Oral Bacteria, Virus and Fungi in Saliva and Tissue Samples from Adult Subjects with Oral Squamous Cell Carcinoma: An Umbrella Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Protocol
- (P): Population: adult subjects (≥18 years of age) with OSCC;
- (I): Intervention: histopathologic analysis of OSCC lesions and/or saliva testing in OSCC patients;
- (C): Comparison: no histopathologic analysis or saliva testing; histopathologic analysis of non-OSCC tissue or saliva testing in non-OSCC subjects;
- (O): Outcome(s): microbial content and composition of saliva or OSCC samples in adult subjects.
2.2. Search Strategy
- PubMed/MEDLINE: Article type “Systematic Review” and “Meta-analysis”; Language “English”.
- Scopus: Document type “Review”; Language “English”.
- Web of Science: Document types “Review Article”; Languages “English”.
- BioMed Central: no filter.
- PROSPERO register: Status of the review “Published”.
- No date restrictions were applied.
2.3. Study Selection and Eligibility Criteria
2.4. Data Extraction and Collection
- Study characteristics: first author, year, journal, design and number of studies reported, meta-analysis, study quality, funding;
- Population characteristics: sample size, mean age, gender ratio, country of origin of the sample, risk factors for OSCC, history of OPMD or malignancies, other comorbidities and ongoing treatments;
- OSCC characteristics: macroscopic features, location, staging, grading, microscopic features, first diagnosis (primary site/metastatic lesion), time to onset, chemotherapy (yes/no), radiotherapy (yes/no);
- Intervention: number of samples, method(s) of sample collection, microorganisms identification technique and target;
- Outcome(s):
- Bacteria: type(s) of phylum, genus and species of bacterium detected, number or percentage of positive OSCC cases;
- Viruses: type(s) and genotype(s) of virus detected, number or percentage of positive OSCC cases;
- Fungi: type(s) and species of fungus detected, number or percentage of positive OSCC cases.
2.5. Data Synthesis
2.6. Quality Assessment
3. Results
3.1. Study Selection
3.2. Study Characteristics and Qualitative Synthesis
3.3. Oral Bacterial Content in Adult Subjects with OSCC: Study Characteristics and Qualitative Synthesis
3.3.1. Oral Bacterial Content in OSCC-Tissue Samples of Adult Subjects
3.3.2. Oral Bacterial Content in Saliva of Adult Subjects with OSCC
3.4. Oral Viral Content in Adult Subjects with OSCC: Study Characteristics and Qualitative Synthesis
3.4.1. Oral Viral Content in OSCC-Tissue Samples of Adult Subjects
3.4.2. Oral Viral Content in Saliva of Adult Subjects with OSCC
3.5. Oral Fungal Content in Adult Subjects with OSCC: Study Characteristics and Qualitative Synthesis
3.5.1. Oral Fungal Content in the OSCC Tissue Samples of Adult Subjects
3.5.2. Oral Fungal Content in Saliva in Adult Subjects with OSCC
3.6. Quality Assessment
4. Discussion
4.1. Bacterial Content of OSCC-Tissue Samples or Saliva in Adult Subjects with OSCC
4.1.1. Fusobacteria Phylum in Tissue and Saliva Samples of Adult Subjects with OSCC
4.1.2. Firmicutes Phylum in Tissue and Saliva Samples of Adult Subjects with OSCC
4.1.3. Actinobacteria Phylum in Tissue and Saliva Samples of Adult Subjects with OSCC
4.1.4. Bacteroidetes Phylum in Tissue and Saliva Samples of Adult Subjects with OSCC
4.1.5. Periodontal Pathogens and Oral Carcinogenesis
4.2. Viral Content of Tissue and Saliva Samples in Adult Subjects with OSCC
4.2.1. HPV in Tissue and Saliva Samples of Adult Subjects with OSCC
4.2.2. EBV in Tissue and Saliva Samples of Adult Subjects with OSCC
4.2.3. HSV in Tissue and Saliva Samples of Adult Subjects with OSCC
4.2.4. HCV in Tissue and Saliva Samples of Adult Subjects with OSCC
4.3. Fungal Content of OSCC-Tissue Samples or Saliva in Adult Subjects with OSCC
4.3.1. Candida Genus in Tissue and Saliva Samples of Adult Subjects with OSCC
4.3.2. Aspergillus, Acremonium, and Morchella in Tissue and Saliva Samples of Adult Subjects with OSCC
4.4. Limitations and Strengths
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- McCord, C.; Kiss, A.; Magalhaes, M.A.; Leong, I.T.; Jorden, T.; Bradley, G. Oral Squamous Cell Carcinoma Associated with Precursor Lesions. Cancer Prev. Res. 2021, 14, 873–884. [Google Scholar] [CrossRef] [PubMed]
- Badwelan, M.; Muaddi, H.; Ahmed, A.; Lee, K.T.; Tran, S.D. Oral Squamous Cell Carcinoma and Concomitant Primary Tumors, What Do We Know? A Review of the Literature. Curr. Oncol. 2023, 30, 3721–3734. [Google Scholar] [CrossRef] [PubMed]
- Nie, F.; Wang, L.; Huang, Y.; Yang, P.; Gong, P.; Feng, Q.; Yang, C. Characteristics of Microbial Distribution in Different Oral Niches of Oral Squamous Cell Carcinoma. Front. Cell Infect. Microbiol. 2022, 12, 905653. [Google Scholar] [CrossRef] [PubMed]
- Alshami, M.L.; Al-Maliky, M.A.; Alsagban, A.A.; Alshaeli, A.J. Epidemiology and Incidence of Oral Squamous Cell Carcinoma in the Iraqi Population over 5 Years (2014–2018). Health Sci. Rep. 2023, 6, e1205. [Google Scholar] [CrossRef] [PubMed]
- Kocarnik, J.M.; Compton, K.; Dean, F.E.; Fu, W.; Gaw, B.L.; Harvey, J.D.; Henrikson, H.J.; Lu, D.; Pennini, A.; Xu, R.; et al. Cancer Incidence, Mortality, Years of Life Lost, Years Lived with Disability, and Disability-Adjusted Life Years for 29 Cancer Groups from 2010 to 2019. JAMA Oncol. 2022, 8, 420–444. [Google Scholar] [CrossRef] [PubMed]
- Mosaddad, S.A.; Mahootchi, P.; Rastegar, Z.; Abbasi, B.; Alam, M.; Abbasi, K.; Fani-Hanifeh, S.; Amookhteh, S.; Sadeghi, S.; Soufdoost, R.S.; et al. Photodynamic Therapy in Oral Cancer: A Narrative Review. Photobiomodulation Photomed. Laser Surg. 2023, 41, 248–264. [Google Scholar] [CrossRef] [PubMed]
- Hajmohammadi, E.; Molaei, T.; Mowlaei, S.H.; Alam, M.; Abbasi, K.; Khayatan, D.; Rahbar, M.; Tebyanian, H. Sonodynamic therapy and common head and neck cancers: In vitro and in vivo studies. Eur. Rev. Med. Pharmacol. Sci. 2021, 25, 5113–5121. [Google Scholar] [CrossRef] [PubMed]
- Deo, P.; Deshmukh, R. Oral Microbiome and Oral Cancer—The Probable Nexus. J. Oral Maxillofac. Pathol. 2020, 24, 361–367. [Google Scholar] [CrossRef]
- Bracci, P.M. Oral Health and the Oral Microbiome in Pancreatic Cancer. Cancer J. 2017, 23, 310–314. [Google Scholar] [CrossRef]
- Amato, A. Periodontitis and Cancer: Beyond the Boundaries of Oral Cavity. Cancers 2023, 15, 1736. [Google Scholar] [CrossRef]
- Wadia, R. Periodontal Disease & Lung Cancer. Br. Dent. J. 2020, 229, 125. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Gu, C.; Li, S.; Gan, S.; Li, Y.; Xiang, S.; Gong, L.; Wang, S. Periodontal Disease and the Risk of Prostate Cancer: A Meta-Analysis of Cohort Studies. Int. Braz. J. Urol. 2021, 47, 1120–1130. [Google Scholar] [CrossRef] [PubMed]
- Di Spirito, F.; Toti, P.; Pilone, V.; Carinci, F.; Lauritano, D.; Sbordone, L. The Association between Periodontitis and Human Colorectal Cancer: Genetic and Pathogenic Linkage. Life 2020, 10, 211. [Google Scholar] [CrossRef] [PubMed]
- Söder, B.; Yakob, M.; Meurman, J.H.; Andersson, L.C.; Klinge, B.; Söder, P.-Ö. Periodontal Disease May Associate with Breast Cancer. Breast Cancer Res. Treat. 2011, 127, 497–502. [Google Scholar] [CrossRef] [PubMed]
- de Moraes, R.C.; Dias, F.L.; da Silva Figueredo, C.M.; Fischer, R.G. Association between Chronic Periodontitis and Oral/Oropharyngeal Cancer. Braz. Dent. J. 2016, 27, 261–266. [Google Scholar] [CrossRef] [PubMed]
- Javed, F.; Warnakulasuriya, S. Is There a Relationship between Periodontal Disease and Oral Cancer? A Systematic Review of Currently Available Evidence. Crit. Rev. Oncol. Hematol. 2016, 97, 197–205. [Google Scholar] [CrossRef] [PubMed]
- Perera, M.; Al-hebshi, N.N.; Speicher, D.J.; Perera, I.; Johnson, N.W. Emerging Role of Bacteria in Oral Carcinogenesis: A Review with Special Reference to Perio-Pathogenic Bacteria. J. Oral Microbiol. 2016, 8, 32762. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Hu, Y.; Zhou, X.; Liu, S.; Han, Q.; Cheng, L. Role of Oral Bacteria in the Development of Oral Squamous Cell Carcinoma. Cancers 2020, 12, 2797. [Google Scholar] [CrossRef]
- Vyhnalova, T.; Danek, Z.; Gachova, D.; Linhartova, P.B. The Role of the Oral Microbiota in the Etiopathogenesis of Oral Squamous Cell Carcinoma. Microorganisms 2021, 9, 1549. [Google Scholar] [CrossRef]
- Sand, L.; Jalouli, J. Viruses and Oral Cancer. Is There a Link? Microbes Infect. 2014, 16, 371–378. [Google Scholar] [CrossRef]
- Metgud, R.; Astekar, M.; Verma, M.; Sharma, A. Role of Viruses in Oral Squamous Cell Carcinoma. Oncol. Rev. 2012, 6, e21. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.J.; You, S.L.; Hsu, W.L.; Yang, H.I.; Lee, M.H.; Chen, H.C.; Chen, Y.Y.; Liu, J.; Hu, H.H.; Lin, Y.J.; et al. Epidemiology of Virus Infection and Human Cancer. In Viruses and Human Cancer: Recent Results in Cancer Research; Springer: Cham, Switzerland, 2021; Volume 217, pp. 13–45. [Google Scholar]
- Fiorino, S.; Bacchi-Reggiani, L.; de Biase, D.; Fornelli, A.; Masetti, M.; Tura, A.; Grizzi, F.; Zanello, M.; Mastrangelo, L.; Lombardi, R.; et al. Possible Association between Hepatitis C Virus and Malignancies Different from Hepatocellular Carcinoma: A Systematic Review. World J. Gastroenterol. 2015, 21, 12896–12953. [Google Scholar] [CrossRef] [PubMed]
- Di Spirito, F.; Pantaleo, G.; Di Palo, M.P.; Amato, A.; Raimondo, A.; Amato, M. Oral Human Papillomavirus Benign Lesions and HPV-Related Cancer in Healthy Children: A Systematic Review. Cancers 2023, 15, 1096. [Google Scholar] [CrossRef] [PubMed]
- Gillison, M.L.; Chaturvedi, A.K.; Anderson, W.F.; Fakhry, C. Epidemiology of Human Papillomavirus–Positive Head and Neck Squamous Cell Carcinoma. J. Clin. Oncol. 2015, 33, 3235–3242. [Google Scholar] [CrossRef] [PubMed]
- Pisano, M.; Romano, A.; Di Palo, M.P.; Baroni, A.; Serpico, R.; Contaldo, M. Oral Candidiasis in Adult and Pediatric Patients with COVID-19. Biomedicines 2023, 11, 846. [Google Scholar] [CrossRef] [PubMed]
- Muzio, L.L.; Ballini, A.; Cantore, S.; Bottalico, L.; Charitos, I.A.; Ambrosino, M.; Nocini, R.; Malcangi, A.; Dioguardi, M.; Cazzolla, A.P.; et al. Overview of Candida albicans and Human Papillomavirus (HPV) Infection Agents and Their Biomolecular Mechanisms in Promoting Oral Cancer in Pediatric Patients. BioMed Res. Int. 2021, 2021, 7312611. [Google Scholar] [CrossRef] [PubMed]
- Bansal, R.; Pallagatti, S.; Sheikh, S.; Aggarwal, A.; Gupta, D.; Singh, R. Candidal Species Identification in Malignant and Potentially Malignant Oral Lesions with Antifungal Resistance Patterns. Contemp. Clin. Dent. 2018, 9, S309–S313. [Google Scholar] [CrossRef] [PubMed]
- Du, Q.; Ren, B.; Zhou, X.; Zhang, L.; Xu, X. Cross-Kingdom Interaction between Candida albicans and Oral Bacteria. Front. Microbiol. 2022, 13, 911623. [Google Scholar] [CrossRef] [PubMed]
- Huang, S.; He, T.; Yue, F.; Xu, X.; Wang, L.; Zhu, P.; Teng, F.; Sun, Z.; Liu, X.; Jing, G.; et al. Longitudinal Multi-Omics and Microbiome Meta-Analysis Identify an Asymptomatic Gingival State That Links Gingivitis, Periodontitis, and Aging. mBio 2021, 12, e03281-20. [Google Scholar] [CrossRef]
- Hu, T.; Chitnis, N.; Monos, D.; Dinh, A. Next-Generation Sequencing Technologies: An Overview. Hum. Immunol. 2021, 82, 801–811. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372, n71. [Google Scholar] [CrossRef] [PubMed]
- Richardson, W.S.; Wilson, M.C.; Nishikawa, J.; Hayward, R.S. The Well-Built Clinical Question: A Key to Evidence-Based Decisions. ACP J. Club 1995, 123, A12–A13. [Google Scholar] [CrossRef] [PubMed]
- Higgins, J.P.T.; Green, S. (Eds.) Cochrane Handbook for Systematic Reviews of Interventions; Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Ayuningtyas, N.F.; Mahdani, F.Y.; Pasaribu, T.A.S.; Chalim, M.; Ayna, V.K.P.; Santosh, A.B.R.; Santacroce, L.; Surboyo, M.D.C. Role of Candida albicans in Oral Carcinogenesis. Pathophysiology 2022, 29, 650–662. [Google Scholar] [CrossRef] [PubMed]
- Bronzato, J.D.; Bomfim, R.A.; Edwards, D.H.; Crouch, D.; Hector, M.P.; Gomes, B.P.F.A. Detection of Fusobacterium in Oral and Head and Neck Cancer Samples: A Systematic Review and Meta-Analysis. Arch. Oral Biol. 2020, 112, 104669. [Google Scholar] [CrossRef]
- Chaitanya, N.C.S.K.; Allam, N.S.J.; Babu, D.B.G.; Waghray, S.; Badam, R.K.; Lavanya, R. Systematic Meta-Analysis on Association of Human Papilloma Virus and Oral Cancer. J. Cancer Res. Ther. 2016, 12, 969–974. [Google Scholar] [CrossRef] [PubMed]
- Christianto, S.; Li, K.Y.; Huang, T.H.; Su, Y. The Prognostic Value of Human Papilloma Virus Infection in Oral Cavity Squamous Cell Carcinoma: A Meta-Analysis. Laryngoscope 2022, 132, 1760–1770. [Google Scholar] [CrossRef] [PubMed]
- de Carvalho Melo, B.A.; Vilar, L.G.; de Oliveira, N.R.; de Lima, P.O.; de Barros Pinheiro, M.; Domingueti, C.P.; Pereira, M.C. Human Papillomavirus Infection and Oral Squamous Cell Carcinoma—A Systematic Review. Braz. J. Otorhinolaryngol. 2021, 87, 346–352. [Google Scholar] [CrossRef] [PubMed]
- de Lima, M.A.P.; da Silva, C.G.L.; Rabenhorst, S.H.B. Association between Human Papillomavirus (HPV) and the Oral Squamous Cell Carcinoma: A Systematic Review. J. Bras. Patol. Med. Lab. 2014, 50, 75–84. [Google Scholar] [CrossRef]
- Rahman, R.; Shaikh, M.H.; Gopinath, D.; Idris, A.; Johnson, N.W. Human Papillomavirus and Epstein-Barr Virus Co-infection in Oral and Oropharyngeal Squamous Cell Carcinomas: A Systematic Review and Meta-analysis. Mol. Oral Microbiol. 2023, 38, 259–274. [Google Scholar] [CrossRef]
- Gopinath, D.; Menon, R.K.; Banerjee, M.; Su Yuxiong, R.; Botelho, M.G.; Johnson, N.W. Culture-Independent Studies on Bacterial Dysbiosis in Oral and Oropharyngeal Squamous Cell Carcinoma: A Systematic Review. Crit. Rev. Oncol. Hematol. 2019, 139, 31–40. [Google Scholar] [CrossRef]
- Gupta, A.A.; Kheur, S.; Raj, A.T.; Mahajan, P. Association of Helicobacter Pylori with Oral Potentially Malignant Disorders and Oral Squamous Cell Carcinoma—A Systematic Review and Meta-Analysis. Clin. Oral Investig. 2020, 24, 13–23. [Google Scholar] [CrossRef] [PubMed]
- Haghshenas, M.R.; Moosazadeh, M.; Taghiloo, S.; Sattari, S.; Valadan, R.; Mousavi, T. Association between Human Papillomavirus and Oral Cancer in Iranian Clinical Samples: A Meta-Analysis Review. Iran. J. Public Health 2022, 51, 2688–2696. [Google Scholar] [CrossRef] [PubMed]
- Huybrechts, I.; Zouiouich, S.; Loobuyck, A.; Vandenbulcke, Z.; Vogtmann, E.; Pisanu, S.; Iguacel, I.; Scalbert, A.; Indave, I.; Smelov, V.; et al. The Human Microbiome in Relation to Cancer Risk: A Systematic Review of Epidemiologic Studies. Cancer Epidemiol. Biomarkers Prev. 2020, 29, 1856–1868. [Google Scholar] [CrossRef] [PubMed]
- Kreimer, A.R.; Clifford, G.M.; Boyle, P.; Franceschi, S. Human Papillomavirus Types in Head and Neck Squamous Cell Carcinomas Worldwide: A Systematic Review. Cancer Epidemiol. Biomarkers Prev. 2005, 14, 467–475. [Google Scholar] [CrossRef] [PubMed]
- Mallika, L.; Augustine, D.; Rao, R.S.; Patil, S.; Alamir, A.W.H.; Awan, K.H.; Sowmya, S.V.; Haragannavar, V.C.; Prasad, K. Does Microbiome Shift Play a Role in Carcinogenesis? A Systematic Review. Transl. Cancer Res. 2020, 9, 3153–3166. [Google Scholar] [CrossRef] [PubMed]
- Mauceri, R.; Coppini, M.; Vacca, D.; Bertolazzi, G.; Panzarella, V.; Di Fede, O.; Tripodo, C.; Campisi, G. Salivary Microbiota Composition in Patients with Oral Squamous Cell Carcinoma: A Systematic Review. Cancers 2022, 14, 5441. [Google Scholar] [CrossRef] [PubMed]
- Miller, C.S.; Johnstone, B.M. Human Papillomavirus as a Risk Factor for Oral Squamous Cell Carcinoma: A Meta-Analysis, 1982–1997. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2001, 91, 622–635. [Google Scholar] [CrossRef] [PubMed]
- Muthusamy, M.; Ramani, P.; Krishnan, R.P.; Hemashree, K.; Sukumaran, G.; Ramasubramanian, A.; Krishnan Sr, R.P.; Gheena, S. Oral Microflora and Its Potential Carcinogenic Effect on Oral Squamous Cell Carcinoma: A Systematic Review and Meta-Analysis. Cureus 2023, 15, e33560. [Google Scholar] [CrossRef]
- Nandi, S.; Mandal, A.; Chhebbi, M. The Prevalence and Clinicopathological Correlation of Human Papillomavirus in Head and Neck Squamous Cell Carcinoma in India: A Systematic Review Article. Cancer Treat. Res. Commun. 2021, 26, 100301. [Google Scholar] [CrossRef]
- Ramos, R.T.; Sodré, C.S.; de Sousa Rodrigues, P.M.G.R.; da Silva, A.M.P.; Fuly, M.S.; dos Santos, H.F.; Gonçalves, L.S.; de Carvalho Ferreira, D.; Ribeiro, M.G. High-Throughput Nucleotide Sequencing for Bacteriome Studies in Oral Squamous Cell Carcinoma: A Systematic Review. Oral Maxillofac. Surg. 2020, 24, 387–401. [Google Scholar] [CrossRef]
- Rapado-González, Ó.; Martínez-Reglero, C.; Salgado-Barreira, Á.; Rodríguez-Fernández, A.; Aguín-Losada, S.; León-Mateos, L.; Muinelo-Romay, L.; López-López, R.; Suarez-Cunqueiro, M.M. Association of Salivary Human Papillomavirus Infection and Oral and Oropharyngeal Cancer: A Meta-Analysis. J. Clin. Med. 2020, 9, 1305. [Google Scholar] [CrossRef] [PubMed]
- Shaikh, M.H.; McMillan, N.A.J.; Johnson, N.W. HPV-Associated Head and Neck Cancers in the Asia Pacific: A Critical Literature Review & Meta-Analysis. Cancer Epidemiol. 2015, 39, 923–938. [Google Scholar] [CrossRef] [PubMed]
- Shen, X.; Zhang, Y.; Zhu, J.; Xu, B. Oral Dysbiosis in the Onset and Carcinogenesis of Oral Epithelial Dysplasia: A Systematic Review. Arch. Oral Biol. 2023, 147, 105630. [Google Scholar] [CrossRef] [PubMed]
- She, Y.; Nong, X.; Zhang, M.; Wang, M. Epstein-Barr Virus Infection and Oral Squamous Cell Carcinoma Risk: A Meta-Analysis. PLoS ONE 2017, 12, e0186860. [Google Scholar] [CrossRef]
- Sivakumar, S.; Gupta, A.A.; Nik Mohd Rosdy, N.M.M.; Venkiteswaran, A.; Raj, A.T.; Awan, K.H. Assessing the Potential Association between Epstein-Barr Virus and Oral Squamous Cell Carcinoma: A Systematic Review and Meta-Analysis. Transl. Cancer Res. 2020, 9, 3092–3100. [Google Scholar] [CrossRef] [PubMed]
- Su Mun, L.; Wye Lum, S.; Kong Yuiin Sze, G.; Hock Yoong, C.; Ching Yung, K.; Kah Lok, L.; Gopinath, D. Association of Microbiome with Oral Squamous Cell Carcinoma: A Systematic Review of the Metagenomic Studies. Int. J. Environ. Res. Public Health 2021, 18, 7224. [Google Scholar] [CrossRef] [PubMed]
- Syrjänen, S.; Lodi, G.; von Bültzingslöwen, I.; Aliko, A.; Arduino, P.; Campisi, G.; Challacombe, S.; Ficarra, G.; Flaitz, C.; Zhou, H.; et al. Human Papillomaviruses in Oral Carcinoma and Oral Potentially Malignant Disorders: A Systematic Review. Oral Dis. 2011, 17, 58–72. [Google Scholar] [CrossRef]
- Termine, N.; Panzarella, V.; Falaschini, S.; Russo, A.; Matranga, D.; Lo Muzio, L.; Campisi, G. HPV in Oral Squamous Cell Carcinoma vs Head and Neck Squamous Cell Carcinoma Biopsies: A Meta-Analysis (1988–2007). Ann. Oncol. 2008, 19, 1681–1690. [Google Scholar] [CrossRef]
- Yang, F.; Yin, Y.; Li, P.; Zhang, X.; Chen, D.; Liu, Y.; Wang, J.; Guo, L. Prevalence of Human Papillomavirus Type-18 in Head and Neck Cancer among the Chinese Population. Medicine 2019, 98, e14551. [Google Scholar] [CrossRef]
- Yu, X.; Shi, Y.; Yuan, R.; Chen, Z.; Dong, Q.; Han, L.; Wang, L.; Zhou, J. Microbial Dysbiosis in Oral Squamous Cell Carcinoma: A Systematic Review and Meta-Analysis. Heliyon 2023, 9, e13198. [Google Scholar] [CrossRef]
- Zhu, C.; Ling, Y.; Dong, C.; Zhou, X.; Wang, F. The Relationship between Oral Squamous Cell Carcinoma and Human Papillomavirus: A Meta-Analysis of a Chinese Population (1994–2011). PLoS ONE 2012, 7, e36294. [Google Scholar] [CrossRef]
- de Lima, M.A.P.; Teodoro, I.P.P.; de Galiza, L.E.; Filho, P.H.B.M.; de Morais Marques, F.; Pinheiro Junior, R.F.F.; Macedo, G.E.C.; Facundo, H.T.; da Silva, C.G.L.; Lima, M.V.A. Association between Epstein-Barr Virus and Oral Carcinoma: A Systematic Review with Meta-Analysis. Crit. Rev. Oncog. 2019, 24, 349–368. [Google Scholar] [CrossRef] [PubMed]
- Guo, L.; Yang, F.; Yin, Y.; Liu, S.; Li, P.; Zhang, X.; Chen, D.; Liu, Y.; Wang, J.; Wang, K.; et al. Prevalence of Human Papillomavirus Type-16 in Head and Neck Cancer among the Chinese Population: A Meta-Analysis. Front. Oncol. 2018, 8, 619. [Google Scholar] [CrossRef] [PubMed]
- Hobbs, C.G.L.; Sterne, J.A.C.; Bailey, M.; Heyderman, R.S.; Birchall, M.A.; Thomas, S.J. Human Papillomavirus and Head and Neck Cancer: A Systematic Review and Meta-Analysis. Clin. Otolaryngol. 2006, 31, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Klenner, J.; Kohl, C.; Dabrowski, P.W.; Nitsche, A. Comparing Viral Metagenomic Extraction Methods. Curr. Issues Mol. Biol. 2017, 24, 59–70. [Google Scholar] [CrossRef] [PubMed]
- Al-hebshi, N.N.; Nasher, A.T.; Maryoud, M.Y.; Homeida, H.E.; Chen, T.; Idris, A.M.; Johnson, N.W. Inflammatory Bacteriome Featuring Fusobacterium Nucleatum and Pseudomonas Aeruginosa Identified in Association with Oral Squamous Cell Carcinoma. Sci. Rep. 2017, 7, 1834. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.-Y.; Yeh, Y.-M.; Yu, H.-Y.; Chin, C.-Y.; Hsu, C.-W.; Liu, H.; Huang, P.-J.; Hu, S.-N.; Liao, C.-T.; Chang, K.-P.; et al. Oral Microbiota Community Dynamics Associated with Oral Squamous Cell Carcinoma Staging. Front. Microbiol. 2018, 9, 862. [Google Scholar] [CrossRef]
- Zhao, H.; Chu, M.; Huang, Z.; Yang, X.; Ran, S.; Hu, B.; Zhang, C.; Liang, J. Variations in Oral Microbiota Associated with Oral Cancer. Sci. Rep. 2017, 7, 11773. [Google Scholar] [CrossRef]
- Pavlova, S.I.; Jin, L.; Gasparovich, S.R.; Tao, L. Multiple Alcohol Dehydrogenases but No Functional Acetaldehyde Dehydrogenase Causing Excessive Acetaldehyde Production from Ethanol by Oral Streptococci. Microbiology 2013, 159, 1437–1446. [Google Scholar] [CrossRef]
- Yang, K.; Wang, Y.; Zhang, S.; Zhang, D.; Hu, L.; Zhao, T.; Zheng, H. Oral Microbiota Analysis of Tissue Pairs and Saliva Samples from Patients with Oral Squamous Cell Carcinoma—A Pilot Study. Front. Microbiol. 2021, 12, 719601. [Google Scholar] [CrossRef]
- D’Ambrosio, F.; Santella, B.; Di Palo, M.P.; Giordano, F.; Lo Giudice, R. Characterization of the Oral Microbiome in Wearers of Fixed and Removable Implant or Non-Implant-Supported Prostheses in Healthy and Pathological Oral Conditions: A Narrative Review. Microorganisms 2023, 11, 1041. [Google Scholar] [CrossRef] [PubMed]
- Pignatelli, P.; Romei, F.M.; Bondi, D.; Giuliani, M.; Piattelli, A.; Curia, M.C. Microbiota and Oral Cancer as a Complex and Dynamic Microenvironment: A Narrative Review from Etiology to Prognosis. Int. J. Mol. Sci. 2022, 23, 8323. [Google Scholar] [CrossRef] [PubMed]
- Poosari, A.; Nutravong, T.; Sa-ngiamwibool, P.; Namwat, W.; Chatrchaiwiwatana, S.; Ungareewittaya, P. Association between Infection with Campylobacter Species, Poor Oral Health and Environmental Risk Factors on Esophageal Cancer: A Hospital-Based Case–Control Study in Thailand. Eur. J. Med. Res. 2021, 26, 82. [Google Scholar] [CrossRef] [PubMed]
- Chattopadhyay, I.; Verma, M.; Panda, M. Role of Oral Microbiome Signatures in Diagnosis and Prognosis of Oral Cancer. Technol. Cancer Res. Treat. 2019, 18, 153303381986735. [Google Scholar] [CrossRef] [PubMed]
- Lopès, A.; Billard, E.; Casse, A.H.; Villéger, R.; Veziant, J.; Roche, G.; Carrier, G.; Sauvanet, P.; Briat, A.; Pagès, F.; et al. Colibactin-positive Escherichia Coli Induce a Procarcinogenic Immune Environment Leading to Immunotherapy Resistance in Colorectal Cancer. Int. J. Cancer 2020, 146, 3147–3159. [Google Scholar] [CrossRef] [PubMed]
- Nouri, R.; Hasani, A.; Shirazi, K.M.; Alivand, M.R.; Sepehri, B.; Sotoodeh, S.; Hemmati, F.; Rezaee, M.A. Escherichia Coli and Colorectal Cancer: Unfolding the Enigmatic Relationship. Curr. Pharm. Biotechnol. 2022, 23, 1257–1268. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Wang, Q.; He, C.; Chen, M.; Liu, J.; Liu, W.; Yuan, Y. An Inverse Association of Helicobacter pylori Infection with Oral Squamous Cell Carcinoma. J. Oral Pathol. Med. 2016, 45, 17–22. [Google Scholar] [CrossRef] [PubMed]
- Grimm, M.; Munz, A.; Exarchou, A.; Polligkeit, J.; Reinert, S. Immunohistochemical Detection of Helicobacter pylori without Association of TLR5 Expression in Oral Squamous Cell Carcinoma. J. Oral Pathol. Med. 2014, 43, 35–44. [Google Scholar] [CrossRef]
- Fernando, N.; Jayakumar, G.; Perera, N.; Amarasingha, I.; Meedin, F.; Holton, J. Presence of Helicobacter Pylori in Betel Chewers and Non Betel Chewers with and without Oral Cancers. BMC Oral Health 2009, 9, 23. [Google Scholar] [CrossRef]
- La Rosa, G.; Gattuso, G.; Pedullà, E.; Rapisarda, E.; Nicolosi, D.; Salmeri, M. Association of Oral Dysbiosis with Oral Cancer Development (Review). Oncol. Lett. 2020, 19, 3045–3058. [Google Scholar] [CrossRef]
- Yost, S.; Stashenko, P.; Choi, Y.; Kukuruzinska, M.; Genco, C.A.; Salama, A.; Weinberg, E.O.; Kramer, C.D.; Frias-Lopez, J. Increased Virulence of the Oral Microbiome in Oral Squamous Cell Carcinoma Revealed by Metatranscriptome Analyses. Int. J. Oral Sci. 2018, 10, 32. [Google Scholar] [CrossRef] [PubMed]
- Arthur, R.A.; dos Santos Bezerra, R.; Ximenez, J.P.B.; Merlin, B.L.; de Andrade Morraye, R.; Neto, J.V.; Fava, N.M.N.; Figueiredo, D.L.A.; de Biagi, C.A.O.; Montibeller, M.J.; et al. Microbiome and Oral Squamous Cell Carcinoma: A Possible Interplay on Iron Metabolism and Its Impact on Tumor Microenvironment. Braz. J. Microbiol. 2021, 52, 1287–1302. [Google Scholar] [CrossRef] [PubMed]
- Olsen, I.; Yilmaz, Ö. Possible Role of Porphyromonas gingivalis in Orodigestive Cancers. J. Oral Microbiol. 2019, 11, 1563410. [Google Scholar] [CrossRef] [PubMed]
- Willis, J.R.; Gabaldón, T. The Human Oral Microbiome in Health and Disease: From Sequences to Ecosystems. Microorganisms 2020, 8, 308. [Google Scholar] [CrossRef] [PubMed]
- Amato, M.; Di Spirito, F.; D’Ambrosio, F.; Boccia, G.; Moccia, G.; De Caro, F. Probiotics in Periodontal and Peri-Implant Health Management: Biofilm Control, Dysbiosis Reversal, and Host Modulation. Microorganisms 2022, 10, 2289. [Google Scholar] [CrossRef] [PubMed]
- Inaba, H.; Sugita, H.; Kuboniwa, M.; Iwai, S.; Hamada, M.; Noda, T.; Morisaki, I.; Lamont, R.J.; Amano, A. Porphyromonas gingivalis Promotes Invasion of Oral Squamous Cell Carcinoma through Induction of ProMMP9 and Its Activation. Cell Microbiol. 2014, 16, 131–145. [Google Scholar] [CrossRef] [PubMed]
- Di Spirito, F.; D’Ambrosio, F.; Di Palo, M.P.; Giordano, F.; Coppola, N.; Contaldo, M. COVID-19 and Related Vaccinations in Children: Pathogenic Aspects of Oral lesions. Children 2023, 10, 809. [Google Scholar] [CrossRef]
- D’Ambrosio, F.; Caggiano, M.; Acerra, A.; Pisano, M.; Giordano, F. Is Ozone a Valid Adjuvant Therapy for Periodontitis and Peri-Implantitis? A Systematic Review. J. Pers. Med. 2023, 13, 646. [Google Scholar] [CrossRef]
- Perera, M.; Al-Hebshi, N.N.; Perera, I.; Ipe, D.; Ulett, G.C.; Speicher, D.J.; Chen, T.; Johnson, N.W. Inflammatory Bacteriome and Oral Squamous Cell Carcinoma. J. Dent. Res. 2018, 97, 725–732. [Google Scholar] [CrossRef]
- Di Spirito, F.; Amato, A.; Di Palo, M.P.; Cannatà, D.; Giordano, F.; D’Ambrosio, F.; Martina, S. Periodontal Management in Periodontally Healthy Orthodontic Patients with Fixed Appliances: An Umbrella Review of Self-Care Instructions and Evidence-Based Recommendations. Dent. J. 2023, 11, 35. [Google Scholar] [CrossRef]
- Attene-Ramos, M.S.; Wagner, E.D.; Plewa, M.J.; Gaskins, H.R. Evidence That Hydrogen Sulfide Is a Genotoxic Agent. Mol. Cancer Res. 2006, 4, 9–14. [Google Scholar] [CrossRef]
- Eun, Y.-G.; Lee, J.-W.; Kim, S.W.; Hyun, D.-W.; Bae, J.-W.; Lee, Y.C. Oral Microbiome Associated with Lymph Node Metastasis in Oral Squamous Cell Carcinoma. Sci. Rep. 2021, 11, 23176. [Google Scholar] [CrossRef] [PubMed]
- Yilmaz, O.; Jungas, T.; Verbeke, P.; Ojcius, D.M. Activation of the Phosphatidylinositol 3-Kinase/Akt Pathway Contributes to Survival of Primary Epithelial Cells Infected with the Periodontal Pathogen Porphyromonas gingivalis. Infect. Immun. 2004, 72, 3743–3751. [Google Scholar] [CrossRef] [PubMed]
- Uitto, V.-J.; Baillie, D.; Wu, Q.; Gendron, R.; Grenier, D.; Putnins, E.E.; Kanervo, A.; Firth, J.D. Fusobacterium nucleatum Increases Collagenase 3 Production and Migration of Epithelial Cells. Infect. Immun. 2005, 73, 1171–1179. [Google Scholar] [CrossRef] [PubMed]
- Katirachi, S.K.; Grønlund, M.P.; Jakobsen, K.K.; Grønhøj, C.; von Buchwald, C. The Prevalence of HPV in Oral Cavity Squamous Cell Carcinoma. Viruses 2023, 15, 451. [Google Scholar] [CrossRef] [PubMed]
- Magalhaes, M.A.O.; Somers, G.R.; Sikorski, P.; Forte, V.; Abouzgia, M.; Barrett, E.; Bradley, G. Unusual Presentation of Squamous Cell Carcinoma of the Maxilla in an 8-Year-Old Child. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2016, 122, e179–e185. [Google Scholar] [CrossRef] [PubMed]
- Di Spirito, F. Human Papillomavirus: Oral Lesions and Vaccination. Cancers 2023, 15, 2711. [Google Scholar] [CrossRef] [PubMed]
- Nokovitch, L.; Maquet, C.; Crampon, F.; Taihi, I.; Roussel, L.-M.; Obongo, R.; Virard, F.; Fervers, B.; Deneuve, S. Oral Cavity Squamous Cell Carcinoma Risk Factors: State of the Art. J. Clin. Med. 2023, 12, 3264. [Google Scholar] [CrossRef]
- Sami, A.; Elimairi, I.; Stanton, C.; Ross, R.P.; Ryan, C.A. The Role of the Microbiome in Oral Squamous Cell Carcinoma with Insight into the Microbiome—Treatment Axis. Int. J. Mol. Sci. 2020, 21, 8061. [Google Scholar] [CrossRef]
- Westra, W.H.; Taube, J.M.; Poeta, M.L.; Begum, S.; Sidransky, D.; Koch, W.M. Inverse Relationship between Human Papillomavirus-16 Infection and Disruptive P53 Gene Mutations in Squamous Cell Carcinoma of the Head and Neck. Clin. Cancer Res. 2008, 14, 366–369. [Google Scholar] [CrossRef]
- Ganguly, N.; Parihar, S.P. Human Papillomavirus E6 and E7 Oncoproteins as Risk Factors for Tumorigenesis. J. Biosci. 2009, 34, 113–123. [Google Scholar] [CrossRef]
- Burley, M.; Roberts, S.; Parish, J.L. Epigenetic Regulation of Human Papillomavirus Transcription in the Productive Virus Life Cycle. Semin. Immunopathol. 2020, 42, 159–171. [Google Scholar] [CrossRef] [PubMed]
- Núñez-Acurio, D.; Bravo, D.; Aguayo, F. Epstein–Barr Virus—Oral Bacterial Link in the Development of Oral Squamous Cell Carcinoma. Pathogens 2020, 9, 1059. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.; Park, N.J.-Y.; Jeong, J.Y.; Park, J.Y. Multiple Human Papilloma Virus (HPV) Infections Are Associated with HSIL and Persistent HPV Infection Status in Korean Patients. Viruses 2021, 13, 1342. [Google Scholar] [CrossRef] [PubMed]
- Oyervides-Muñoz, M.A.; Pérez-Maya, A.A.; Sánchez-Domínguez, C.N.; Berlanga-Garza, A.; Antonio-Macedo, M.; Valdéz-Chapa, L.D.; Cerda-Flores, R.M.; Trevino, V.; Barrera-Saldaña, H.A.; Garza-Rodríguez, M.L. Multiple HPV Infections and Viral Load Association in Persistent Cervical Lesions in Mexican Women. Viruses 2020, 12, 380. [Google Scholar] [CrossRef] [PubMed]
- Bachtiary, B.; Obermair, A.; Dreier, B.; Birner, P.; Breitenecker, G.; Knocke, T.-H.; Selzer, E.; Pötter, R. Impact of Multiple HPV Infection on Response to Treatment and Survival in Patients Receiving Radical Radiotherapy for Cervical Cancer. Int. J. Cancer 2002, 102, 237–243. [Google Scholar] [CrossRef] [PubMed]
- Lee, G.Y.; Inthasorn, P.; Laowahutanont, P.; Lawpoolsri, S.; Kamolratanakul, S.; Lungchukiet, P.; Oh, J.; Termrungruanglert, W.; Taechakraichana, N.; Pitisuttithum, P. Long-Term Effectiveness of Human Papillomavirus Vaccines among Adult Women: A Real-World Scenario. Vaccine 2022, 40, 1968–1976. [Google Scholar] [CrossRef]
- Kjaer, S.K.; Dehlendorff, C.; Belmonte, F.; Baandrup, L. Real-World Effectiveness of Human Papillomavirus Vaccination against Cervical Cancer. J. Nat. Cancer Inst. 2021, 113, 1329–1335. [Google Scholar] [CrossRef]
- Saslow, D.; Andrews, K.S.; Manassaram-Baptiste, D.; Smith, R.A.; Fontham, E.T.H. Human Papillomavirus Vaccination 2020 Guideline Update: American Cancer Society Guideline Adaptation. CA Cancer J. Clin. 2020, 70, 274–280. [Google Scholar] [CrossRef]
- Di Spirito, F.; Amato, A.; D’Ambrosio, F.; Cannatà, D.; Di Palo, M.P.; Coppola, N.; Amato, M. HPV-Related Oral Lesions: YouTube Videos Suitability for Preventive Interventions Including Mass-Reach Health Communication and Promotion of HPV Vaccination. Int. J. Environ. Res. Public Health 2023, 20, 5972. [Google Scholar] [CrossRef]
- Lechner, M.; Liu, J.; Masterson, L.; Fenton, T.R. HPV-Associated Oropharyngeal Cancer: Epidemiology, Molecular Biology and Clinical Management. Nat. Rev. Clin. Oncol. 2022, 19, 306–327. [Google Scholar] [CrossRef] [PubMed]
- Orrù, G.; Mameli, A.; Demontis, C.; Rossi, P.; Ratto, D.; Occhinegro, A.; Piras, V.; Kuqi, L.; Berretta, M.; Taibi, R.; et al. Oral Human Papilloma Virus Infection: An Overview of Clinical-Laboratory Diagnosis and Treatment. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 8148–8157. [Google Scholar] [CrossRef] [PubMed]
- Nagel, R.; Martens-de Kemp, S.R.; Buijze, M.; Jacobs, G.; Braakhuis, B.J.M.; Brakenhoff, R.H. Treatment Response of HPV-Positive and HPV-Negative Head and Neck Squamous Cell Carcinoma Cell Lines. Oral Oncol. 2013, 49, 560–566. [Google Scholar] [CrossRef] [PubMed]
- Ang, K.K.; Harris, J.; Wheeler, R.; Weber, R.; Rosenthal, D.I.; Nguyen-Tân, P.F.; Westra, W.H.; Chung, C.H.; Jordan, R.C.; Lu, C.; et al. Human Papillomavirus and Survival of Patients with Oropharyngeal Cancer. N. Engl. J. Med. 2010, 363, 24–35. [Google Scholar] [CrossRef] [PubMed]
- Attner, P.; Du, J.; Näsman, A.; Hammarstedt, L.; Ramqvist, T.; Lindholm, J.; Marklund, L.; Dalianis, T.; Munck-Wikland, E. Human Papillomavirus and Survival in Patients with Base of Tongue Cancer. Int. J. Cancer 2011, 128, 2892–2897. [Google Scholar] [CrossRef] [PubMed]
- Sugiyama, M.; Bhawal, U.K.; Kawamura, M.; Ishioka, Y.; Shigeishi, H.; Higashikawa, K.; Kamata, N. Human Papillomavirus-16 in Oral Squamous Cell Carcinoma: Clinical Correlates and 5-Year Survival. Br. J. Oral Maxillofac. Surg. 2007, 45, 116–122. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.Y.; Cho, N.H.; Choi, E.C.; Baek, S.J.; Kim, W.S.; Shin, D.H.; Kim, S.-H. Relevance of Human Papilloma Virus (HPV) Infection to Carcinogenesis of Oral Tongue Cancer. Int. J. Oral Maxillofac. Surg. 2010, 39, 678–683. [Google Scholar] [CrossRef]
- Weiss, L.M.; Chen, Y.Y.; Liu, X.F.; Shibata, D. Epstein-Barr Virus and Hodgkin’s Disease. A Correlative in Situ Hybridization and Polymerase Chain Reaction Study. Am. J. Pathol. 1991, 139, 1259–1265. [Google Scholar]
- Suzuki, R.; Yamaguchi, M.; Izutsu, K.; Yamamoto, G.; Takada, K.; Harabuchi, Y.; Isobe, Y.; Gomyo, H.; Koike, T.; Okamoto, M.; et al. Prospective Measurement of Epstein-Barr Virus–DNA in Plasma and Peripheral Blood Mononuclear Cells of Extranodal NK/T-Cell Lymphoma, Nasal Type. Blood 2011, 118, 6018–6022. [Google Scholar] [CrossRef]
- Taylor, G.S.; Long, H.M.; Brooks, J.M.; Rickinson, A.B.; Hislop, A.D. The Immunology of Epstein-Barr Virus–Induced Disease. Annu. Rev. Immunol. 2015, 33, 787–821. [Google Scholar] [CrossRef]
- Qiao, Y.-W.; Zhao, X.Q.; Liu, J.; Yang, W.J. Clinicopathological Features of Epstein-Barr Virus-Associated Gastric Carcinoma: A Systematic Review and Meta-Analysis. J. BUON 2019, 24, 1092–1099. [Google Scholar]
- Shimakage, M.; Horii, K.; Tempaku, A.; Kakudo, K.; Shirasaka, T.; Sasagawa, T. Association of Epstein-Barr Virus with Oral Cancers. Hum. Pathol. 2002, 33, 608–614. [Google Scholar] [CrossRef]
- Shimakage, M.; Sakamoto, H. Macrophage Involvement in Epstein-Barr Virus-Related Tumors. Exp. Ther. Med. 2010, 1, 285–291. [Google Scholar] [CrossRef] [PubMed]
- Kikuchi, K.; Noguchi, Y.; de Rivera, M.W.G.-N.; Hoshino, M.; Sakashita, H.; Yamada, T.; Inoue, H.; Miyazaki, Y.; Nozaki, T.; González-López, B.S.; et al. Detection of Epstein-Barr Virus Genome and Latent Infection Gene Expression in Normal Epithelia, Epithelial Dysplasia, and Squamous Cell Carcinoma of the Oral Cavity. Tumor Biol. 2016, 37, 3389–3404. [Google Scholar] [CrossRef] [PubMed]
- Shair, K.H.Y.; Schnegg, C.I.; Raab-Traub, N. Epstein-Barr Virus Latent Membrane Protein-1 Effects on Junctional Plakoglobin and Induction of a Cadherin Switch. Cancer Res. 2009, 69, 5734–5742. [Google Scholar] [CrossRef] [PubMed]
- Kato, A.; Imai, K.; Sato, H.; Ogata, Y. Prevalence of Epstein-Barr Virus DNA and Porphyromonas Gingivalis in Japanese Peri-Implantitis Patients. BMC Oral Health 2017, 17, 148. [Google Scholar] [CrossRef]
- Kato, A.; Imai, K.; Ochiai, K.; Ogata, Y. Prevalence and Quantitative Analysis of Epstein–Barr Virus DNA and Porphyromonas Gingivalis Associated with Japanese Chronic Periodontitis Patients. Clin. Oral Investig. 2015, 19, 1605–1610. [Google Scholar] [CrossRef] [PubMed]
- Jakovljevic, A.; Andric, M.; Knezevic, A.; Milicic, B.; Beljic-Ivanovic, K.; Perunovic, N.; Nikolic, N.; Milasin, J. Herpesviral-Bacterial Co-Infection in Mandibular Third Molar Pericoronitis. Clin. Oral Investig. 2017, 21, 1639–1646. [Google Scholar] [CrossRef] [PubMed]
- Saygun, I.; Kubar, A.; Ozdemir, A.; Yapar, M.; Slots, J. Herpesviral-Bacterial Interrelationships in Aggressive Periodontitis. J. Periodontal Res. 2004, 39, 207–212. [Google Scholar] [CrossRef]
- Al Moustafa, A.-E.; Chen, D.; Ghabreau, L.; Akil, N. Association between Human Papillomavirus and Epstein-Barr Virus Infections in Human Oral Carcinogenesis. Med. Hypotheses 2009, 73, 184–186. [Google Scholar] [CrossRef]
- Jalouli, J.; Jalouli, M.M.; Sapkota, D.; Ibrahim, S.O.; Larsson, P.-A.; Sand, L. Human Papilloma Virus, Herpes Simplex Virus and Epstein Barr Virus in Oral Squamous Cell Carcinoma from Eight Different Countries. Anticancer Res. 2012, 32, 571–580. [Google Scholar]
- Jiang, R.; Ekshyyan, O.; Moore-Medlin, T.; Rong, X.; Nathan, S.; Gu, X.; Abreo, F.; Rosenthal, E.L.; Shi, M.; Guidry, J.T.; et al. Association between Human Papilloma Virus/Epstein-Barr Virus Coinfection and Oral Carcinogenesis. J. Oral Pathol. Med. 2015, 44, 28–36. [Google Scholar] [CrossRef] [PubMed]
- Sharma, U.; Singhal, P.; Bandil, K.; Patle, R.; Kumar, A.; Neyaz, K.; Bose, S.; Kumar Dewan, A.; Mehrotra, R.; Sharma, V.; et al. Genetic Variations of TLRs and Their Association with HPV/EBV, Co-Infection along with Nicotine Exposure in the Development of Premalignant/Malignant Lesions of the Oral Cavity in Indian Population. Cancer Epidemiol. 2019, 61, 38–49. [Google Scholar] [CrossRef] [PubMed]
- Nagao, Y.; Sata, M.; Noguchi, S.; Seno’o, T.; Kinoshita, M.; Kameyama, T.; Ueno, T. Detection of Hepatitis C Virus RNA in Oral Lichen Planus and Oral Cancer Tissues. J. Oral Pathol. Med. 2000, 29, 259–266. [Google Scholar] [CrossRef] [PubMed]
- Campisi, G.; Fedele, S.; Lo Russo, L.; Di Fede, O.; Arico, P.; Craxi, A.; Mignogna, M.D. HCV Infection and Oral Lichen Planus: A Weak Association When HCV Is Endemic. J. Viral Hepat. 2004, 11, 465–470. [Google Scholar] [CrossRef] [PubMed]
- Gandolfo, S.; Richiardi, L.; Carrozzo, M.; Broccoletti, R.; Carbone, M.; Pagano, M.; Vestita, C.; Rosso, S.; Merletti, F. Risk of Oral Squamous Cell Carcinoma in 402 Patients with Oral Lichen Planus: A Follow-up Study in an Italian Population. Oral Oncol. 2004, 40, 77–83. [Google Scholar] [CrossRef]
- Yoshida, M. Multiple Primary Neoplasms and Hepatitis C Virus Infection in Oral Cancer Patients. Hepatol. Res. 1997, 9, 75–81. [Google Scholar] [CrossRef]
- Lodi, G.; Pellicano, R.; Carrozzo, M. Hepatitis C Virus Infection and Lichen Planus: A Systematic Review with Meta-Analysis. Oral Dis. 2010, 16, 601–612. [Google Scholar] [CrossRef] [PubMed]
- Takata, Y.; Takahashi, T.; Fukuda, J. Prevalence of Hepatitis Virus Infection in Association with Oral Diseases Requiring Surgery. Oral Dis. 2002, 8, 95–99. [Google Scholar] [CrossRef]
- Alavian, S.-M.; Mahboobi, N.; Mahboobi, N.; Karayiannis, P. Oral Conditions Associated with Hepatitis C Virus Infection. Saudi J. Gastroenterol. 2013, 19, 245–251. [Google Scholar] [CrossRef]
- Perera, M.; Al-hebshi, N.N.; Perera, I.; Ipe, D.; Ulett, G.C.; Speicher, D.J.; Chen, T.; Johnson, N.W. A Dysbiotic Mycobiome Dominated by Candida albicans Is Identified within Oral Squamous-Cell Carcinomas. J. Oral Microbiol. 2017, 9, 1385369. [Google Scholar] [CrossRef]
- Golestannejad, Z.; Khozeimeh, F.; Dehghan, P.; Najafizade, N.; Faghihian, E.; Kheirkhah, M.; Sadeghalbanaei, L.; Jamshidi, M.; Chermahini, A.A. Comparison of the Antifungal Effect of Voriconazole and Fluconazole on Oral Candidiasis before and during Radiotherapy. Dent. Res. J. 2022, 19, 99. [Google Scholar]
- Sroussi, H.Y.; Epstein, J.B.; Bensadoun, R.-J.; Saunders, D.P.; Lalla, R.V.; Migliorati, C.A.; Heaivilin, N.; Zumsteg, Z.S. Common Oral Complications of Head and Neck Cancer Radiation Therapy: Mucositis, Infections, Saliva Change, Fibrosis, Sensory Dysfunctions, Dental Caries, Periodontal Disease, and Osteoradionecrosis. Cancer Med. 2017, 6, 2918–2931. [Google Scholar] [CrossRef] [PubMed]
- Epstein, J.B.; Thariat, J.; Bensadoun, R.-J.; Barasch, A.; Murphy, B.A.; Kolnick, L.; Popplewell, L.; Maghami, E. Oral Complications of Cancer and Cancer Therapy. CA Cancer J. Clin. 2012, 62, 400–422. [Google Scholar] [CrossRef] [PubMed]
- Nørgaard, M.; Thomsen, R.W.; Farkas, D.K.; Mogensen, M.F.; Sørensen, H.T. Candida Infection and Cancer Risk: A Danish Nationwide Cohort Study. Eur. J. Intern. Med. 2013, 24, 451–455. [Google Scholar] [CrossRef] [PubMed]
- Alnuaimi, A.D.; Wiesenfeld, D.; O’Brien-Simpson, N.M.; Reynolds, E.C.; McCullough, M.J. Oral Candida Colonization in Oral Cancer Patients and Its Relationship with Traditional Risk Factors of Oral Cancer: A Matched Case-Control Study. Oral Oncol. 2015, 51, 139–145. [Google Scholar] [CrossRef] [PubMed]
- Hornstein, O.P.; Grässel, R.; Schirner, E.; Schell, H. Oral Candidiasis in Leukoplakia and Carcinoma of the Oral Cavity. Dtsch. Med. Wochenschr. 1979, 104, 1033–1036. [Google Scholar] [CrossRef]
- Davies, A.N.; Brailsford, S.R.; Beighton, D. Oral Candidosis in Patients with Advanced Cancer. Oral Oncol. 2006, 42, 698–702. [Google Scholar] [CrossRef]
- Safdar, A.; Chaturvedi, V.; Cross, E.W.; Park, S.; Bernard, E.M.; Armstrong, D.; Perlin, D.S. Prospective Study of Candida Species in Patients at a Comprehensive Cancer Center. Antimicrob. Agents Chemother. 2001, 45, 2129–2133. [Google Scholar] [CrossRef]
- Abdulrahim, M.H.; McManus, B.A.; Flint, S.R.; Coleman, D.C. Genotyping Candida albicans from Candida Leukoplakia and Non-Candida Leukoplakia Shows No Enrichment of Multilocus Sequence Typing Clades but Enrichment of ABC Genotype C in Candida Leukoplakia. PLoS ONE 2013, 8, e73738. [Google Scholar] [CrossRef]
- Nakazawa, K.; Fifita, S.F.; Kuyama, K. The Cytological Findings of Oral Inflammatory Lesions, Lichen Planus and Leukoplakia Coexisted with and without Candida: With Special Reference to Clinical, Histopathological, Immunohistochemical and Flow Cytometrical Analyses. Int. J. Oral-Med. Sci. 2007, 6, 81–90. [Google Scholar] [CrossRef]
- Chiu, C.-T.; Li, C.-F.; Li, J.-R.; Wang, J.; Chuang, C.-Y.; Chiang, W.-F.; Huang, S.-C.; Chang, S.-W. Candida Invasion and Influences in Smoking Patients with Multiple Oral Leucoplakias—A Retrospective Study. Mycoses 2011, 54, e377–e383. [Google Scholar] [CrossRef] [PubMed]
- McCullough, M.; Jaber, M.; Barrett, A.W.; Bain, L.; Speight, P.M.; Porter, S.R. Oral Yeast Carriage Correlates with Presence of Oral Epithelial Dysplasia. Oral Oncol. 2002, 38, 391–393. [Google Scholar] [CrossRef] [PubMed]
- Lin, Y.; Lau, H.C.-H.; Liu, Y.; Kang, X.; Wang, Y.; Ting, N.L.-N.; Kwong, T.N.-Y.; Han, J.; Liu, W.; Liu, C.; et al. Altered Mycobiota Signatures and Enriched Pathogenic Aspergillus Rambellii Are Associated with Colorectal Cancer Based on Multicohort Fecal Metagenomic Analyses. Gastroenterology 2022, 163, 908–921. [Google Scholar] [CrossRef] [PubMed]
- Ghfar, A.; El-Metwally, M.; Shaaban, M.; Gabr, S.; Gabr, N.; Diab, M.; Aqel, A.; Habila, M.; Al-Qahtani, W.; Alfaifi, M.; et al. Production of Terretonin N and Butyrolactone I by Thermophilic Aspergillus Terreus TM8 Promoted Apoptosis and Cell Death in Human Prostate and Ovarian Cancer Cells. Molecules 2021, 26, 2816. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Sun, Y.; Mao, Q.; Guo, X.; Li, P.; Liu, Y.; Xu, N. Characteristics and Antitumor Activity of Morchella Esculenta Polysaccharide Extracted by Pulsed Electric Field. Int. J. Mol. Sci. 2016, 17, 986. [Google Scholar] [CrossRef] [PubMed]
- Heng, W.; Wang, W.; Dai, T.; Jiang, P.; Lu, Y.; Li, R.; Zhang, M.; Xie, R.; Zhou, Y.; Zhao, M.; et al. Oral Bacteriome and Mycobiome across Stages of Oral Carcinogenesis. Microbiol. Spectr. 2022, 10, e0273722. [Google Scholar] [CrossRef]
- Boccia, G.; Di Spirito, F.; D’Ambrosio, F.; Di Palo, M.P.; Giordano, F.; Amato, M. Local and Systemic Antibiotics in Peri-Implantitis Management: An Umbrella Review. Antibiotics 2023, 12, 114. [Google Scholar] [CrossRef]
- D’Ambrosio, F.; Di Spirito, F.; Amato, A.; Caggiano, M.; Lo Giudice, R.; Martina, S. Attitudes towards Antibiotic Prescription and Antimicrobial Resistance Awareness among Italian Dentists: What Are the Milestones? Healthcare 2022, 10, 1585. [Google Scholar] [CrossRef]
Studies | Population | Intervention | Outcome(s) | |
---|---|---|---|---|
Characteristics | OSCC | Bacteria | ||
Bronzato J.D., 2020 Arch Oral Biol Studies: n.13 CCS n.13 Meta-analysis Moderate quality This study was supported by CAPES, FAPESP, and CNPq. | Sample size: n.294 of case Mean age: MD Gender ratio: MD Country: USA n.52 China n.40 India n.40 Germany n.33 Hungary n.31 Wales n.30 Sri Lanka n.27 Japan n.21 Yemen n.N/D Saudi Arabia n.N/D Risk factors for OSCC: MD History of OPMD: MD Time to OPMD onset: MD Previous history of malignancies: MD Other comorbidities: MD Other ongoing treatments: MD | Macroscopic features: MD Location: N/D oral cavity n.161; gingiva n. MD; tongue n. MD; cheek n. MD; oral floor n. MD; mandible n. MD; buccal mucosa n. MD. Staging: MD Grading: MD Microscopic features: MD First diagnosis: MD Time to onset: MD Chemotherapy: MD Radiotherapy: MD | Sample(s): n.294 Method(s) of sample collection: Biopsy n.125 Swab n.146 Biopsy and Swab n.20 Sterile paper point n.3 Microorganisms identification technique: Culture n.142 PCR n.152 Target: 16S rDNA n.42 16S rRNA n.107 MD n.145 | Than the healthy control group Fusobacteria: ↑ Fusobacterium: n.132 of OSCC case Type(s) of Fusobacterium species detected: F. nucleatum; F. naviforme; F. periodonticum; F. canifelinum; F. oral taxon (A71, 203, 370); F. necrophorum; F. gonidiaformans; F. simiae. Type(s) of F. nucleatum subspecies: F. nucleatum ssp. nucleatum; F. nucleatum ssp. vicentii; F. nucleatum ssp. polymorphum; F. nucleatum ssp. animalis. |
Gopinath, 2019 Crit Rev Oncol Hematol Studies: n.7 CCS n.7 No meta-analysis Low quality No funding | Sample size: n.199 of case/n.201 of the healthy control group Mean age: 60.85 y.o.; range MD Gender ratio: MD Country: United Kingdom n.10 USA n.64 Yemen n.20 Sri Lanka n.25 China n.80 Risk factors for OSCC: N/D History of OPMD: MD Time to OPMD onset: MD Previous history of malignancies: MD Other comorbidities: MD Other ongoing treatments: MD | Macroscopic features: MD Location: tongue n.39 MD n.160 Staging: MD Grading: MD Microscopic features: MD First diagnosis: MD Time to onset: MD Chemotherapy: MD Radiotherapy: MD | Sample(s): n.199 Method(s) of sample collection: Biopsy n.104 Swab n.95 Microorganisms identification technique: DNA isolation kit n.30 Incubation in Proteinase K and DNA purification kit n.10 Incubation in Proteinase K and DNA easy kit n.15 Gentra Puregene Tissue kit n.25 QIAamp DNA Stool mini kit n.39 QIAamp DNA Mini kit n.80 Target: 16s rRNA: n.10 V1-V3 region: n.45 V4-V5 region: n.90 V4 region: n.54 | Than the healthy control group ↑ Fusobacteria: ↑ Fusobacterium Type(s) of Fusobacterium species detected: F. nucleatum ssp. polymorphum F. naviforme ↑ Spirochaetes ↑ Proteobacteria: ↑ Campylobacter Type(s) of Campylobacter species detected: C. Oral taxon 44 ↑ Pseudomonas Type(s) of Pseudomonas species detected: ↑ Pseudomonas aeruginosa ↑ Ralstonia Type(s) of Ralstonia species detected: Ralstonia insidosa ↑ Bacteroidetes: ↑ Capnocytophaga ↓ Actinobacteria: ↑ Corynebacterium ↑ Atopobium ↑ Actinomyces ↑ Rothia ↑ Micrococcus ↑ Clavibacter michiganensis Type(s) of Clavibacter michiganensis species detected: Clavibacter michiganensis tellarius ↓/↑ Firmicutes: ↑ Enterococcus ↑ Gemella Type(s) of Gemella species detected: Gemella haemolysans Gemella morbillorum ↑ Streptococcus Type(s) of Streptococcus species detected: S. salivarius S. oral taxon 058 S. gordonii S. parasanguinis ↑ Johnsonella Type(s) of Johnsonella species detected: Johnsonella ignava ↑ Peptostreptococcus: Type(s) of Peptostreptococcus species detected: Pepetosptreptoccus stomatis |
Gupta, 2020 Clin Oral Investig Studies: n.7 CSS n.7 No meta-analysis Low quality No funding | Sample size: n.513 of case/n.354 of the healthy control group Mean age: MD Gender ratio: 39M/44F/430MD Country: Japan n.58 Sri Lanka n.53 India n.60 Iran n.83 Germany n.191 China n.68 Risk factors for OSCC: Betel chewers n.44 History of OPMD: MD Time to OPMD onset: MD Previous history of malignancies: MD Other comorbidities: MD Other ongoing treatments: MD | Macroscopic features: MD Location: MD Staging: MD Grading: MD Microscopic features: MD First diagnosis: MD Time to onset: MD Chemotherapy: MD Radiotherapy: MD | Sample(s): n.513 Method(s) of sample collection: Swab n.58 Biopsy n.455 Microorganisms identification technique: PCR: n.128 RT-PCR: n.58 Culture: n.131 Giemsa: n.68 IHC: n.274 ELISA: n.121 Target: MD | ↑ Than the healthy control group (prevalence 31.92%) Proteobacteria: Helicobacter Type(s) of Helicobacter species detected: ↑ Helicobacter pylori: n.165 (prevalence 32.16%) of OSCC case |
Huybrechts, 2020 Cancer Epidemiol Biomarkers Prev Studies: n.13 CS n.2 CCS n.11 No meta-analysis Low quality This study was supported by the Intramural Research Program of the National Cancer Institute at the National Institutes of Health and by the Research Foundation-Flanders 12h1519N. | Sample size: n.724 of case/n.1188 of the healthy control group Mean age: MD Gender ratio: MD Country: MD Risk factors for OSCC: MD History of OPMD: MD Time to OPMD onset: MD Previous history of malignancies: MD Other comorbidities: MD Other ongoing treatments: MD | Macroscopic features: MD Location: MD Staging: MD Grading: MD Microscopic features: MD First diagnosis: MD Time to onset: MD Chemotherapy: MD Radiotherapy: MD | Sample(s): n.724 Method(s) of sample collection: Biopsy n.724 Microorganisms identification technique: N/D Target: MD | ↑ Bacteroidetes: ↑ Capnocytophaga ↑ Fusobacteria: ↑ Fusobacterium Firmicutes: ↑ Dialister ↑ Peptostreptococcus ↑ Parvimonas |
Mallika, 2020 Trans Cancer Res Studies: n.8 CCS n.8 No meta-analysis Moderate quality No funding | Sample size: MD Mean age: MD Gender ratio: MD Country: MD Risk factors for OSCC: MD History of OPMD: MD Time to OPMD onset: MD Previous history of malignancies: MD Other comorbidities: MD Other ongoing treatments: MD | Macroscopic features: MD Location: MD Staging: MD Grading: MD Microscopic features: MD First diagnosis: MD Time to onset: MD Chemotherapy: yes (one study) Radiotherapy: yes (two studies) | Sample(s): MD Method(s) of sample collection: Biopsy n.MD Swab n.MD Brush n.MD Microorganisms identification technique: Culture n.MD IHC n.MD ISH n.MD PCR n.MD Target: MD | Proteobacteria: Helicobacter Type(s) of Helicobacter species detected: ↑ Helicobacter pylori |
Muthusamy, 2023 Cureus Studies: n.6 CCS n.6 Meta-analysis Critically low quality This study was supported by the Indian Council of Medical Research (ICMR) under the Nurturing Clinical Scientist (NCS) scheme HRD/Head-NCS-2019-02. | Sample size: n.373 of case/n.326 of healthy control group/n.73 of OPMD group Mean age: MD Gender ratio: MD Country: MD Risk factors for OSCC: MD History of OPMD: MD Time to OPMD onset: MD Previous history of malignancies: MD Other comorbidities: MD Other ongoing treatments: MD | Macroscopic features: MD Location: MD Staging: MD Grading: MD Microscopic features: MD First diagnosis: MD Time to onset: MD Chemotherapy: MD Radiotherapy: MD | Sample(s): n.373 Method(s) of sample collection: Blood analysis n.50 Biopsy n.211 Biofilm sampling n.21 Brush n.91 Microorganisms identification technique: PAP technique n.50 Culture n.21 Nested PCR n.120 ELISA n.132 PCR n.50 Target: Herpes Select-1 n.132 16s RNA n.50 | Fusobacteria: ↑ Fusobacterium p = 0.05 Firmicutes: ↑ Streptococcus p = NSS Bacteroidetes: ↑ Prevotella p = NSS ↑ Porphyromonas p = NSS Proteobacteria: ↑ Neisseria: p = NSS |
Ramos, 2020 Oral Maxillofac Surg Studies: n.4 CCS n.1 MD n.3 No meta-analysis Critically low quality This study was supported by the National Council for Scientific and Technological Development (CNPq) (Project:211309/ 2013-3) and the Foundation for Research Financial Support in the State of Rio de Janeiro (FAPERJ) (Project: E26/ 1033.001/2012). | Sample size: n.124 of case/n.20 of the healthy control group/n.27 of the control group with oral fibroepithelial polyp Mean age: MD Gender ratio: N/D Country: MD Risk factors for OSCC: Tobacco: n.N/D Alcohol: n.N/D History of OPMD: MD Time to OPMD onset: MD Previous history of malignancies: MD Other comorbidities: MD Other ongoing treatments: MD | Macroscopic features: MD Location: tongue n.39 MD n.85 Staging: MD Grading: MD Microscopic features: MD First diagnosis: MD Time to onset: MD Chemotherapy: MD Radiotherapy: MD | Sample(s): n.124 Method(s) of sample collection: Biopsy n.64 Swab n.40 Swab and Biopsy: n.20 Microorganisms identification technique: MiSeq n.85 Ion torrent n.39 Target: V4 region n.39 V1-V3 region n.45 V4-V5 region n.40 | ↑ Firmicutes: ↑ Dialister ↑ Catonella ↑ Peptostreptococcus ↑ Peptococcus ↑ Filifactor ↑ Parvimonas ↓ Bacteroidetes: ↑ Capnocytophaga ↑/↓ Fusobacteria: ↑ Fusobacterium Type(s) of Fusobacterium species detected: ↑ F. nucleatum ssp. polymorphum Proteobacteria: ↑ Campylobacter Pseudomonas Type(s) of Pseudomonas species detected: ↑ Pseudomonas aeruginosa Actinobacteria: ↑ Atopobium |
Shen, 2023 Arch Oral Biol Studies: n.2 CCS n.2 No meta-analysis High quality This study was supported by the China-Japan Friendship Hospital Research Project Foundation [grant number 2020-1-QN-2]. | Sample size: n.25 of case/n.15 of the healthy control group/n.17 of the OPMD control group Mean age: 56.25 y.o.; range MD Gender ratio: MD Country: USA n.16 Malaysia n.9 Risk factors for OSCC: MD History of OPMD: MD Time to OPMD onset: MD Previous history of malignancies: MD Other comorbidities: MD Other ongoing treatments: MD | Macroscopic features: MD Location: MD Staging: MD Grading: MD Microscopic features: MD First diagnosis: MD Time to onset: MD Chemotherapy: MD Radiotherapy: MD | Sample(s): n.25 Method(s) of sample collection: Swab n.25 Microorganisms identification technique: Incubation Proteinase K & DNA easy kit n.16 DNA extraction kit n.9 Target: 16s rRNA n.25 V4 region n.16 RFLP gene n.9 | Than the healthy and the OPMD control group Fusobacteria: ↑ Fusobacterium ↑ Proteobacteria: ↑ Neisseria ↓ Firmicutes: ↑ Gemella ↑ Granulicatella Actinobacteria: ↓ Rothia Than the healthy control group ↑ Bacteroidetes ↓ Firmicutes: ↓ Streptococcus ↓ Veillonella ↑/↓ Actinobacteria Than the OPMD control group ↓ Bacteroidetes ↓ Fusobacteria |
Su Mun, 2021 Int J Environ Res Public Health Studies: n.7 CCS n.7 No meta-analysis High quality This study was supported by the International Medical University of Malaysia. | Sample size: n.280 of case/n.191 of the healthy control group Mean age: MD Gender ratio: MD Country: Yemen n.20 Sri Lanka n.25 China n.135 USA n.100 Risk factors for OSCC: Betel nut chewers n.N/D Tobacco n.N/D Shammah (smokeless tobacco) n.N/D Alcohol n.N/D History of OPMD: MD Time to OPMD onset: MD Previous history of malignancies: MD Other comorbidities: MD Other ongoing treatments: MD | Macroscopic features: MD Location: MD Staging: MD Grading: MD Microscopic features: MD First diagnosis: MD Time to onset: MD Chemotherapy: MD Radiotherapy: MD | Sample(s): n.280 Method(s) of sample collection: Biopsy n.280 Microorganisms identification technique: DNA isolation kit n.20 Gentra Puregene Tissue kit n.25 QIAampFast DNA Stool Mini kit n.61 TIANamp Swab DNA kit n.50 MD n.124 Target: V1-V3 region n.45 V3-V4 region n.135 MD n.100 | Than the healthy control group Fusobacteria: ↑ Fusobacterium Type(s) of Fusobacterium species detected: ↑ F. oral taxon 204 ↑ F. parvimonas ↑ F. nucleatum ↑ F. nucleatum ssp. polymorphum Leptotrichia: Type(s) of Leptotrichia species detected: ↓ Leptotrichia oral taxon 225 Actinobacteria: ↑ Mobiluncus ↑/↓ Actinomyces ↓ Rothia Type(s) of Rothia species detected: ↓ Rothia dentocariosa ↓ Rothia mucilaginosa ↑ Atopobium ↓ Propionibacterium Corynebacterium Type(s) of Corynebacterium species detected: ↓ Corynebacterium matruchotii ↓ Arthrobacter ↓ Microbacterium Defferibacteraceae: ↓ Mucispirillum Proteobacteria: ↑ Brevundimonas ↑ Aeromonas ↑ Frateuria ↑ Caulobacter ↑ Pseudomonas Type(s) of Pseudomonas species detected: ↑ Pseudomonas aeruginosa Aggregatibacter Type(s) of Aggregatibacter species detected: ↑ Aggregatibacter segnis ↑ Campylobacter Type(s) of Campylobacter species detected: ↑ C. concisius ↑ C. rectus ↑ Citrobacter Type(s) of Citrobacter species detected: ↑ Citrobacter koseri ↓ Lautropia Type(s) of Lautropia species detected: ↓ Lautropia mirabilis ↓ Sphingomonas Firmicutes: ↓/↑ Streptococcus: Type(s) of Streptococcus species detected: ↑ S. dysgalactiae ↓ S. parasanguinis ↓ S. mitis ↓ S. oralis ↓ S. sp oral taxon 423 ↓ S. sp oral taxon 070 ↓ S. sp oral taxon 431 ↓ S. agalactiae ↓ Staphylococcus Type(s) of Staphylococcus species detected: ↓ Staphylococcus epidermidis ↑ Peptostreptococcus Type(s) of Peptostreptococcus species detected: ↑ Peptostreptococcus stomatis Granulicatella Type(s) of Granulicatella species detected: ↓ Granulicatella adicens ↓ Granulicatella elegans ↓ Paenibacillus ↑ Parvimonas Gemella: Type(s) of Gemella species detected: ↑ Gemella morbillorum Bacteroidetes: ↑ Capnocytophaga Type(s) of Capnocytophaga species detected: ↑ Capnocytophaga leadbetteri ↑ Prevotella Type(s) of Prevotella species detected: ↑ Prevotella salivae ↑ Prevotella loeschii ↑ Prevotella intermedia Porphyromonas Type(s) of Porphyromonas species detected: ↑ Porphyromonas cationiae ↓ Porphyromonas gingivalis |
Yu, 2023 Heliyon Studies: n.2 CCS n.2 Meta-analysis Moderate quality This study was supported by a grant from the Qingdao Medical Talents Training Program [VYQ2020Y02]. | Sample size: n.30 of case/n.26 of the healthy control group Mean age: 52.3 y.o.; range MD Gender ratio: MD Country: MD Risk factors for OSCC: MD History of OPMD: MD Time to OPMD onset: MD Previous history of malignancies: MD Other comorbidities: MD Other ongoing treatments: MD | Macroscopic features: MD Location: MD Staging: MD Grading: MD Microscopic features: MD First diagnosis: MD Time to onset: MD Chemotherapy: MD Radiotherapy: MD | Sample(s): n.30 Method(s) of sample collection: Biopsy n.30 Microorganisms identification technique: N/D next-generation sequencing technology n.30 Target: V4 region n.10 V1-V3 region n.20 | Than the healthy control group Fusobacteria ↑ Fusobacterium: p = 0.000 ↑ Proteobacteria: ↓ Haemophilus p = 0.000 ↓ Actinobacteria: ↓ Rothia ↓ Firmicutes: ↓ Streptococcus p = 0.032 ↓ Bacteroidetes: ↑ Prevotella: NSS |
Studies | Population | Intervention | Outcome(s) | |
---|---|---|---|---|
Characteristics | OSCC | Viruses | ||
Chaitanya N.C., 2016 J Cancer Res Ther Studies: n. 11 CCS n.11 Meta-analysis Critically low quality No Funding | Sample size: n. N/D of case/n. 3212 of the healthy control group Mean age: MD Gender ratio: MD Country: MD Risk factors for OSCC: MD History of OPMD: MD Time to OPMD onset: MD Previous history of malignancies: MD Other comorbidities: MD Other ongoing treatments: MD | Macroscopic features: MD Location: tongue n. MD buccal mucosa n. MD dentoalveolar complex n. MD oral floor n. MD Staging: MD Grading: MD Microscopic features: MD First diagnosis: MD Time to onset: MD Chemotherapy: MD Radiotherapy: MD | Sample(s): n. N/D Method(s) of sample collection: Serum analysis n. MD Biopsy n. MD Brush n. MD Microorganisms identification technique: N/D Target: HPV DNA n.MD | Than the healthy control group ↑ HPV: n.N/D of OSCC case 20.34% OSCC of the tongue 8.70% OSCC of the oral floor 8.00% OSCC of the dentoalveolar complex 5.00% OSCC of the buccal mucosa Genotype(s) of HPV detected: MD |
Christianto S., 2022 Laryngoscope Studies: n. 22 CS n.22 Meta-analysis Critically low quality No funding | Sample size: n.3065 of case Mean age: MD Gender ratio: 2155M/720F/190 N/D Country: MD Risk factors for OSCC: MD History of OPMD: MD Time to OPMD onset: MD Previous history of malignancies: MD Other comorbidities: MD Other ongoing treatments: MD | Macroscopic features: MD Location: MD Staging: Stage I (n.134) Stage II (n.173) Stage III (n.172) Stage IV (n.551) Stage MD (n.2303) Grading: MD Microscopic features: MD First diagnosis: MD Time to onset: MD Chemotherapy: MD Radiotherapy: MD | Sample(s): n.3065 Method(s) of sample collection: MD Microorganisms identification technique: PCR n.1800 IHC n.779 ISH n.264 PCR/IHC/ISH n.N/D Target: MD | ↑ HPV: n.672 (prevalence 21.92) of OSCC case Genotype(s) of HPV detected: HPV-16: n.82 HPV-6, -11, -16, -18, -26, -31, -32, -33, -34, -35, -37, -39, -40, -42, -43, -44, -45, -51, -52, -53, 54, -55, -56, -58, -59, -61, -62, -66, -67, -68, -69, -70, -71, -72, -74, -81, -82: n.N/D |
de Carvalho Melo, 2021 Braz J Otorhinolaryngol Studies: n.5 CCS n.5 No meta-analysis Low quality No funding | Sample size: n.383 of case Mean age: N/D y.o.; range 19–92 y.o. Gender ratio: 218M/165F Country: USA n.113 Greece n.53 Chile n.80 China n.137 Risk factors for OSCC: Tobacco n.2 of OSCC HPV+ Alcohol n.2 of OSCC HPV+ History of OPMD: MD Time to OPMD onset: MD Previous history of malignancies: MD Other comorbidities: MD Other ongoing treatments: MD | Macroscopic features: MD Location: tongue n.9; dentoalveolar complex n.1; MD n.373. Staging: MD Grading: MD Microscopic features: MD First diagnosis: MD Time to onset: MD Chemotherapy: MD Radiotherapy: MD | Sample(s): n.383 Method(s) of sample collection: Biopsy n.225 MD n.158 Microorganisms identification technique: N/D Target: E6 mRNA n.MD E7 mRNA n.MD | HPV: n.16 of OSCC case Genotype(s) of HPV detected: HPV-16: n.14 HPV-18: n.2 NS |
de Lima, 2014 J Bras Patol Med Lab Studies: n.37 MD n.37 No meta-analysis Critically low No funding | Sample size: n.N/D of case/n.N/D of the healthy control group Mean age: MD Gender ratio: MD Country: Japan n.N/D Taiwan n.N/D India n.N/D China n.N/D South Africa n.N/D Sudan n.N/D Finland n.N/D Italy n.N/D Spain n.N/D Germany n.N/D Hungary n.N/D Czech Republic n.N/D The Netherlands n.N/D Serbia n.N/D USA n.N/D Venezuela n.N/D Brazil n.N/D Argentina n.N/D Risk factors for OSCC: Tobacco and alcohol n.36 History of OPMD: MD Time to OPMD onset: MD Previous history of malignancies: MD Other comorbidities: MD Other ongoing treatments: MD | Macroscopic features: MD Location: tongue n.12 Staging: In situ OSCC (n.7) Stage II (n.12) Grading: MD Microscopic features: MD First diagnosis: MD Time to onset: MD Chemotherapy: MD Radiotherapy: MD | Sample(s): n.N/D Method(s) of sample collection: MD Microorganisms identification technique: PCR: n.940 In situ PCR: n.220 Nested PCR: n.290 RT-PCR: n.59 PCR dot blot: n.198 Differential PCR: n.60 IHC: n.635 ISH: n.864 Radioactive ISH: n.117 DNA sequencing: n.64 Single strand conformation polymorphism: n.60 Target: HPV DNA: n.640 p16: n.193 p53: n.496 p21: n.33 pRb: n.112 BCL-2: n.43 hTERT: n.35 C-MYC: n.60 EBV genome: n.601 | ↑ HPV genome: n.555 of OSCC case Genotype(s) of HPV detected: HPV-6, -11, -16, -18, -31, -33: n.N/D ↑ EBV: n.236 of OSCC case |
de Lima, 2019 Crit Rev Oncog Studies: n.52 MD n.52 Meta-analysis Critically low quality No funding | Sample size: n.2665 of case/n. N/D of the healthy control group/n.N/D of the OPMD control group Mean age: MD Gender ratio: MD Country: N/D Risk factors for OSCC: MD History of OPMD: MD Time to OPMD onset: MD Previous history of malignancies: MD Other comorbidities: MD Other ongoing treatments: MD | Macroscopic features: MD Location: MD Staging: MD Grading: MD Microscopic features: MD First diagnosis: MD Time to onset: MD Chemotherapy: MD Radiotherapy: MD | Sample(s): n.2665 Method(s) of sample collection: Biopsy n.2530 Brush n.135 Microorganisms identification technique: PCR: n.1016 In situ PCR: n.102 PCR Southern blot: n.411 RT-PCR Southern blot: n.40 Real-time qPCR: n. 158 qPCR: n.128 Real-time RT-PCR: n.35 Nested PCR: n.708 PCR ELISA: n.79 IF: n.85 IHC: n.721 ISH: n.179 RNA ISH: n.668 Radioactive RNA ISH: n.4 DNA ISH: n.142 RNA microarray: n.151 NASBA: n.9 Target: EBV: n.471 EBNA1: n.458 EBNA2: n.444 LMP gene: n.33 LMP1: n.716 LMP2: n.4 EBER: n.535 EBER1: n.295 BZLF1: n.240 BNLF1: n.127 BNRF1: n.16 BNFR1 n.60 BMLF1: n.16 BHRF1: n.9 BARF0: n.10 IR-1 region: n.36 IR-3 region: n.1 71 EBV fragments: n.57 BamHI W: n.974 BamHI L: n.103 MD n.31 | EBV: n.1207 (prevalence 45.29%) of OSCC case p = 0.000 Genotype(s) of EBV detected: MD |
Guo, 2018 Front Oncol Studies: n.11 MD n.11 Meta-analysis Critically low This study was supported by the National Natural Science Foundation of China (No.81703298). | Sample size: n.1275 of case Mean age: MD Gender ratio: MD Country: China n.1275 Risk factors for OSCC: MD History of OPMD: MD Time to OPMD onset: MD Previous history of malignancies: MD Other comorbidities: MD Other ongoing treatments: MD | Macroscopic features: MD Location: MD Staging: MD Grading: MD Microscopic features: MD First diagnosis: MD Time to onset: MD Chemotherapy: MD Radiotherapy: MD | Sample(s): n.1275 Method(s) of sample collection: Biopsy n.1275 Microorganisms identification technique: PCR: n.921+N/D ISH: n.N/D Target: HPV-16: n.1275 | ↑ HPV: n.190 (prevalence 14.9%) of OSCC case p < 0.001 Genotype(s) of HPV detected: HPV-16: n.190 |
Haghshenas, 2022 Iran J Public Health Studies: n.2 CCS n.2 Meta-analysis Critically low This study was supported by the Mazandaran University of Medical Sciences (IR.MAZUMS. REC.1399.8657). | Sample size: n.69 of case/n.57 of the healthy control group Mean age: MD Gender ratio: MD Country: MD Risk factors for OSCC: MD History of OPMD: MD Time to OPMD onset: MD Previous history of malignancies: MD Other comorbidities: MD Other ongoing treatments: MD | Macroscopic features: MD Location: MD Staging: MD Grading: MD Microscopic features: MD First diagnosis: MD Time to onset: MD Chemotherapy: MD Radiotherapy: MD | Sample(s): n.69 Method(s) of sample collection: Biopsy n.69 Microorganisms identification technique: N/D Target: MD | Than the healthy control group (prevalence 0.00%) ↑ HPV: n.20 (prevalence 28.99%) of OSCC case Genotype(s) of HPV detected: HPV-16: n.5 HPV-18: n.2 MD n.13 |
Hobbs, 2006 Clin Otolaryngol Studies: n.15 MD n.15 Meta-analysis Critically low No funding | Sample size: n.1873 of case/n.2437 of the healthy control group Mean age: MD Gender ratio: MD Country: MD Risk factors for OSCC: MD History of OPMD: MD Time to OPMD onset: MD Previous history of malignancies: MD Other comorbidities: MD Other ongoing treatments: MD | Macroscopic features: MD Location: N/D oral cavity n.1656 Tonsil n.217 Staging: MD Grading: MD Microscopic features: MD First diagnosis: MD Time to onset: MD Chemotherapy: MD Radiotherapy: MD | Sample(s): n.1873 Method(s) of sample collection: Biopsy n.322 Serum analysis n.1551 Microorganisms identification technique: N/D Target: N/D | ↑ HPV: n.314 (prevalence 16.76%) of OSCC case n.219 (13.22%): N/D oral cavity n.95 (43.78%): tonsil Genotype(s) of HPV detected: N/D |
Kreimer, 2005 Cancer Epidemiol Biomarkers Prev Studies: n.38 MD n.38 Meta-analysis Critically low quality No funding | Sample size: n.2642 of case Mean age: MD Gender ratio: MD Country: United Kingdom n.39 Germany n.53 Switzerland n.15 Italy n.38+N/D Slovenia n.55 The Netherlands n.105 France n.12 Spain n.2+N/D Canada n.53 USA n.832 Finland n.28+N/D Norway n.N/D Sweden n.N/D North Ireland n.N/D Poland n.N/D India n.473 Taiwan n.103 Japan n.306 China n.85 Korea n.76 Venezuela n.50 Cuba n.N/D Australia n.N/D Sudan n.N/D Risk factors for OSCC: MD History of OPMD: MD Time to OPMD onset: MD Previous history of malignancies: MD Other comorbidities: MD Other ongoing treatments: MD | Macroscopic features: MD Location: MD Staging: MD Grading: MD Microscopic features: MD First diagnosis: MD Time to onset: MD Chemotherapy: MD Radiotherapy: MD | Sample(s): n.2642 Method(s) of sample collection: Biopsy n.2642 Microorganisms identification technique: PCR n.2642 Target: MD | HPV: n.796 (prevalence 23.5%) of OSCC case HPV prevalence in
Genotype(s) of HPV detected: HPV-6: n.59 (7.41%) HPV-11: n.31 (3.89%) HPV-16: n.423 (53.34%) HPV-18: n.212 (26.73%) HPV-16 and -18: n.44 (5.55%) HPV-31: n.3 (0.38%) HPV-32: n.1 (0.13%) HPV-33: n.14 (1.76%) HPV-35: n.1 (0.13%) HPV-39: n.0 (0.0%) HPV-44: n.1 (0.13%) HPV-45: n.0 (0.0%) HPV-51: n.0 (0.0%) HPV-52: n.0 (0.0%) HPV-53: n.1 (0.13%) HPV-56: n.2 (0.25%) HPV-57: n.1 (0.13%) HPV-58: n.1 (0.13%) HPV-59: n.0 (0.0%) HPV-68: n.1 (0.13%) HPV-73: n.0 (0.0%) HPV-81: n.1 (0.13%) HPV-82: n.0 (0.0%) |
Mallika, 2020 Trans Cancer Res Studies: n.8 CCS n.8 No meta-analysis Moderate quality No funding | Sample size: MD Mean age: MD Gender ratio: MD Country: MD Risk factors for OSCC: MD History of OPMD: MD Time to OPMD onset: MD Previous history of malignancies: MD Other comorbidities: MD Other ongoing treatments: MD | Macroscopic features: MD Location: MD Staging: MD Grading: MD Microscopic features: MD First diagnosis: MD Time to onset: MD Chemotherapy: yes (one study) Radiotherapy: yes (two studies) | Sample(s): MD Method(s) of sample collection: Biopsy n.MD Swab n.MD Brush n.MD Microorganisms identification technique: Culture n.MD IHC n.MD ISH n.MD PCR n.MD Target: MD | ↑ HPV: MD n./% of OSCC case Genotype(s) of HPV detected: HPV-16 n.MD HPV-18 n.MD HHV-6: NS EBV: NS |
Miller, 2001 Oral Surg Oral Med Oral Pathol Oral Radiol Endod Studies: n.80 MD n.80 Meta-analysis Critically low quality No funding | Sample size: n.N/D of case Mean age: MD Gender ratio: MD Country: MD Risk factors for OSCC: MD History of OPMD: MD Time to OPMD onset: MD Previous history of malignancies: MD Other comorbidities: MD Other ongoing treatments: MD | Macroscopic features: MD Location: MD Staging: MD Grading: MD Microscopic features: MD First diagnosis: MD Time to onset: MD Chemotherapy: MD Radiotherapy: MD | Sample(s): n.N/D Method(s) of sample collection: Biopsy n.N/D Microorganisms identification technique: N/D ISH/IP/IF n.608 N/D Southern blot/dot blot/filter blot hybridization n.321 PCR n.1154 Target: HPV DNA: n.2083 | ↑ HPV: n.627 (prevalence 46.5%) of OSCC case p < 0.001 Genotype(s) of HPV detected: HPV-2: n.3 HPV-3: n.1 HPV-4: n.2 HPV-6: n.52 HPV-10: n.16 HPV-11: n.37 HPV-13: n.1 HPV-16: n.285 HPV-18: n.115 HPV-31: n.3 HPV-33: n.9 HPV-57: n.1 HPV-6 and -11: n.27 HPV-16 and -18: n.49 HPV-6, and 11 and 16 and 18: n.1 HPV-6 and -16 and -18: n.3 HPV-31 and -33 and -35: n.6 N/D: 16 LR-HPV: p < 0.001 HR-HPV: p < 0.001 (prevalence 23.71%) |
Muthusamy, 2023 Cureus Studies: n.6 CCS n.6 Meta-analysis Critically low quality This study was supported by the Indian Council of Medical Research (ICMR) under the Nurturing Clinical Scientist (NCS) scheme HRD/Head-NCS-2019-02. | Sample size: n.373 of case/n.326 of healthy control group/n.73 of OPMD group Mean age: MD Gender ratio: MD Country: MD Risk factors for OSCC: MD History of OPMD: MD Time to OPMD onset: MD Previous history of malignancies: MD Other comorbidities: MD Other ongoing treatments: MD | Macroscopic features: MD Location: MD Staging: MD Grading: MD Microscopic features: MD First diagnosis: MD Time to onset: MD Chemotherapy: MD Radiotherapy: MD | Sample(s): n.373 Method(s) of sample collection: Blood analysis n.50 Biopsy n.211 Biofilm sampling n.21 Brush n.91 Microorganisms identification technique: PAP technique n.50 Culture n.21 Nested PCR n.120 ELISA n.132 PCR n.50 Target: Herpes Select-1 n.132 16s RNA n.50 | ↑ EBV: MD n./% of OSCC case p < 0.0001 HSV-1: MD n./% of OSCC case p = NSS |
Nandi, 2021 Cancer Treat Res Commun Studies: n.19 CCS n.19 No meta-analysis Critically low quality No funding | Sample size: n.1639 of case/n.206 of the healthy control group Mean age: N/D y.o.; range MD Gender ratio: 955M/377F/307MD Country: India n.1639 Risk factors for OSCC: MD History of OPMD: MD Time to OPMD onset: MD Previous history of malignancies: MD Other comorbidities: MD Other ongoing treatments: MD | Macroscopic features: MD Location: tongue n.156 MD n.1483 Staging: MD Grading: MD Microscopic features: MD First diagnosis: MD Time to onset: MD Chemotherapy: MD Radiotherapy: MD | Sample(s): n.1639 Method(s) of sample collection: N/D Microorganisms identification technique: PCR/p16-IHC n.216 ISH n.31 IHC n.30 PCR/ISH n.45 PCR n.1317 Target: MD | ↑ HPV: n.553 of OSCC case Genotype(s) of HPV detected: MD |
Rahman, 2023 Mol Oral Microbiol Studies: n.15 CCS n.5 NRS n.10 Meta-analysis Critically low No funding | Sample size: n.1109 of case/n.211 of the healthy control group/n.150 of the OPMD group Mean age: MD Gender ratio: MD Country: USA n.61 Poland n.53 Sweden n.17 Norway n.20 United Kingdom n.20 Sudan n.20 India n.20 Sri Lanka n.20 Yemen n.18 Risk factors for OSCC: MD History of OPMD: MD Time to OPMD onset: MD Previous history of malignancies: MD Other comorbidities: MD Other ongoing treatments: MD | Macroscopic features: MD Location: tonsil n.16 oral floor n.30 Buccal mucosa n.27 tongue n.74 palate n.16 (soft n.10/MD n.6) lip n.11 MD n.935 Staging: MD Grading: MD Microscopic features: MD First diagnosis: MD Time to onset: MD Chemotherapy: MD Radiotherapy: MD | Sample(s): n.1109 Method(s) of sample collection: Biopsy n.1109 Microorganisms identification technique: PCR n.968 ISH n.141 Target: MD | HPV-EBV coinfection: n.95 of OSCC case p < 0.01 HPV: n.31 of OSCC case Genotype(s) of HPV detected: MD |
Shaikh, 2015 Cancer Epidemiol Studies: n.45 CSS n.N/D CCS n.N/D Meta-analysis Low quality This study was supported by the Griffith University of Australia. | Sample size: n.4893 of case Mean age: 56.80 y.o.; range 22–94 y.o. Gender ratio: MD Country: India n.1293 Pakistan n.48 Bangladesh n.34 Sri Lanka n.96 Malaysia n.109 Thailand n.32 China n.183 Hong Kong n.31 Taiwan n.535 South Korea n.167 Japan n.843 Australia n.1522 Risk factors for OSCC: Tobacco n.171+N/D Tobacco not smoked n.N/D Alcohol n.N/D History of OPMD: MD Time to OPMD onset: MD Previous history of malignancies: MD Other comorbidities: MD Other ongoing treatments: MD | Macroscopic features: MD Location: buccal mucosa n.433 gingiva n.196 tongue n.679 oral floor n.96 palate n.64 (hard n.1/soft n.5/MD n.59) tonsil n.1587 lip n.114 N/D oral cavity n.2353 Staging: MD Grading: MD Microscopic features: MD First diagnosis: MD Time to onset: MD Chemotherapy: MD Radiotherapy: MD | Sample(s): n.4893 Method(s) of sample collection: Biopsy n.4893 Microorganisms identification technique: PCR n.4209 Southern blot PCR n.224 Slot blot PCR n.15 Nested PCR n.27 ISH n.102 PCR and ISH: n.244 RT-PCR and IHC: n.52 In situ PCR and ISH n.20 Target: HPV genome: n.N/D | ↑ HPV: n.1627 of OSCC case n.146 (33.72%): buccal mucosa n.59 (30.10%): gingiva n.219 (32.25%): tongue n.29 (30.21%): oral floor n.20 (31.25%): palate n.489 (30.81%): tonsil n.19 (16.67%): lip n.646 (27.45%): N/D oral cavity Genotype(s) of virus detected: HPV-6, -8, -11, -16, -18, -22, -31, -32, -33, -35, -38, -39, -44, -45, -51, -52, -53, -54, -58, -59, -61, -66, -67, -68, -69, -70, -75, -76: n.N/D |
She, 2017 PLoS One Studies: n.13 CCS n.13 Meta-analysis Moderate quality No funding | Sample size: n.686 of case/n. 412 of the healthy control group Mean age: MD Gender ratio: MD Country: South Africa n.138 Netherland n.36 China n.81 India n.103 Japan n.186 Sweden n.29 Egypt n.22 Spain n.5 Hungary n.65 USA n.21 Risk factors for OSCC: MD History of OPMD: MD Time to OPMD onset: MD Previous history of malignancies: MD Other comorbidities: MD Other ongoing treatments: MD | Macroscopic features: MD Location: MD Staging: MD Grading: MD Microscopic features: MD First diagnosis: MD Time to onset: MD Chemotherapy: MD Radiotherapy: MD | Sample(s): n.686 Method(s) of sample collection: Biopsy n.686 Microorganisms identification technique: PCR n.562 Nested PCR n.34 ISH n.36 IHC n.33 RT-qPCR n.21 Target: EBV DNA n.218 EBV DNA BamHIW n.275 EBV DNA EBNA2 n.150 EBV RNA EBER1 n.21 EBV protein n.22 | ↑ EBV: n.332 of OSCC case p = 0.002 |
Sivakumar, 2020 Transl Cancer Res Studies: n.7 CCS n.7 Meta-analysis Low quality No funding | Sample size: n.349 of case/n.205 of the healthy control group Mean age: MD Gender ratio: MD Country: MD Risk factors for OSCC: MD History of OPMD: MD Time to OPMD onset: MD Previous history of malignancies: MD Other comorbidities: MD Other ongoing treatments: MD | Macroscopic features: MD Location: MD Staging: MD Grading: MD Microscopic features: MD First diagnosis: MD Time to onset: MD Chemotherapy: MD Radiotherapy: MD | Sample(s): n.349 Method(s) of sample collection: Biopsy n.349 Microorganisms identification technique: IHC n.61 ISH n.20 PCR n.190 N/D n.78 Target: LMP-1 n.61 EBV DNA n.60 EBNA-2 n.150 N/D n.349 | Than the healthy control group (prevalence 20.0%) ↑ EBV: n.161 (prevalence 46.13%) of OSCC case |
Syrjänen, 2011 Oral Dis Studies: n.33 CCS n.33 Meta-analysis Critically low quality No funding | Sample size: n.1885 of case/n.2248 of the healthy control group Mean age: MD Gender ratio: MD Country: MD Risk factors for OSCC: MD History of OPMD: MD Time to OPMD onset: MD Previous history of malignancies: MD Other comorbidities: MD Other ongoing treatments: MD | Macroscopic features: MD Location: MD Staging: MD Grading: MD Microscopic features: MD First diagnosis: MD Time to onset: MD Chemotherapy: MD Radiotherapy: MD | Sample(s): n.1885 Method(s) of sample collection: Brush n.697 Biopsy n.1043 Biopsy and Brush n.145 Microorganisms identification technique: PCR n.1821 ISH n.64 Target: MD | HPV: n.634 of OSCC case p < 0.00001 Genotype(s) of virus species detected: HPV-16: n.222 p < 0.00001 |
Termine, 2008 Ann Oncol Studies: n.47 MD n.47 Meta-analysis Critically low quality No funding | Sample size: n.3238 of case Mean age: MD Gender ratio: MD Country: Finland n.91 USA n.1082 Spain n.42 Japan n.606 Taiwan n.29 Brazil n.69 Slovenia n.62 South Africa n.271 The Netherlands n.35 Sudan n.88 Hungary n.79 Korea n.42 Venezuela n.116 Greece n.100 China n.113 Sweden n.134 India n.213 Italy n.66 Risk factors for OSCC: MD History of OPMD: MD Time to OPMD onset: MD Previous history of malignancies: MD Other comorbidities: MD Other ongoing treatments: MD | Macroscopic features: MD Location: MD Staging: MD Grading: MD Microscopic features: MD First diagnosis: MD Time to onset: MD Chemotherapy: MD Radiotherapy: MD | Sample(s): n.3238 Method(s) of sample collection: Biopsy n.3238 Microorganisms identification technique: ISH: n.370 PCR: n.2681 N/D ISH or PCR: n.187 Target: MD | ↑ HPV: n. 1090 of OSCC case p = 0.000 Genotype(s) of HPV detected: HPV-6, -11, -16, -18, -22, -31, -33, -35, -38, -58, -68, -70: n.MD |
Yang, 2019 Medicine (Baltimore) Studies: n.6 CSS n.6 Meta-analysis Moderate quality No funding | Sample size: n.758 of case Mean age: MD Gender ratio: MD Country: China n.758 Risk factors for OSCC: MD History of OPMD: MD Time to OPMD onset: MD Previous history of malignancies: MD Other comorbidities: MD Other ongoing treatments: MD | Macroscopic features: MD Location: MD Staging: Stage I-IV (n.327) Stage III-IV (n.333) Stage N/D (n.98) Grading: MD Microscopic features: MD First diagnosis: MD Time to onset: MD Chemotherapy: MD Radiotherapy: MD | Sample(s): n.758 Method(s) of sample collection: Biopsy n.758 Microorganisms identification technique: PCR n.704 ISH n.54 Target: L1 region of HPV-18 gene n.533 | HPV: n.55/7.2% of OSCC case Type(s) of HPV detected: HPV-18: n.55 p = 0.011 |
Zhu, 2012 PLoS One Studies: n.18 CCS n.18 Meta-analysis Critically low quality No funding | Sample size: n.610 of case/n.259 of the healthy control group Mean age: MD y.o.; range MD Gender ratio: MD Country: China n.610 Risk factors for OSCC: MD History of OPMD: MD Time to OPMD onset: MD Previous history of malignancies: MD Other comorbidities: MD Other ongoing treatments: MD | Macroscopic features: MD Location: MD Staging: MD Grading: MD Microscopic features: MD First diagnosis: MD Time to onset: MD Chemotherapy: MD Radiotherapy: MD | Sample(s): n.610 Method(s) of sample collection: MD Microorganisms identification technique: PCR n.544 Dot-blot hybridization n.66 Target: MD | Than the healthy control group ↑ HPV: n.354 of OSCC case p < 0.00001 Type(s) of HPV detected: HPV-16: n.169 p < 0.00001 MD: n.185 |
Studies | Population | Intervention | Outcome(s) | |
---|---|---|---|---|
Characteristics | OSCC | Fungi | ||
Ayuningtyas, 2022 Pathophysiology Studies: n.5 RCSS n.2 CSS n.2 PS n.1 No Meta-analysis Critically low quality No funding | Sample size: n.136+MD of case/n.92+MD of the healthy control group/n.107+MD of OPMD control group Mean age: MD Gender ratio: MD Country: India n.80 Egypt n.31 Argentina n.25 Taiwan n.MD Risk factors for OSCC: MD History of OPMD: MD Time to OPMD onset: MD Previous history of malignancies: MD Other comorbidities: MD Other ongoing treatments: MD | Macroscopic features: MD Location: MD Staging: MD Grading: MD Microscopic features: MD First diagnosis: MD Time to onset: MD Chemotherapy: MD Radiotherapy: MD | Sample(s): n.136+MD Method(s) of sample collection: Biopsy n.61 Swab n.50 Biopsy and Swab n.25+MD Microorganisms identification technique: Culture n.136+MD IHC: n.MD Target: MD | Than the healthy control group ↑ Candida: n.MD of OSCC case Than the OPMD control group ↑ Candida: n.MD of OSCC case Type(s) of fungi species detected: MD |
Mallika, 2020 Trans Cancer Res Studies: n.8 CCS n.8 No meta-analysis Moderate quality No funding | Sample size: MD Mean age: MD Gender ratio: MD Country: MD Risk factors for OSCC: MD History of OPMD: MD Time to OPMD onset: MD Previous history of malignancies: MD Other comorbidities: MD Other ongoing treatments: MD | Macroscopic features: MD Location: MD Staging: MD Grading: MD Microscopic features: MD First diagnosis: MD Time to onset: MD Chemotherapy: yes (one study) Radiotherapy: yes (two studies) | Sample(s): MD Method(s) of sample collection: Biopsy n.MD Swab n.MD Brush n.MD Microorganisms identification technique: Culture n.MD IHC n.MD ISH n.MD PCR n.MD Target: MD | ↑ Oral yeast: MD n./% of OSCC case Candida: MD n./% of OSCC case (two studies of OSCC patients undergoing radiotherapy; one study of OSCC patients undergoing chemotherapy) Type(s) of fungi species detected: MD |
Studies | Population | Intervention | Outcome(s) | |
---|---|---|---|---|
Characteristics | OSCC | Bacteria | ||
Gopinath, 2019 Crit Rev Oncol Hematol Studies: n.2 CCS n.2 No meta-analysis Low quality No funding | Sample size: n.130 of case/n.125 of the healthy group control Mean age: >50 y.o.; range MD Gender ratio: MD Country: Taiwan n.127 USA n.3 Risk factors for OSCC: N/D History of OPMD: MD Time to OPMD onset: MD Previous history of malignancies: MD Other comorbidities: MD Other ongoing treatments: MD | Macroscopic features: MD Location: MD Staging: MD Grading: MD Microscopic features: MD First diagnosis: MD Time to onset: MD Chemotherapy: MD Radiotherapy: MD | Sample(s): n.130 Method(s) of sample collection: Saliva test n.130 Microorganisms identification technique: Incubation in Proteinase K and DNA purification kit n.3 QIAamp DNA Blood Kit n.127 Target: V4-V5 region n.3 V4 region n.127 | Than the healthy control group Bacteroidetes: ↑ Bacteroides: >n.50 of OSCC case ↑ Porphyromonas Proteobacteria: ↑ Escherichia: >n.50 of OSCC case Ralstonia Type(s) of Ralstonia species detected: ↑ Ralstonia insidiosa Actinobacteria: ↑ Rothia Firmicutes: ↑ Bulleidia: >n.50 of OSCC case ↑ Gemella ↑ Peptostreptococcus ↑ Streptococcus ↑ Lactobacillus ↑ Gemmiger ↑ Oscillospira ↑ RoseburiaSynergistota: ↑ Cloacibacillus |
Gupta, 2020 Clin Oral Investig Studies: n.1 CSS n.1 No meta-analysis Low quality No funding | Sample size: n.50 of case/n.50 of the healthy control group Mean age: MD Gender ratio: MD Country: India n.50 Risk factors for OSCC: MD History of OPMD: MD Time to OPMD onset: MD Previous history of malignancies: MD Other comorbidities: MD Other ongoing treatments: MD | Macroscopic features: MD Location: MD Staging: MD Grading: MD Microscopic features: MD First diagnosis: MD Time to onset: MD Chemotherapy: MD Radiotherapy: MD | Sample(s): n.50 Method(s) of sample collection: Saliva test n.50 Microorganisms identification technique: Culture n.50 Target: MD | Than the healthy control group (prevalence 8.0%) Proteobacteria: Helicobacter Type(s) of Helicobacter species detected: ↑ Helicobacter pylori: n.32 (prevalence 64.0%) of OSCC case |
Huybrechts, 2020 Cancer Epidemiol Biomarkers Prev Studies: n.16 CS n.2 CCS n.14 No meta-analysis Low quality This study was supported by the Intramural Research Program of the National Cancer Institute at the National Institutes of Health and by the Research Foundation-Flanders 12h1519N. | Sample size: n.724 of case/n.1188 of the healthy control group Mean age: MD Gender ratio: MD Country: MD Risk factors for OSCC: MD History of OPMD: MD Time to OPMD onset: MD Previous history of malignancies: MD Other comorbidities: MD Other ongoing treatments: MD | Macroscopic features: MD Location: MD Staging: MD Grading: MD Microscopic features: MD First diagnosis: MD Time to onset: MD Chemotherapy: MD Radiotherapy: MD | Sample(s): n.724 Method(s) of sample collection: Saliva test n.724 Microorganisms identification technique: N/D Target: MD | ↑ Bacteroidetes: ↑ Capnocytophaga ↑ Fusobacteria: ↑ Fusobacterium Actinobacteria: ↑ Actinomyces ↓ Firmicutes: ↑ Dialister ↑ Peptostreptococcus ↑ Parvimonas ↑ Streptococcus: NS |
Mallika, 2020 Trans Cancer Res Studies: n.11 CCS n.11 No meta-analysis Moderate quality No funding | Sample size: MD Mean age: MD Gender ratio: MD Country: MD Risk factors for OSCC: MD History of OPMD: MD Time to OPMD onset: MD Previous history of malignancies: MD Other comorbidities: MD Other ongoing treatments: MD | Macroscopic features: MD Location: MD Staging: MD Grading: MD Microscopic features: MD First diagnosis: MD Time to onset: MD Chemotherapy: MD Radiotherapy: MD | Sample(s): MD Method(s) of sample collection: Saliva test n.MD Oral swab n.MD Microorganisms identification technique: Culture n.MD VIDAS EBV kit n.MD QIAamp Mini Elute Virus Spin kit Digene HPV genotyping RH test n.MD PCR n.MD Spectrophotometer n.MD Gas chromatography n.MD IHC n.MD Target: MD | Proteobacteria: Helicobacter Type(s) of Helicobacter species detected: ↑ Helicobacter pylori |
Mauceri, 2022 Cancers (Basel) Studies: n.11 CCS n.8 CS n.2 CSCS n.1 No meta-analysis Critically low quality No funding | Sample size: n.679 of case/n.480 of the healthy control group/n.153 of the OPMD control group/n.15 of the periodontitis control group Mean age: 56.8 y.o.; range 49.7–63.9 y.o. Gender ratio: 179M/113F/387MD Country: Taiwan n.445 China n.97 USA n.18 Sudan n.59 Japan n.60 Risk factors for OSCC: MD History of OPMD: MD Time to OPMD onset: MD Previous history of malignancies: MD Other comorbidities: MD Other ongoing treatments: MD | Macroscopic features: MD Location: MD Staging: MD Grading: MD Microscopic features: MD First diagnosis: MD Time to onset: MD Chemotherapy: MD Radiotherapy: MD | Sample(s): n.687 Method(s) of sample collection: Sputum n.448 Oral swab n.156 Oral rinse n.18 Saliva, subgingival plaque, tumor and healthy surface n.57 Microorganisms identification technique: QIAamp DNA Blood Mini kit n.347 QIAamp MinElute Virus Spin kit n.138 QIAamp Fast DNA Stool Mini kit n.10 FastDNA kit n.59 Gene Prep Star PI-80X device n.60 Modified QIAGEN DNA extraction method n.18 E.Z.N.A. soil DNA kit n.47 Target: Fungal ITS2 region n.59 V4 region n.280 V3-V4 region n.115 V3-V5 region n.138 V4-V5 region n.87 | ↑ Spirochaetes: ↑ Treponema ↑ Proteobacteria: ↑ Campylobacter ↓ Lautropia ↓ Haemophilus ↑ Eikenella ↑ Bacteroidetes: ↑ Alloprevotella ↑ Capnocytophaga ↑ PrevotellaTenericutes: ↑ Mycoplasma ↓ Firmicutes: MD n./% of OSCC case ↑ Centipeda ↑ Selenomonas ↑ Dialister ↑ Peptostreptococcus ↑ Filifactor ↑ Peptococcus ↑ Catonella ↑ Parvimonas ↓ Megasphaera ↓ Stomatobaculum ↓ Granulicatella ↓ Veillonella ↓ Streptococcus Type(s) of Streptococcus species detected: ↓ S. pneumoniae ↑ Fusobacteria: ↑ Fusobacterium Type(s) of Fusobacterium species detected: F. nucleatum ↓ Actinobacteria: MD n./% of OSCC case ↓ Scardovia ↓ Rothia ↓ Actinomyces |
Ramos, 2020 Oral Maxillofac Surg Studies: n.4 CS n.1 CSS n.1 CCS n.1 MD n.1 No meta-analysis Critically low quality This study was supported by the National Council for Scientific and Technological Development (CNPq) (Project:211309/ 2013-3) and the Foundation for Research Financial Support in the State of Rio de Janeiro (FAPERJ) (Project: E26/ 1033.001/2012). | Sample size: n.339 of case/n. 214 of the healthy control group/n.124 of the OPMD control group Mean age: MD Gender ratio: N/D Country: MD Risk factors for OSCC: Tobacco: n.N/D Alcohol: n.N/D Betel quid chewing: n.N/D History of OPMD: MD Time to OPMD onset: MD Previous history of malignancies: MD Other comorbidities: MD Other ongoing treatments: MD | Macroscopic features: MD Location: MD Staging: Stage I (n.41) Stage II (n.66) Stage IV (n.90) Grading: MD Microscopic features: MD First diagnosis: MD Time to onset: MD Chemotherapy: MD Radiotherapy: MD | Sample(s): n.339 Method(s) of sample collection: Oral rinse n.197 Saliva test n.142 Microorganisms identification technique: MiSeq n.333 454/GS Junior n.6 Target: V4 n.125 V3-V4 n.197 V3-V5 n.6 V4-V5 n.11 | Than the healthy control group Firmicutes: ↑ Streptococcus Type(s) of Streptococcus species detected: ↑ S. mitis (in smokers patients) ↑ Peptostreptococcus ↑ Bacillus ↑ Parvimonas ↑ Enterococcus ↑ Veillonella ↑ Stomatobaculum ↑ Lactobacillus (abundance with advanced TNM stage) Bacteroidetes: ↑ Prevotella ↑ Proteobacteria: ↑ Haemophilus Actinobacteria: ↑ Slackia ↑ RothiaTenericutes: ↑ Mollicutes Spirochaetes: ↑ Spirochaetales |
Shen, 2023 Arch Oral Biol Studies: n.5 CCS n.5 No meta-analysis High quality This study was supported by the China-Japan Friendship Hospital Research Project Foundation [grant number 2020-1-QN-2]. | Sample size: n.230 of case/n.219 of the healthy control group/n.205 of the OPMD control group Mean age: N/D Gender ratio: 27M/203MD Country: USA n.18 India n.31 Taiwan n.N/D China n.29+N/D Risk factors for OSCC: MD History of OPMD: MD Time to OPMD onset: MD Previous history of malignancies: MD Other comorbidities: MD Other ongoing treatments: MD | Macroscopic features: MD Location: MD Staging: MD Grading: MD Microscopic features: MD First diagnosis: MD Time to onset: MD Chemotherapy: MD Radiotherapy: MD | Sample(s): n.230 Method(s) of sample collection: Saliva test n.152 Oral rinse n.49 Oral swab, plaque swab, and saliva test n.29 Microorganisms identification technique: Modified QIAGEN DNA n.18 Gene Fix Saliva Prep 2 Isolation kit n.31 QIAamp DNA Blood mini kit n.124 QIAamp DNA Mini kit n.21 HiPure tissue and blood DNA kit n.32 Target: 16s rRNA: n.177 V4 region n.124 V3-V4 region n.103 ITS1 n.32 | Than the healthy and the OPMD control group ↑ Bacteroidetes: ↑ Prevotella ↑ Alloprevotella ↑ Porphyromonas ↑ Capnocytophaga Type(s) of Capnocytophaga species detected: ↑ Capnocytophaga sputigena Fusobacteria: ↑/↓ Fusobacterium ↑/↓ Firmicutes: ↓ Streptococcus ↑/↓ Veillonella Catonella Type(s) of Catonella species detected: ↑ Catonella morbi Proteobacteria: ↑ Aggregatibacter ↑ Neisseria Than the OPMD control group Bacteroidetes: ↓ Prevotella Type(s) of Prevotella species detected: ↓ Prevotella oulorum Tannerella Type(s) of Tannerella species detected: ↓ Tannerella forsythia Porphyromonas Type(s) of Porphyromonas species detected: ↓ Porphyromonas gingivalis Firmicutes: ↓ Enterococcus ↓ Megasphaera Anaeroglobus Type(s) of Anaeroglobus species detected: ↓ Anaeroglobus geminatus Proteobacteria: ↓ Salmonella ↓ Saccharibacteria Than the healthy control group Proteobacteria: ↑ Escherichia Firmicutes: ↑ Gemmiger ↑ Oscillospira ↑ Roseburia ↑ Dialister Synergistota: ↑ Claocibacillus |
Studies | Population | Intervention | Outcome(s) | |
---|---|---|---|---|
Characteristics | OSCC | Viruses | ||
de Lima, 2019 Crit Rev Oncog Studies: n.1 MD n.1 Meta-analysis Critically low quality No funding | Sample size: n.12 of case/n.47 of the healthy control group/n.12 of the OPMD control group Mean age: MD Gender ratio: MD Country: MD Risk factors for OSCC: MD History of OPMD: MD Time to OPMD onset: MD Previous history of malignancies: MD Other comorbidities: MD Other ongoing treatments: MD | Macroscopic features: MD Location: MD Staging: MD Grading: MD Microscopic features: MD First diagnosis: MD Time to onset: MD Chemotherapy: MD Radiotherapy: MD | Sample(s): n.12 Method(s) of sample collection: Saliva test n.12 Microorganisms identification technique: Nested PCR n.12 Target: EBV n.12 | EBV: n.7 (prevalence 58.3%) of OSCC case ↑ Than the healthy control group (prevalence 40.4%) and the OPMD control group (prevalence 41.7%) Genotype(s) of virus detected: MD |
Mallika, 2020 Trans Cancer Res Studies: n.11 CCS n.11 No meta-analysis Moderate quality No funding | Sample size: MD Mean age: MD Gender ratio: MD Country: MD Risk factors for OSCC: MD History of OPMD: MD Time to OPMD onset: MD Previous history of malignancies: MD Other comorbidities: MD Other ongoing treatments: MD | Macroscopic features: MD Location: MD Staging: MD Grading: MD Microscopic features: MD First diagnosis: MD Time to onset: MD Chemotherapy: MD Radiotherapy: MD | Sample(s): MD Method(s) of sample collection: Saliva test n.MD Oral swab n.MD Microorganisms identification technique: Culture n.MD VIDAS EBV kit n.MD QIAamp Mini Elute Virus Spin kit Digene HPV genotyping RH test n.MD PCR n.MD Spectrophotometer n.MD Gas chromatography n.MD IHC n.MD Target: MD | HPV: MD n./% of OSCC case Genotype(s) of HPV detected: ↓ HPV-16 n.MD ↓ HPV-18: NS n.MD EBV: NS Than the healthy control group ↑ EBV |
Rapado-González, 2020 J Clin Med Studies: n.12 CCS n.12 Meta-analysis High quality No funding | Sample size: n.658 of case/n.2210 of the healthy control group Mean age: MD Gender ratio: MD Country: Sweden n.85 Iran n.22 India n.313 USA n.109 France n.22 Canada n.72 Pakistan n.35 Risk factors for OSCC: MD History of OPMD: MD Time to OPMD onset: MD Previous history of malignancies: MD Other comorbidities: MD Other ongoing treatments: MD | Macroscopic features: MD Location: MD Staging: MD Grading: MD Microscopic features: MD First diagnosis: MD Time to onset: MD Chemotherapy: MD Radiotherapy: MD | Sample(s): n.658 Method(s) of sample collection: Oral rinse n.286 Saliva test n.372 Microorganisms identification technique: PCR: n.385 qPCR: n.144 Nested PCR: n.44 Nested PCR and DNA sequencing: n.85 Target: HPV-6, -10, -11, -13, -26, -31, -32, -33, -34, -35, -39, -40, -42, -44, -45, -51, -52, -53, -54, -56, -58, -59, -61, -62, -66, -67, -68, -69, -70, -71, -72, -73, -76, -81, -82, -83, -84, -89 genome: n.538 of HR-HPV/ n.107 of LR-HPV HPV-16 genome: n.507 HPV-18 genome: n.254 | ↑ HPV: n.271 of OSCC case p < 0.01 Genotype(s) of virus detected: HPV-16: n.57 p < 0.02 HPV-18: n.24 NSS N/D HR-HPV: n.164 p < 0.01 N/D LR-HPV: n.8 NSS |
Shaikh, 2015 Cancer Epidemiol Studies: n.1 N/D n.1 Meta-analysis Low quality This study was supported by the Griffith University of Australia. | Sample size: n.34 of case/n.396 of control Mean age: MD Gender ratio: MD Country: India n.34 Risk factors for OSCC: History of OPMD: MD Time to OPMD onset: MD Previous history of malignancies: MD Other comorbidities: MD Other ongoing treatments: MD | Macroscopic features: MD Location: MD Staging: MD Grading: MD Microscopic features: MD First diagnosis: MD Time to onset: MD Chemotherapy: MD Radiotherapy: MD | Sample(s): n.34 Method(s) of sample collection: Saliva test Microorganisms identification technique: PCR n.34 Target: HPV genome: n.34 | ↑ HPV: n.24 (prevalence 70.60%) of OSCC case Genotype(s) of HPV detected: HPV-16: n.MD HPV-18: n.MD |
Studies | Population | Intervention | Outcome(s) | |
---|---|---|---|---|
Characteristics | OSCC | Fungi | ||
Ayuningtyas, 2022 Pathophysiology Studies: n.4 CCS n.1 CSS n.3 No meta-analysis Critically low quality No funding | Sample size: n.301 of case/n.408 of the healthy control group/n.200 of the OPMD control group/n.6 of other malignancy control group Mean age: MD Gender ratio: MD Country: India n.97 Australia n.104 Finland n.100 Risk factors for OSCC: MD History of OPMD: MD Time to OPMD onset: MD Previous history of malignancies: MD Other comorbidities: MD Other ongoing treatments: MD | Macroscopic features: MD Location: MD Staging: MD Grading: MD Microscopic features: MD First diagnosis: MD Time to onset: MD Chemotherapy: MD Radiotherapy: MD | Sample(s): n.301 Method(s) of sample collection: Oral rinse n.104 Saliva test n.197 Microorganisms identification technique: Culture n.301 RT-PCR n.52 Target: MD | Than the healthy control group ↑ Candida: n.MD of OSCC case Than the OPMD control group ↑ Candida: n.MD of OSCC case Type(s) of fungi species detected: MD |
Mallika, 2020 Trans Cancer Res Studies: n.11 CCS n.11 No meta-analysis Moderate quality No funding | Sample size: MD Mean age: MD Gender ratio: MD Country: MD Risk factors for OSCC: MD History of OPMD: MD Time to OPMD onset: MD Previous history of malignancies: MD Other comorbidities: MD Other ongoing treatments: MD | Macroscopic features: MD Location: MD Staging: MD Grading: MD Microscopic features: MD First diagnosis: MD Time to onset: MD Chemotherapy: MD Radiotherapy: MD | Sample(s): MD Method(s) of sample collection: Saliva test n.MD Oral swab n.MD Microorganisms identification technique: Culture n.MD VIDAS EBV kit n.MD QIAamp Mini Elute Virus Spin kit Digene HPV genotyping RH test n.MD PCR n.MD Spectrophotometer n.MD Gas chromatography n.MD IHC n.MD Target: MD | Than the healthy control group ↑ Candida: MD n./% of OSCC case Type(s) of fungi species detected: MD |
Shen, 2023 Arch Oral Biol Studies: n.5 CCS n.5 No meta-analysis High quality This study was supported by the China-Japan Friendship Hospital Research Project Foundation [grant number 2020-1-QN-2]. | Sample size: n.230 of case/n.219 of the healthy control group/n.205 of the OPMD control group Mean age: N/D Gender ratio: 27M/203MD Country: USA n.18 India n.31 Taiwan n.N/D China n.29+N/D Risk factors for OSCC: MD History of OPMD: MD Time to OPMD onset: MD Previous history of malignancies: MD Other comorbidities: MD Other ongoing treatments: MD | Macroscopic features: MD Location: MD Staging: MD Grading: MD Microscopic features: MD First diagnosis: MD Time to onset: MD Chemotherapy: MD Radiotherapy: MD | Sample(s): n.230 Method(s) of sample collection: Saliva test n.152 Oral rinse n.49 Oral swab, plaque swab, and saliva test n.29 Microorganisms identification technique: Modified QIAGEN DNA n.18 Gene Fix Saliva Prep 2 Isolation kit n.31 QIAamp DNA Blood mini kit n.124 QIAamp DNA Mini kit n.21 HiPure tissue and blood DNA kit n.32 Target: 16s rRNA: n.177 V4 region n.124 V3-V4 region n.103 ITS1 n.32 | Than the healthy and the OPMD control group ↑ Candida: n.29 of OSCC case ↑ Aspergillus: MD n./% of OSCC case ↑ Acremonium: MD n./% of OSCC case ↓ Morchella: MD n./% of OSCC case |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Di Spirito, F.; Di Palo, M.P.; Folliero, V.; Cannatà, D.; Franci, G.; Martina, S.; Amato, M. Oral Bacteria, Virus and Fungi in Saliva and Tissue Samples from Adult Subjects with Oral Squamous Cell Carcinoma: An Umbrella Review. Cancers 2023, 15, 5540. https://doi.org/10.3390/cancers15235540
Di Spirito F, Di Palo MP, Folliero V, Cannatà D, Franci G, Martina S, Amato M. Oral Bacteria, Virus and Fungi in Saliva and Tissue Samples from Adult Subjects with Oral Squamous Cell Carcinoma: An Umbrella Review. Cancers. 2023; 15(23):5540. https://doi.org/10.3390/cancers15235540
Chicago/Turabian StyleDi Spirito, Federica, Maria Pia Di Palo, Veronica Folliero, Davide Cannatà, Gianluigi Franci, Stefano Martina, and Massimo Amato. 2023. "Oral Bacteria, Virus and Fungi in Saliva and Tissue Samples from Adult Subjects with Oral Squamous Cell Carcinoma: An Umbrella Review" Cancers 15, no. 23: 5540. https://doi.org/10.3390/cancers15235540
APA StyleDi Spirito, F., Di Palo, M. P., Folliero, V., Cannatà, D., Franci, G., Martina, S., & Amato, M. (2023). Oral Bacteria, Virus and Fungi in Saliva and Tissue Samples from Adult Subjects with Oral Squamous Cell Carcinoma: An Umbrella Review. Cancers, 15(23), 5540. https://doi.org/10.3390/cancers15235540