, 27, 535–560. [Google Scholar] [CrossRef]
- Morishita, A.; Gong, J.; Masaki, T. Targeting receptor tyrosine kinases in gastric cancer. World J. Gastroenterol. 2014, 20, 4536–4545. [Google Scholar] [CrossRef]
- Regua, A.T.; Najjar, M.; Lo, H.-W. RET signaling pathway and RET inhibitors in human cancer. Front. Oncol. 2022, 12, 932353. [Google Scholar] [CrossRef] [PubMed]
- Subbiah, V.; Wolf, J.; Konda, B.; Kang, H.; Spira, A.; Weiss, J.; Takeda, M.; Ohe, Y.; Khan, S.; Ohashi, K.; et al. Tumour-agnostic efficacy and safety of selpercatinib in patients with RET fusion-positive solid tumours other than lung or thyroid tumours (LIBRETTO-001): A phase 1/2, open-label, basket trial. Lancet Oncol. 2022, 23, 1261–1273. [Google Scholar] [CrossRef] [PubMed]
- Subbiah, V.; Cassier, P.A.; Siena, S.; Garralda, E.; Paz-Ares, L.; Garrido, P.; Nadal, E.; Vuky, J. Pan-cancer efficacy of pralsetinib in patients with RET fusion-positive solid tumors from the phase 1/2 ARROW trial. Nat. Med. 2022, 28, 1640–1645. [Google Scholar] [CrossRef] [PubMed]
- Friday, B.B.; Adjei, A.A. Advances in targeting the Ras/Raf/MEK/Erk mitogen-activated protein kinase cascade with MEK inhibitors for cancer therapy. Clin. Cancer Res. 2008, 14, 342–346. [Google Scholar] [CrossRef] [PubMed]
- Davies, H.; Bignell, G.R.; Cox, C.; Stephens, P.; Edkins, S.; Clegg, S.; Teague, J.; Woffendin, H.; Garnett, M.J.; Bottomley, W.; et al. Mutations of the BRAF gene in human cancer. Nature 2002, 417, 949–954. [Google Scholar] [CrossRef]
- Pratilas, C.A.; Xing, F.; Solit, D.B. Targeting oncogenic BRAF in human cancer. Curr. Top. Microbiol. Immunol. 2012, 355, 83–98. [Google Scholar]
- Loo, E.; Khalili, P.; Beuhler, K.; Siddiqi, I.; Vasef, M.A. BRAF V600E Mutation Across Multiple Tumor Types: Correlation Between DNA-based Sequencing and Mutation-specific Immunohistochemistry. Appl. Immunohistochem. Mol. Morphol. 2018, 26, 709–713. [Google Scholar] [CrossRef]
- Espinosa, A.V.; Porchia, L.; Ringel, M.D. Targeting BRAF in thyroid cancer. Br. J. Cancer 2007, 96, 16–20. [Google Scholar] [CrossRef]
- Hirschi, B.; Gallmeier, E.; Ziesch, A.; Marschall, M.; Kolligs, F.T. Genetic targeting of B-RafV600E affects survival and proliferation and identifies selective agents against BRAF-mutant colorectal cancer cells. Mol. Cancer 2014, 13, 122. [Google Scholar] [CrossRef]
- Sahin, I.H.; Klostergaard, J. BRAF Mutations as Actionable Targets: A Paradigm Shift in the Management of Colorectal Cancer and Novel Avenues. JCO Oncol. Pract. 2021, 17, 723–730. [Google Scholar] [CrossRef]
- Lee, S.H.; Soung, Y.H.; Kim, H.S.; Park, W.S.; Kim, S.Y.; Lee, J.H.; Park, J.Y.; Cho, Y.G.; Kim, C.J.; Nam, S.W.; et al. BRAF and KRAS mutations in stomach cancer. Oncogene 2003, 22, 6942–6945. [Google Scholar] [CrossRef] [PubMed]
- Subbiah, V.; Lassen, U.; Élez, E.; Italiano, A.; Curigliano, G.; Javle, M.; de Braud, F.; Prager, G.W. Dabrafenib plus trametinib in patients with BRAF(V600E)-mutated biliary tract cancer (ROAR): A phase 2, open-label, single-arm, multicentre basket trial. Lancet Oncol. 2020, 21, 1234–1243. [Google Scholar] [CrossRef] [PubMed]
- Salama, A.K.S.; Li, S.; Macrae, E.R.; Park, J.I.; Mitchell, E.P.; Zwiebel, J.A.; Chen, H.X.; Gray, R.J.; McShane, L.M.; Rubinstein, L.V.; et al. Dabrafenib and Trametinib in Patients with Tumors with BRAF(V600E) Mutations: Results of the NCI-MATCH Trial Subprotocol H. J. Clin. Oncol. 2020, 38, 3895–3904. [Google Scholar] [CrossRef] [PubMed]
- Gouda, M.A.; Subbiah, V. Expanding the Benefit: Dabrafenib/Trametinib as Tissue-Agnostic Therapy for BRAF V600E–Positive Adult and Pediatric Solid Tumors. Am. Soc. Clin. Oncol. Educ. Book 2023, 43, e404770. [Google Scholar] [CrossRef]
- King, A.J.; Arnone, M.R.; Bleam, M.R.; Moss, K.G.; Yang, J.; Fedorowicz, K.E.; Smitheman, K.N.; Erhardt, J.A.; Hughes-Earle, A.; Kane-Carson, L.S.; et al. Dabrafenib; preclinical characterization, increased efficacy when combined with trametinib, while BRAF/MEK tool combination reduced skin lesions. PLoS ONE 2013, 8, e67583. [Google Scholar] [CrossRef]
- Long, G.V.; Stroyakovskiy, D.; Gogas, H.; Levchenko, E.; de Braud, F.; Larkin, J.; Garbe, C.; Jouary, T.; Hauschild, A.; Grob, J.J.; et al. Combined BRAF and MEK Inhibition versus BRAF Inhibition Alone in Melanoma. N. Engl. J. Med. 2014, 371, 1877–1888. [Google Scholar] [CrossRef]
- Planchard, D.; Besse, B.; Groen, H.J.M.; Souquet, P.J.; Quoix, E.; Baik, C.S.; Barlesi, F.; Kim, T.M.; Mazieres, L.; Novello, S.; et al. Dabrafenib plus trametinib in patients with previously treated BRAF(V600E)-mutant metastatic non-small cell lung cancer: An open-label, multicentre phase 2 trial. Lancet Oncol. 2016, 17, 984–993. [Google Scholar] [CrossRef]
- Subbiah, V.; Kreitman, R.J.; Wainberg, Z.A.; Cho, J.Y.; Schellens, J.H.M.; Soria, J.C.; Wen, P.Y.; Zielinski, C.; Cabanillas, M.E.; Urbanowitz, G.; et al. Dabrafenib and Trametinib Treatment in Patients with Locally Advanced or Metastatic BRAF V600-Mutant Anaplastic Thyroid Cancer. J. Clin. Oncol. 2018, 36, 7–13. [Google Scholar] [CrossRef]
- Adashek, J.J.; Menta, A.K.; Reddy, N.K.; Desai, A.P.; Roszik, J.; Subbiah, V. Tissue-Agnostic Activity of BRAF plus MEK Inhibitor in BRAF V600-Mutant Tumors. Mol. Cancer Ther. 2022, 21, 871–878. [Google Scholar] [CrossRef]
- Subbiah, V.; Kreitman, R.J.; Wainberg, Z.A.; Gazzah, A.; Lassen, U.; Stein, A.; Wen, P.Y.; Dietrich, S.; de Jonge, M.J.A.; Blay, J.-Y.; et al. Dabrafenib plus trametinib in BRAFV600E-mutated rare cancers: The phase 2 ROAR trial. Nat. Med. 2023, 29, 1103–1112. [Google Scholar] [CrossRef]
- Li, K.; Li, J. Current Molecular Targeted Therapy in Advanced Gastric Cancer: A Comprehensive Review of Therapeutic Mechanism, Clinical Trials, and Practical Application. Gastroenterol. Res. Pract. 2016, 2016, 4105615. [Google Scholar] [CrossRef]
- Xu, J.; Ying, J.; Liu, R.; Wu, J.; Ye, F.; Xu, N.; Zhang, Y.; Zhao, R.; Xiang, X.; Wang, J.; et al. KN026 (anti-HER2 bispecific antibody) in patients with previously treated, advanced HER2-expressing gastric or gastroesophageal junction cancer. Eur. J. Cancer 2023, 178, 1–12. [Google Scholar] [CrossRef]
- Thuss-Patience, P.C.; Shah, M.A.; Ohtsu, A.; Van Cutsem, E.; Ajani, J.A.; Castro, H. Trastuzumab emtansine versus taxane use for previously treated HER2-positive locally advanced or metastatic gastric or gastro-oesophageal junction adenocarcinoma (GATSBY): An international randomised, open-label, adaptive, phase 2/3 study. Lancet Oncol. 2017, 18, 640–653. [Google Scholar] [CrossRef]
- Xu, J.; Kato, K.; Raymond, E.; Hubner, R.A.; Shu, Y.; Pan, Y.; Park, S.R.; Ping, L.; Jiang, Y.; Zhang, J.; et al. Tislelizumab plus chemotherapy versus placebo plus chemotherapy as first-line treatment for advanced or metastatic oesophageal squamous cell carcinoma (RATIONALE-306): A global, randomised, placebo-controlled, phase 3 study. Lancet Oncol. 2023, 24, 483–495. [Google Scholar] [CrossRef]
- Tabernero, J.; Hoff, P.M.; Shen, L.; Ohtsu, A.; Shah, M.A.; Siddiqui, A.; Heeson, S.; Kiermaier, A.; Macharia, H.; Restuccia, E.; et al. Pertuzumab, trastuzumab, and chemotherapy in HER2-positive gastric/gastroesophageal junction cancer: End-of-study analysis of the JACOB phase III randomized clinical trial. Gastric Cancer 2023, 26, 123–131. [Google Scholar] [CrossRef]
- Shen, L.; Gong, J.; Niu, Z.; Zhao, R.; Chen, L.; Liu, L.; Deng, T.; Lu, L.; Zhang, Y.; Li, Z.; et al. 1210P The preliminary efficacy and safety of KN026 combined with KN046 treatment in HER2-positive locally advanced unresectable or metastatic gastric/gastroesophageal junction cancer without prior systemic treatment in a phase II study. Ann. Oncol. 2022, 33, S1102. [Google Scholar] [CrossRef]
- Zhang, J.; Ji, D.; Cai, L.; Yao, H.; Yan, M.; Wang, X.; Shen, W.; Du, Y.; Pang, H.; Lai, X.; et al. First-in-human HER2-targeted Bispecific Antibody KN026 for the Treatment of Patients with HER2-positive Metastatic Breast Cancer: Results from a Phase I Study. Clin. Cancer Res. 2022, 28, 618–628. [Google Scholar] [CrossRef]
- Gong, J.; Chen, L.; Sun, M.; Ni, M.; Zhao, R.; Wang, X.; Ying, J.; Zhang, Y.; Zhuang, Z.-X.; Li, X.; et al. Efficacy and safety of KN026 in combination with KN046 in patients with locally advanced unresectable or metastatic HER2-positive other solid tumors. J. Clin. Oncol. 2023, 41 (Suppl. 16), 3621. [Google Scholar] [CrossRef]
- Peng, Z.; Liu, T.; Wei, J.; Wang, A.; He, Y.; Yang, L.; Zhang, X.; Fan, N.; Luo, S.; Li, Z.; et al. Efficacy and safety of a novel anti-HER2 therapeutic antibody RC48 in patients with HER2-overexpressing, locally advanced or metastatic gastric or gastroesophageal junction cancer: A single-arm phase II study. Cancer Commun. 2021, 41, 1173–1182. [Google Scholar] [CrossRef]
- Weisser, N.; Wickman, G.; Davies, R.; Rowse, G. Abstract 31: Preclinical development of a novel biparatopic HER2 antibody with activity in low to high HER2 expressing cancers. Cancer Res. Am. Assoc. Cancer Res. 2023, 77, 31. [Google Scholar] [CrossRef]
- Elimova, E.; Ajani, J.A.; Burris, H.A., III; Denlinger, C.S.; Iqbal, S.; Kang, Y.-K.; Kim, Y.H.; Lee, K.W.; Lin, B. Zanidatamab + chemotherapy as first-line treatment for HER2-expressing metastatic gastroesophageal adenocarcinoma (mGEA). J. Clin. Oncol. 2023, 41 (Suppl. 4), 347. [Google Scholar] [CrossRef]
- Moehler, M.H.; Kato, K.; Arkenau, H.-T.; Oh, D.-Y.; Tabernero, J.; Cruz-Correa, M.; Wang, H.; Xu, H.; Li, J.; Yang, S.; et al. Rationale 305: Phase 3 study of tislelizumab plus chemotherapy vs placebo plus chemotherapy as first-line treatment (1L) of advanced gastric or gastroesophageal junction adenocarcinoma (GC/GEJC). J. Clin. Oncol. 2023, 41 (Suppl. 4), 286. [Google Scholar] [CrossRef]
- Lou, B.; Wei, H.; Yang, F.; Wang, S.; Yang, B.; Zheng, Y.; Zhu, J.; Yan, S. Preclinical Characterization of GLS-010 (Zimberelimab), a Novel Fully Human Anti-PD-1 Therapeutic Monoclonal Antibody for Cancer. Front. Oncol. 2021, 11, 736955. [Google Scholar] [CrossRef]
- Kaplon, H.; Chenoweth, A.; Crescioli, S.; Reichert, J.M. Antibodies to watch in 2022. MAbs 2022, 14, 2014296. [Google Scholar] [CrossRef]
- Lee, K.-W.; Chung, H.; Kim, T.M.; Lakhani, N.; Messersmith, W.; Santana-Davila, R.; Kim, W.S.; LoRusso, P.; Bang, Y.J.; Chow, L.; et al. 498 Evorpacept (ALX148), a CD47 myeloid checkpoint inhibitor, in patients with head and neck squamous cell carcinoma (HNSCC) and with gastric/gastroesophageal cancer (GC); ASPEN-01. J. ImmunoTherapy Cancer 2021, 9. [Google Scholar] [CrossRef]
- Xu, J.; Jiang, H.; Pan, Y.; Gu, K.; Cang, S.; Han, L.; Shu, Y.; Li, J.; Zhao, J.; Pan, H.; et al. Abstract CT078: First-line treatment with sintilimab (sin) vs placebo in combination with chemotherapy (chemo) in patients (pts) with unresectable gastric or gastroesophageal junction (G/GEJ) cancer: Final overall survival (OS) results from the randomized, phase III ORIENT-16 trial. Cancer Res. 2023, 83 (Suppl. 8), CT078. [Google Scholar]
- Sobhani, G.R.; Alberto, D.A.; Daniele, G.; Matteo, P.; Monica, G.; Giandomenica, I.; Manzini, N.; Sobhani, N. Avelumab in Gastric Cancer. Immunotherapy 2019, 11, 759–768. [Google Scholar] [CrossRef]
- Bang, Y.-J.; Ruiz, E.; Van Cutsem, E.; Lee, K.-W.; Wyrwicz, L.; Schenker, M.; Alsina, M.; Ryu, M.-H.; Chung, H.-C.; Evesque, L.; et al. Phase III, randomised trial of avelumab versus physician’s choice of chemotherapy as third-line treatment of patients with advanced gastric or gastro-oesophageal junction cancer: Primary analysis of JAVELIN Gastric 300. Ann. Oncol. 2018, 29, 2052–2060. [Google Scholar] [CrossRef]
- Moehler, M.; Dvorkin, M.; Boku, N.; Özgüroğlu, M.; Ryu, M.-H.; Muntean, A.S.; Lonardi, S.; Nechaeva, M.; Bragagnoli, A.C.; Coşkun, H.S.; et al. Phase III Trial of Avelumab Maintenance After First-Line Induction Chemotherapy Versus Continuation of Chemotherapy in Patients with Gastric Cancers: Results from JAVELIN Gastric 100. J. Clin. Oncol. 2021, 39, 966–977. [Google Scholar] [CrossRef]
- Domvanalimab|Anti-TIGIT Candidate|Arcus Biosciences. 2023. Available online: https://arcusbio.com/our-science/clinical-candidates/anti-tigit-antibodies/domvanalimab/ (accessed on 23 August 2023).
- Catenacci, D.V.; Tesfaye, A.; Tejani, M.; Cheung, E.; Eisenberg, P.; Scott, A.J.; Eng, C.; Hnatyszyn, J.; Marina, N.; Powers, J.; et al. Bemarituzumab with modified FOLFOX6 for advanced FGFR2-positive gastroesophageal cancer: FIGHT Phase III study design. Future Oncol. 2019, 15, 2073–2082. [Google Scholar] [CrossRef]
- Catenacci, D.V.; Rasco, D.; Lee, J.; Rha, S.Y.; Lee, K.-W.; Bang, Y.J.; Bendell, J.; Enzinger, P.; Marina, N.; Xiang, H.; et al. Phase I Escalation and Expansion Study of Bemarituzumab (FPA144) in Patients with Advanced Solid Tumors and FGFR2b-Selected Gastroesophageal Adenocarcinoma. J. Clin. Oncol. 2020, 38, 2418–2426. [Google Scholar] [CrossRef] [PubMed]
- Shinkawa, T.; Nakamura, K.; Yamane, N.; Shoji-Hosaka, E.; Kanda, Y.; Sakurada, M.; Uchida, K.; Anazawa, H.; Satoh, M.; Yamasaki, M.; et al. The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J. Biol. Chem. 2003, 278, 3466–3473. [Google Scholar] [CrossRef]
- Wainberg, Z.A.; Enzinger, P.C.; Kang, Y.K.; Qin, S.; Yamaguchi, K.; Kim, I.H.; Saeed, A.; Oh, S.C.; Li, J.; Turk, H.M.; et al. Bemarituzumab in patients with FGFR2b-selected gastric or gastro-oesophageal junction adenocarcinoma (FIGHT): A randomised, double-blind, placebo-controlled, phase 2 study. Lancet Oncol. 2022, 23, 1430–1440. [Google Scholar] [CrossRef]
- Smyth, E.C.; Chao, J.; Muro, K.; Yen, P.; Yanes, R.E.; Zahlten-Kumeli, A.; Rha, S.Y. Trial in progress: Phase 3 study of bemarituzumab + mFOLFOX6 versus placebo + mFOLFOX6 in previously untreated advanced gastric or gastroesophageal junction (GEJ) cancer with FGFR2b overexpression (FORTITUDE-101). J. Clin. Oncol. 2022, 40 (Suppl. 16), TPS4164. [Google Scholar] [CrossRef]
- ALX Oncology Reports Positive Interim Phase 2 ASPEN-06: Globenewswire. 2023. Available online: https://www.globenewswire.com/news-release/2023/10/03/2753394/0/en/ALX-Oncology-Reports-Positive-Interim-Phase-2-ASPEN-06-Clinical-Trial-Results-of-Evorpacept-for-the-Treatment-of-Advanced-HER2-Positive-Gastric-Cancer.html (accessed on 3 October 2023).
- Shah, M.A.; Shitara, K.; Ajani, J.A.; Bang, Y.-J.; Enzinger, P.; Ilson, D.; Lordick, F.; Van Cutsem, E.; Plazas, J.G.; Huang, J.; et al. Zolbetuximab plus CAPOX in CLDN18.2-positive gastric or gastroesophageal junction adenocarcinoma: The randomized, phase 3 GLOW trial. Nat. Med. 2023, 29, 2133–2141. [Google Scholar] [CrossRef]
- Song, Y.; Li, N.; Li, Q.; Liang, X.; Zhang, S.; Fan, Q.; Yin, X.; Zhuang, Z.; Liu, Y.; Zhang, J.; et al. HX008, an anti-PD1 antibody, plus irinotecan as second-line treatment for advanced gastric or gastroesophageal junction cancer: A multicenter, single-arm phase II trial. J. Immunother. Cancer 2020, 8, e001279. [Google Scholar] [CrossRef]
- Ipilimumab and Oxaliplatin and Capecitabine in Gastric Cancer-Clinical Trials Registry-ICH GCP. 2023. Available online: https://ichgcp.net/clinical-trials-registry/NCT05144854 (accessed on 23 August 2023).
Therapeutic Agent | Trastuzumab | Fam-Trastuzumab Deruxtecan-Nxki | Ramucirumab | Nivolumab | ||
---|---|---|---|---|---|---|
Study name | ToGA trial [24] | HERXO [44] | DESTINY-Gastric01 [47] | REGARD [107] | RAINBOW [108] | Checkmate-649 [88] |
Phase | Phase III | Phase II | Phase II | Phase III | Phase III | Phase III |
Population | patients with HER2-overexpression-positive advanced gastric or GEJ adenocarcinoma | the first-line treatment of patients with HER2 overexpression-positive advanced gastric or GEJ adenocarcinoma | advanced or metastatic gastric or GEJ adenocarcinoma in patients with progressive disease following at least two prior lines of therapy, including trastuzumab | patients with advanced gastric or GEJ adenocarcinoma progressing after first-line chemotherapy | patients with metastatic gastric or GEJ adenocarcinoma progressing on first-line chemotherapy | patients with previously untreated, HER2-negative, unresectable gastric, GEJ, or esophageal adenocarcinoma |
Study arm | trastuzumab + CTH | trastuzumab + CTH | fam-trastuzumab deruxtecan-nxki | ramucirumab | ramucirumab + paclitaxel | nivolumab + CTH |
Control arm | CTH alone | Single arm | CTH alone | placebo | paclitaxel alone | CTH alone |
Randomization | 1:1 | no | 2:1 | 1:1 | 1:1 | 1:1 |
Number of patients | 594 | 45 | 188 | 355 | 665 | 1581 |
Follow-up time (months) | 19 (study group), 17 (control group) | 13.7 | ||||
OS (months) | All patients: 13.8 vs. 11 A post hoc subgroup analysis: IHC 2+ and FISH positive or IHC 3+: 16 vs. 11.8 IHC 0 or 1+ and FISH positive: 10 vs. 8.7 | 13.8 | 12.5 vs. 8.4 | 5.2 vs. 3.8 | 9.63 vs. 7.36 | All patients: 13.8 vs. 11.6 PD-L1 CPS of ≥5: 14.4 vs. 11.1 PD-L1 CPS of ≥1: 14 vs. 11.3 |
PFS (months) | 7.1 | 5.6 vs. 3.5 | 4.4 vs. 2.86 | All patients: 7.7 vs. 6.9 PD-L1 CPS of ≥5: 7.7 vs. 6 PD-L1 CPS of ≥1: 7.5 vs. 6.9 | ||
ORR | 40.5% vs. 11% | 28% vs. 6% |
Pembrolizumab | Dostarlimab-Gxly | Larotrectinib | Entrectinib | |||
---|---|---|---|---|---|---|
Classification | PD-1 antibody | anti-PD-1 antibody | TRK inhibitor | TRK inhibitor | ||
FDA approval date | 2017 (first-ever tissue- and site-agnostic approval) | 2020 | 2021 | 2018 (second-ever tissue-agnostic approval) | 2019 | |
Indication | treatment of patients with unresectable or metastatic MSI-H or dMMR solid tumors that have progressed following prior treatment and who have no satisfactory alternative treatment options | treatment of patients with metastatic TMB-H solid tumors who have progressed following prior treatment and who have no satisfactory alternative treatment options | treatment of patients with dMMR recurrent or advanced solid tumors that have progressed on or following prior treatment, who have no satisfactory alternative treatment options, and who had not previously received a PD-1 or PD-L1 inhibitor. | treatment of adult and pediatric patients (aged 12 years and older) with solid tumors that have an NTRK gene fusion without a known acquired resistance mutation, that are either metastatic or where surgical resection is likely to result in severe morbidity, and who have no satisfactory alternative treatments or whose cancer has progressed following treatment | the same indications as larotrectinib, as well as for adult patients with metastatic NSCLC whose tumors are ROS1-positive | |
Clinical trials | Protocol name | KEYNOTE-158 [81] | GARNET [89] | LOXO-TRK-14001 [131] SCOUT NAVIGATE | ALKA-372-001 [132] STARTRK-1 STARTRK-2 | |
Number of patients | 149 | 102 | 209 | 55 | 54 | |
Basis of granting approval by FDA | based on data from patients with MSI-H/dMMR cancers enrolled across five multicenter single-arm clinical trials | based on a retrospective analysis of patients who had tumors identified as TMB-H | based on the nonrandomized Phase I multicohort trial that evaluated the safety and antitumor activity of dostarlimab-gxly in patients with dMMR solid tumors who had not received prior PD-1, PDL-1, or CTLA4 inhibitors. | based on data from three multicenter single-arm clinical trials enrolling patients with unresectable or metastatic solid tumors harboring an NTRK gene fusion who experienced disease progression following systemic therapy | based on data from three multicenter single-arm Phase I and Phase II clinical trials enrolling patients aged 18 years or older with metastatic or locally advanced NTRK gene fusion-positive solid tumors | |
Cancer type | 90 patients had colorectal cancer | The majority of patients had endometrial or GI cancers. | The most common cancer types represented were salivary gland tumors (22%), soft tissue sarcoma (20%), infantile fibrosarcoma (13%), and thyroid cancer (9%) | The most common cancer types represented were sarcoma, NSCLC, mammary analog secretory carcinoma, breast, thyroid, and colorectal | ||
ORR | 39.6% | 29% | 42% | 75% | 57% | |
Type of response | 11 complete responses and 48 partial responses | 4% complete response rate | 9% complete response rate and 33% partial response rate | complete response rate of 22%. | complete response rate of 7%. | |
Duration of response | responses lasted ≥6 months for 78% of those who responded to pembrolizumab | the median duration of response was not reached, with 50% of patients having response durations of ≥24 months | the median duration of response was 35 months. | At 1 year, 71% of the responses were ongoing and 55% of the patients remained progression-free. Response duration was ≥6 months for 73%, ≥9 months for 63%, and ≥12 months for 39% of patients. At the time of data analysis, the median duration of response and PFS had not been reached. | Response duration was ≥6 months for 68% of patients and ≥12 months for 45% of patients. The median duration of response was 10 months. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skórzewska, M.; Gęca, K.; Polkowski, W.P. A Clinical Viewpoint on the Use of Targeted Therapy in Advanced Gastric Cancer. Cancers 2023, 15, 5490. https://doi.org/10.3390/cancers15225490
Skórzewska M, Gęca K, Polkowski WP. A Clinical Viewpoint on the Use of Targeted Therapy in Advanced Gastric Cancer. Cancers. 2023; 15(22):5490. https://doi.org/10.3390/cancers15225490
Chicago/Turabian StyleSkórzewska, Magdalena, Katarzyna Gęca, and Wojciech P. Polkowski. 2023. "A Clinical Viewpoint on the Use of Targeted Therapy in Advanced Gastric Cancer" Cancers 15, no. 22: 5490. https://doi.org/10.3390/cancers15225490
APA StyleSkórzewska, M., Gęca, K., & Polkowski, W. P. (2023). A Clinical Viewpoint on the Use of Targeted Therapy in Advanced Gastric Cancer. Cancers, 15(22), 5490. https://doi.org/10.3390/cancers15225490