Understanding the Role of Radio-Sensitizing Nanoparticles in Enhancing Pathologic Response in Soft Tissue Sarcomas
Abstract
:Simple Summary
Abstract
1. Introduction
2. Management of Soft Tissue Sarcomas
3. Soft Tissue Sarcoma Pathological Response in Radiotherapy
4. Physical and Radiobiological Basis of Using Nanoparticle in Radiotherapy
5. Characteristics of Nanoparticle Radio-Sensitizers
6. Soft Tissue Sarcoma and Nanoparticle Radio-Sensitizers
6.1. Preclinical Studies
6.2. Clinical Studies
7. Discussion and Future Perspectives
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gamboa, A.C.; Gronchi, A.; Cardona, K. Soft-tissue Sarcoma in Adults: An Update on the Current State of Histiotype-specific Management in an Era of Personalized Medicine. CA Cancer J. Clin. 2020, 70, 200–229. [Google Scholar] [CrossRef]
- Clark, M.A.; Fisher, C.; Judson, I.; Thomas, J.M. Soft-Tissue Sarcomas in Adults. N. Engl. J. Med. 2005, 353, 701–711. [Google Scholar] [CrossRef]
- National Comprehensive Cancer Network (NCCN) Clinical Practice Guidelines in Oncology. Soft Tissue Sarcoma (Version 2). 2023. Available online: https://www.nccn.org/professionals/physician_gls/pdf/sarcoma.pdf (accessed on 11 November 2023).
- Dangoor, A.; Seddon, B.; Gerrand, C.; Grimer, R.; Whelan, J.; Judson, I. UK Guidelines for the Management of Soft Tissue Sarcomas. Clin. Sarcoma Res. 2016, 6, 20. [Google Scholar] [CrossRef]
- Gronchi, A.; Miah, A.B.; Dei Tos, A.P.; Abecassis, N.; Bajpai, J.; Bauer, S.; Biagini, R.; Bielack, S.; Blay, J.Y.; Bolle, S.; et al. Soft Tissue and Visceral Sarcomas: ESMO–EURACAN–GENTURIS Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2021, 32, 1348–1365. [Google Scholar] [CrossRef]
- Dei Tos, A.P.; Bonvalot, S.; Haas, R. Evolution in the Management of Soft Tissue Sarcoma: Classification, Surgery and Use of Radiotherapy. Expert Rev. Anticancer Ther. 2020, 20, 3–13. [Google Scholar] [CrossRef]
- Mendenhall, W.M.; Indelicato, D.J.; Scarborough, M.T.; Zlotecki, R.A.; Gibbs, C.P.; Mendenhall, N.P.; Mendenhall, C.M.; Enneking, W.F. The Management of Adult Soft Tissue Sarcomas. Am. J. Clin. Oncol. Cancer Clin. Trials 2009, 32, 436–442. [Google Scholar] [CrossRef]
- Blay, J.Y.; Soibinet, P.; Penel, N.; Bompas, E.; Duffaud, F.; Stoeckle, E.; Mir, O.; Adam, J.; Chevreau, C.; Bonvalot, S.; et al. Improved Survival Using Specialized Multidisciplinary Board in Sarcoma Patients. Ann. Oncol. 2017, 28, 2852–2859. [Google Scholar] [CrossRef]
- Blay, J.Y.; Honoré, C.; Stoeckle, E.; Meeus, P.; Jafari, M.; Gouin, F.; Anract, P.; Ferron, G.; Rochwerger, A.; Ropars, M.; et al. Surgery in Reference Centers Improves Survival of Sarcoma Patients: A Nationwide Study. Ann. Oncol. 2019, 30, 1143–1153. [Google Scholar] [CrossRef]
- Salerno, K.E.; Alektiar, K.M.; Baldini, E.H.; Bedi, M.; Bishop, A.J.; Bradfield, L.; Chung, P.; DeLaney, T.F.; Folpe, A.; Kane, J.M.; et al. Radiation Therapy for Treatment of Soft Tissue Sarcoma in Adults: Executive Summary of an ASTRO Clinical Practice Guideline. Pract. Radiat. Oncol. 2021, 11, 339–351. [Google Scholar] [CrossRef]
- Yang, J.C.; Chang, A.E.; Baker, A.R.; Sindelar, W.F.; Danforth, D.N.; Topalian, S.L.; DeLaney, T.; Glatstein, E.; Steinberg, S.M.; Merino, M.J.; et al. Randomized Prospective Study of the Benefit of Adjuvant Radiation Therapy in the Treatment of Soft Tissue Sarcomas of the Extremity. J. Clin. Oncol. 1998, 16, 197–203. [Google Scholar] [CrossRef]
- O’Sullivan, B.; Davis, A.M.; Turcotte, R.; Bell, R.; Catton, C.; Chabot, P.; Wunder, J.; Kandel, R.; Goddard, K.; Sadura, A.; et al. Preoperative versus Postoperative Radiotherapy in Soft-Tissue Sarcoma of the Limbs: A Randomised Trial. Lancet 2002, 359, 2235–2241. [Google Scholar] [CrossRef]
- Wang, D.; Abrams, R.A. Radiotherapy for Soft Tissue Sarcoma: 50 Years of Change and Improvement. Am. Soc. Clin. Oncol. Educ. B 2014, 34, 244–251. [Google Scholar] [CrossRef]
- Kungwengwe, G.; Clancy, R.; Vass, J.; Slade, R.; Sandhar, S.; Dobbs, T.D.; Bragg, T.W.H. Preoperative versus Post-Operative Radiotherapy for Extremity Soft Tissue Sarcoma: A Systematic Review and Meta-Analysis of Long-Term Survival. J. Plast. Reconstr. Aesthetic Surg. 2021, 74, 2443–2457. [Google Scholar] [CrossRef]
- Cammelli, S.; Cortesi, A.; Buwenge, M.; Zamagni, A.; Ferioli, M.; Ghigi, G.; Romeo, A.; Morganti, A.G. The Role of Radiotherapy in Adult Soft Tissues Sarcoma of the Extremities. Eur. J. Orthop. Surg. Traumatol. 2021, 31, 1583–1596. [Google Scholar] [CrossRef]
- American Cancer Society. Survival Rates for Soft Tissue Sarcoma. Available online: https://www.cancer.org/cancer/types/soft-tissue-sarcoma/detection-diagnosis-staging/survival-rates.html (accessed on 18 September 2023).
- ISO/TR 18401; Nanotechnologies—Plain Language Explanation of Selected Terms from the ISO/IEC 80004 Series. International Organization for Standardization: Geneva, Switzerland, 2017.
- Jing, Z.; Du, Q.; Zhang, X.; Zhang, Y. Nanomedicines and Nanomaterials for Cancer Therapy: Progress, Challenge and Perspectives. Chem. Eng. J. 2022, 446, 137147. [Google Scholar] [CrossRef]
- Zhou, J.; Rao, L.; Yu, G.; Cook, T.R.; Chen, X.; Huang, F. Supramolecular Cancer Nanotheranostics. Chem. Soc. Rev. 2021, 50, 2839–2891. [Google Scholar] [CrossRef]
- Wu, N.; Tu, Y.; Fan, G.; Ding, J.; Luo, J.; Wang, W.; Zhang, C.; Yuan, C.; Zhang, H.; Chen, P.; et al. Enhanced Photodynamic Therapy/Photothermo Therapy for Nasopharyngeal Carcinoma via a Tumour Microenvironment-Responsive Self-Oxygenated Drug Delivery System. Asian J. Pharm. Sci. 2022, 17, 253–267. [Google Scholar] [CrossRef]
- Anik, M.I.; Mahmud, N.; Al Masud, A.; Hasan, M. Gold Nanoparticles (GNPs) in Biomedical and Clinical Applications: A Review. Nano Sel. 2022, 3, 792–828. [Google Scholar] [CrossRef]
- Bidram, E.; Esmaeili, Y.; Amini, A.; Sartorius, R.; Tay, F.R.; Shariati, L.; Makvandi, P. Nanobased Platforms for Diagnosis and Treatment of COVID-19: From Benchtop to Bedside. ACS Biomater. Sci. Eng. 2021, 7, 2150–2176. [Google Scholar] [CrossRef]
- Chavda, V.P.; Balar, P.C.; Patel, S.B. Nanotheranostics-Based Management of Head and Neck Cancer. Nanotheranostics 2023, 7, 202–209. [Google Scholar] [CrossRef]
- Baetke, S.C.; Lammers, T.; Kiessling, F. Applications of Nanoparticles for Diagnosis and Therapy of Cancer. Br. J. Radiol. 2015, 88, 20150207. [Google Scholar] [CrossRef]
- Butterworth, K.T.; McMahon, S.J.; Currell, F.J.; Prise, K.M. Physical Basis and Biological Mechanisms of Gold Nanoparticle Radiosensitization. Nanoscale 2012, 4, 4830–4838. [Google Scholar] [CrossRef]
- Kuncic, Z.; Lacombe, S. Nanoparticle Radio-Enhancement: Principles, Progress and Application to Cancer Treatment. Phys. Med. Biol. 2018, 63, 02TR01. [Google Scholar] [CrossRef]
- Schuemann, J.; Bagley, A.F.; Berbeco, R.; Bromma, K.; Butterworth, K.T.; Byrne, H.L.; Chithrani, B.D.; Cho, S.H.; Cook, J.R.; Favaudon, V.; et al. Roadmap for Metal Nanoparticles in Radiation Therapy: Current Status, Translational Challenges, and Future Directions. Phys. Med. Biol. 2020, 65, 21RM02. [Google Scholar] [CrossRef]
- Rosenberg, S.A.; Tepper, J.; Glatstein, E.; Costa, J.; Baker, A.; Brennam, M.; Demoss, E.V.; Seipp, C.; Sindelar, W.F.; Sugarbaker, P.; et al. The Treatment of Soft-Tissue Sarcomas of the Extremities. Ann. Surg. 1982, 196, 305–315. [Google Scholar] [CrossRef]
- Albertsmeier, M.; Rauch, A.; Roeder, F.; Hasenhütl, S.; Pratschke, S.; Kirschneck, M.; Gronchi, A.; Jebsen, N.L.; Cassier, P.A.; Sargos, P.; et al. External Beam Radiation Therapy for Resectable Soft Tissue Sarcoma: A Systematic Review and Meta-Analysis. Ann. Surg. Oncol. 2018, 25, 754–767. [Google Scholar] [CrossRef]
- Bonvalot, S.; Gronchi, A.; Le Péchoux, C.; Swallow, C.J.; Strauss, D.; Meeus, P.; van Coevorden, F.; Stoldt, S.; Stoeckle, E.; Rutkowski, P.; et al. Preoperative Radiotherapy plus Surgery versus Surgery Alone for Patients with Primary Retroperitoneal Sarcoma (EORTC-62092: STRASS): A Multicentre, Open-Label, Randomised, Phase 3 Trial. Lancet Oncol. 2020, 21, 1366–1377. [Google Scholar] [CrossRef]
- Haas, R.L.M.; Miah, A.B.; LePechoux, C.; DeLaney, T.F.; Baldini, E.H.; Alektiar, K.; O’Sullivan, B. Preoperative Radiotherapy for Extremity Soft Tissue Sarcoma; Past, Present and Future Perspectives on Dose Fractionation Regimens and Combined Modality Strategies. Radiother. Oncol. 2016, 119, 14–21. [Google Scholar] [CrossRef]
- Alektiar, K.M.; Brennan, M.F.; Healey, J.H.; Singer, S. Impact of Intensity-Modulated Radiation Therapy on Local Control in Primary Soft-Tissue Sarcoma of the Extremity. J. Clin. Oncol. 2008, 26, 3440–3444. [Google Scholar] [CrossRef]
- O’Sullivan, B.; Griffin, A.M.; Dickie, C.I.; Sharpe, M.B.; Chung, P.W.M.; Catton, C.N.; Ferguson, P.C.; Wunder, J.S.; Deheshi, B.M.; White, L.M.; et al. Phase 2 Study of Preoperative Image-Guided Intensity-Modulated Radiation Therapy to Reduce Wound and Combined Modality Morbidities in Lower Extremity Soft Tissue Sarcoma. Cancer 2013, 119, 1878–1884. [Google Scholar] [CrossRef]
- Alektiar, K.M.; Brennan, M.F.; Singer, S. Local Control Comparison of Adjuvant Brachytherapy to Intensity-Modulated Radiotherapy in Primary High-Grade Sarcoma of the Extremity. Cancer 2011, 117, 3229–3234. [Google Scholar] [CrossRef]
- Li, X.A.; Chen, X.; Zhang, Q.; Kirsch, D.G.; Petersen, I.; DeLaney, T.F.; Freeman, C.R.; Trotti, A.; Hitchcock, Y.; Bedi, M.; et al. Margin Reduction from Image Guided Radiation Therapy for Soft Tissue Sarcoma: Secondary Analysis of Radiation Therapy Oncology Group 0630 Results. Pract. Radiat. Oncol. 2016, 6, e135–e140. [Google Scholar] [CrossRef] [PubMed]
- RTOG-0630; A Phase II Trial of Image Guided Preoperative Radiotherapy for Primary Soft Tissue Sarcomas of the Extremity. Radiation Therapy Oncology Group: Philadelphia, PA, USA, 2014.
- Shah, D.; Borys, D.; Martinez, S.R.; Li, C.-S.; Tamurian, R.M.; Bold, R.J.; Monjazeb, A.; Canter, R.J. Complete Pathologic Response to Neoadjuvant Radiotherapy Is Predictive of Oncological Outcome in Patients with Soft Tissue Sarcoma. Anticancer Res. 2012, 32, 3911–3915. [Google Scholar]
- Eilber, F.C.; Rosen, G.; Eckardt, J.; Forscher, C.; Nelson, S.D.; Selch, M.; Dorey, F.; Eilber, F.R. Treatment-Induced Pathologic Necrosis: A Predictor of Local Recurrence and Survival in Patients Receiving Neoadjuvant Therapy for High-Grade Extremity Soft Tissue Sarcomas. J. Clin. Oncol. 2001, 19, 3203–3209. [Google Scholar] [CrossRef]
- Salah, S.; Lewin, J.; Amir, E.; Abdul Razak, A. Tumor Necrosis and Clinical Outcomes Following Neoadjuvant Therapy in Soft Tissue Sarcoma: A Systematic Review and Meta-Analysis. Cancer Treat. Rev. 2018, 69, 1–10. [Google Scholar] [CrossRef]
- Bonvalot, S.; Wunder, J.; Gronchi, A.; Broto, J.M.; Turcotte, R.; Rastrelli, M.; Papai, Z.; Radaelli, S.; Lindner, L.H.; Shumelinsky, F.; et al. Complete Pathological Response to Neoadjuvant Treatment Is Associated with Better Survival Outcomes in Patients with Soft Tissue Sarcoma: Results of a Retrospective Multicenter Study. Eur. J. Surg. Oncol. 2021, 47, 2166–2172. [Google Scholar] [CrossRef]
- Schaefer, I.M.; Hornick, J.L.; Barysauskas, C.M.; Raut, C.P.; Patel, S.A.; Royce, T.J.; Fletcher, C.D.M.; Baldini, E.H. Histologic Appearance After Preoperative Radiation Therapy for Soft Tissue Sarcoma: Assessment of the European Organization for Research and Treatment of Cancer–Soft Tissue and Bone Sarcoma Group Response Score. Int. J. Radiat. Oncol. Biol. Phys. 2017, 98, 375–383. [Google Scholar] [CrossRef]
- Podgorsak, E.B. (Ed.) Radiation Physics for Medical Physicists, 3rd ed.; Graduate Texts in Physics; Springer International Publishing: Cham, Switzerland, 2016; ISBN 978-3-319-25380-0. [Google Scholar]
- Vlastou, E.; Pantelis, E.; Efstathopoulos, E.P.; Karaiskos, P.; Kouloulias, V.; Platoni, K. Quantification of Nanoscale Dose Enhancement in Gold Nanoparticle-Aided External Photon Beam Radiotherapy. Cancers 2022, 14, 2167. [Google Scholar] [CrossRef]
- Joh, D.Y.; Kao, G.D.; Murty, S.; Stangl, M.; Sun, L.; Zaki, A.A.; Xu, X.; Hahn, S.M.; Tsourkas, A.; Dorsey, J.F. Theranostic Gold Nanoparticles Modified for Durable Systemic Circulation Effectively and Safely Enhance the Radiation Therapy of Human Sarcoma Cells and Tumors. Transl. Oncol. 2013, 6, 722–731. [Google Scholar] [CrossRef]
- Maggiorella, L.; Barouch, G.; Devaux, C.; Pottier, A.; Deutsch, E.; Bourhis, J.; Borghi, E.; Levy, L. Nanoscale Radiotherapy with Hafnium Oxide Nanoparticles. Futur. Oncol. 2012, 8, 1167–1181. [Google Scholar] [CrossRef]
- Bonvalot, S.; Ecile Le Pechoux, C.; De Baere, T.; Kantor, G.; Buy, X.; Stoeckle, E.; Terrier, P.; Sargos, P.; Coindre, J.M.; Lassau, N.; et al. Cancer Therapy: Clinical First-in-Human Study Testing a New Radioenhancer Using Nanoparticles (NBTXR3) Activated by Radiation Therapy in Patients with Locally Advanced Soft Tissue Sarcomas. Clin. Cancer Res 2017, 23, 908–917. [Google Scholar] [CrossRef]
- Bonvalot, S.; Rutkowski, P.; Thariat, J.O.; Carrere, S.; Sunyach, M.P.; Saada, E.; Ágoston, P.; Hong, A.; Mervoyer, A.; Rastrelli, M.; et al. Act.in.Sarc: An International Randomized Phase III Trial Evaluating Efficacy and Safety of First-in-Class NBTXR3 Hafnium Oxide Nanoparticles Activated By Preoperative Radiotherapy in Locally Advanced Soft Tissue Sarcoma. Int. J. Radiat. Oncol. 2018, 102, 1606. [Google Scholar] [CrossRef]
- Bonvalot, S.; Rutkowski, P.L.; Thariat, J.; Carrère, S.; Ducassou, A.; Sunyach, M.-P.; Agoston, P.; Hong, A.; Mervoyer, A.; Rastrelli, M.; et al. NBTXR3, a First-in-Class Radioenhancer Hafnium Oxide Nanoparticle, plus Radiotherapy versus Radiotherapy Alone in Patients with Locally Advanced Soft-Tissue Sarcoma (Act.In.Sarc): A Multicentre, Phase 2–3, Randomised, Controlled Trial. Lancet Oncol. 2019, 20, 1148–1159. [Google Scholar] [CrossRef]
- Bonvalot, S.; Rutkowski, P.L.; Thariat, J.; Carrère, S.; Ducassou, A.; Sunyach, M.P.; Agoston, P.; Hong, A.M.; Mervoyer, A.; Rastrelli, M.; et al. Final Safety and HRQoL Results of the Phase 2/3 Act.In.Sarc Study With Preoperative NBTXR3 Plus Radiation Therapy Versus Radiation Therapy in Locally Advanced Soft-Tissue Sarcoma. Int. J. Radiat. Oncol. Biol. Phys. 2022, 114, 422–432. [Google Scholar] [CrossRef]
- Bonvalot, S.; Levy, A.; Terrier, P.; Tzanis, D.; Bellefqih, S.; Le Cesne, A.; Le Péchoux, C. Primary Extremity Soft Tissue Sarcomas: Does Local Control Impact Survival? Ann. Surg. Oncol. 2017, 24, 194–201. [Google Scholar] [CrossRef]
- Grabellus, F.; Podleska, L.E.; Sheu, S.Y.; Bauer, S.; Pöttgen, C.; Kloeters, C.; Hoiczyk, M.; Lauenstein, T.C.; Schmid, K.W.; Taeger, G. Neoadjuvant Treatment Improves Capsular Integrity and the Width of the Fibrous Capsule of High-Grade Soft-Tissue Sarcomas. Eur. J. Surg. Oncol. 2013, 39, 61–67. [Google Scholar] [CrossRef]
- Chuang, Y.C.; Wu, P.H.; Shen, Y.A.; Kuo, C.C.; Wang, W.J.; Chen, Y.C.; Lee, H.L.; Chiou, J.F. Recent Advances in Metal-Based NanoEnhancers for Particle Therapy. Nanomaterials 2023, 13, 1011. [Google Scholar] [CrossRef]
- Hoffmann, C.; Calugaru, V.; Borcoman, E.; Moreno, V.; Calvo, E.; Liem, X.; Salas, S.; Doger, B.; Jouffroy, T.; Mirabel, X.; et al. Phase I Dose-Escalation Study of NBTXR3 Activated by Intensity-Modulated Radiation Therapy in Elderly Patients with Locally Advanced Squamous Cell Carcinoma of the Oral Cavity or Oropharynx. Eur. J. Cancer 2021, 146, 135–144. [Google Scholar] [CrossRef]
- Yom, S.S.; Takacsi-Nagy, Z.; Liem, X.; Salas, S.; Debard, A.; Finzi, L.; Vivar, O.I.; Farber, L.A.; Gogishvili, M.; Kristesashvili, G.; et al. NANORAY-312: A Phase III Pivotal Study of NBTXR3 Activated by Investigator’s Choice of Radiotherapy Alone or Radiotherapy in Combination with Cetuximab for Platinum-Based Chemotherapy-Ineligible Elderly Patients with Locally Advanced HNSCC. Int. J. Radiat. Oncol. 2022, 114, e313. [Google Scholar] [CrossRef]
- Siva, S.; MacManus, M.P.; Martin, R.F.; Martin, O.A. Abscopal Effects of Radiation Therapy: A Clinical Review for the Radiobiologist. Cancer Lett. 2015, 356, 82–90. [Google Scholar] [CrossRef]
- Hu, Y.; Paris, S.; Sahoo, N.; Bertolet, G.; Wang, Q.; Wang, Q.; Barsoumian, H.B.; Da Silva, J.; Huang, A.; Doss, D.J.; et al. Nanoparticle-Enhanced Proton Beam Immunoradiotherapy Drives Immune Activation and Durable Tumor Rejection. JCI Insight 2023, 8, e167749. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.; Frakes, J.M.; Niu, J.; Weiss, J.; Caudell, J.J.; Seiwert, T.Y.; Said, P.; Tyan, P.; Vivar, O.I.; Farber, L.A.; et al. Efficacy from the Ongoing Phase I Trial Study 1100 with NBTXR3 Activated by Radiotherapy in Combination with Nivolumab or Pembrolizumab in Patients with Locoregionally Recurrent or Metastatic HNSCC. J. Clin. Oncol. 2023, 41, 6038. [Google Scholar] [CrossRef]
- Satalkar, P.; Elger, B.S.; Hunziker, P.; Shaw, D. Challenges of Clinical Translation in Nanomedicine: A Qualitative Study. Nanomed. Nanotechnol. Biol. Med. 2016, 12, 893–900. [Google Scholar] [CrossRef] [PubMed]
Nanoparticle Characteristic | Relevance |
---|---|
Material composition/chemical structure |
|
Size |
|
Shape |
|
Surface properties |
|
Study Type [Refs.] | Nanoparticles Used/ Study Design | Main Findings |
---|---|---|
Preclinical [44] | 12 nm gold nanoparticles decorated with polyethylene glycol (P-GNPs). In vitro/in vivo experiments irradiating with low-energy X-ray beams. HT1080 fibrosarcoma and U2OS osteosarcoma human sarcoma cell lines. | RT + P-GNP increased the density of double-strand breaks (DSBs) 1.6 times compared to RT only. RT + P-GNP reduced clonogenic survival of tumor cells compared to RT only, with dose-enhancement ratios of 1.08 and 1.16 for the HT1080 and U2OS, respectively. Mice treated with RT + P-GNP exhibited significantly improved tumor regression, and long-term survival was observed in one third of the mice in this group compared to none in the RT only group. |
Preclinical [45] | NBTXR3 50 nm hafnium oxide. In vitro/in vivo experiments irradiating with high-energy photon beams HT1080 fibrosarcoma and A673. Ewing human sarcoma cell lines. | Broad persistence and dispersion of NBTXR3 in tumor cells, with little or no diffusion into the extracellular space. Marked decrease of the clonogenic surviving fraction of tumor cells in the RT + NBTXR3 group, with dose-enhancement factors of 1.4 and 1.8 for the 6 MV and Co-60 photon beams, respectively. Two-fold increase in tumor doubling time associated with tumor growth inhibition of 82% for RT + NBTXR3 group, versus 72% for RT only. Median survival time increased to 31 days for the RT + NBTXR3 group compared to 25 days for the RT only. |
Clinical, phase 1 first in human trial, [46] | NBTXR3 50 nm hafnium oxide. Preoperative RT (50 Gy in 25 fractions) of patients with histologically confirmed locally advanced soft tissue sarcoma of the extremity or trunk wall. Treated patients: 22. | A single intratumoral injection of NBTXR3, equivalent to 10% of the tumor volume, was feasible and well-tolerated with manageable toxicity. NBTXR3 remained stable within the tumor volume and did not leak to the surrounding tissue or bloodstream. RT + NBTXR3 showed median decrease in the maximal tumor diameter of 29% and a median change in volume of -40% |
Clinical phase 2/3 trial, [47,48,49] | NBTXR3 50 nm hafnium oxide. Preoperative RT of patients with histologically confirmed locally advanced soft tissue sarcoma of the extremity or trunk wall. Treated patients: 176. | RT + NBTXR3 group had a pCR of 19% versus 9% in the RT only group (p = 0.047). Higher percentage of R0 resections in the RT + NBTXR3 group (81%) compared to the RT only group (66%; p = 0.030) The 2-year cumulative rate of local recurrence was 12.0% and 7.1% in the RT + NBTXR3 and RT only group, respectively. The 2-year cumulative rate of distant recurrence was 33.3% and 26.2% in the RT + NBTXR3 and RT only group, respectively. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stergioula, A.; Pantelis, E.; Kontogeorgakos, V.; Lazaris, A.C.; Agrogiannis, G. Understanding the Role of Radio-Sensitizing Nanoparticles in Enhancing Pathologic Response in Soft Tissue Sarcomas. Cancers 2023, 15, 5572. https://doi.org/10.3390/cancers15235572
Stergioula A, Pantelis E, Kontogeorgakos V, Lazaris AC, Agrogiannis G. Understanding the Role of Radio-Sensitizing Nanoparticles in Enhancing Pathologic Response in Soft Tissue Sarcomas. Cancers. 2023; 15(23):5572. https://doi.org/10.3390/cancers15235572
Chicago/Turabian StyleStergioula, Anastasia, Evaggelos Pantelis, Vasileios Kontogeorgakos, Andreas C. Lazaris, and Georgios Agrogiannis. 2023. "Understanding the Role of Radio-Sensitizing Nanoparticles in Enhancing Pathologic Response in Soft Tissue Sarcomas" Cancers 15, no. 23: 5572. https://doi.org/10.3390/cancers15235572
APA StyleStergioula, A., Pantelis, E., Kontogeorgakos, V., Lazaris, A. C., & Agrogiannis, G. (2023). Understanding the Role of Radio-Sensitizing Nanoparticles in Enhancing Pathologic Response in Soft Tissue Sarcomas. Cancers, 15(23), 5572. https://doi.org/10.3390/cancers15235572