Claudin18.2 in Advanced Gastric Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. CLND Function in Normal and Tumor Tissues
3. CLDN18.2 Expression in Normal and Tumor Tissues
4. Prognostic Role of CLDN18.2 in AGC
5. Prevalence of CLDN18.2 and Biomarker Overlap in AGC
6. Clinical Trials of Anti-CLDN18.2 Agent for AGC or Solid Tumors
6.1. mAbs
6.1.1. Zolbetuximab (IMAB 362)
6.1.2. AB011
6.1.3. Osemitamab (TST001)
6.1.4. ASKB589
6.1.5. LM-102
6.1.6. ZL-1211
6.1.7. MIL93
6.1.8. DR30303
6.1.9. SPX-101
6.2. BsAbs/Bispecific T-Cell Engager (BiTE) Antibody
6.2.1. TJ-CD4B (ABL111)
6.2.2. AMG 910
6.2.3. Q-1802
6.2.4. SG1906
6.2.5. ASP2138
6.2.6. PT886
6.3. Peptide Fused to CLDN 18.2 Antibody
LB4330
6.4. ADCs
6.4.1. CMG901
6.4.2. SYSA1801
6.4.3. CPO102
6.4.4. LM-302
6.4.5. RC118
6.4.6. SOT102
6.4.7. TQB2103
6.5. CAR-T Cell Therapy
6.5.1. CAR-T Cell (CT041)
6.5.2. LCAR-C18S
6.5.3. LY011
6.5.4. IMC002
6.5.5. IMC008
6.5.6. KD-496
6.5.7. IBI345
6.5.8. LB1908
6.5.9. TAC01-CLDN18.2
6.6. mRNA-Based Therapy
BNT141
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
GC | Gastric cancer |
CLDN 18.2 | Claudin 18 isoform 2 |
AGC | Advanced GC |
GC | Gastric cancer |
GEJ | Gastroesophageal junction |
G/GEJ | Gastric/ Gastroesophageal junction |
HER2 | Epidermal growth factor receptor 2 |
CLDN | Claudin |
OS | Overall survival |
LAST 1/2 | Large tumor suppressor kinase 1/2 |
YAP1 | Yes-associated protein 1 |
ICI | Immune checkpoint inhibitor |
mAb | Monoclonal antibody |
PD-1 | Programmed cell death-1 |
GS | Genomically stable |
IHC | Immunohistochemistry |
PD-L1 | Programmed cell death-ligand 1 |
dMMR | Deficient mismatch repair |
MSI | Microsatellite instability |
FGFR2 | Fibroblast growth factor receptor 2 |
EBV | Epstein–Barr virus |
CPS | Combined positive score |
BsAbs | Bispecific antibodies |
CAR | Chimeric antigen receptor |
ADC | Antibody–drug conjugates |
IgG1 | Immunoglobulin G1 |
ADCC | Antibody-dependent cellular cytotoxicity |
CDC | Complement-dependent cytotoxicity |
ADCP | Antibody-dependent cellular phagocytosis |
DLT | Dose-limiting toxicity |
AE | Adverse event |
TRAEs | Treatment-related AEs |
PK | Pharmacokinetics |
PD | Pharmacodynamics |
ORR | Objective response rate |
DCR | Disease control rate |
PFS | Progression-free survival |
DoR | Duration of response |
mFOLFOX | Modified FOLFOX (5-FU + Leucovorin + Oxaliplatin) |
EOX | Epirubicin + Oxaliplatin + Capecitabine |
HR | Hazard ratio |
CI | Confidence interval |
CAPOX | Capecitabine + Oxaliplatin |
CR | Complete response |
PR | Partial Response |
SD | Stable disease |
FcγRIIIa | CD16a |
mRNA | Messenger ribonucleic acid |
RP2D | Recommended phase II dose |
MTD | Maximum tolerated dose |
VHH | Variable domain of Heavy chain of Heavy chain |
CDX | Cell-derived xenograft |
PDX | Patient-derived xenograft |
NK | Natural killer |
DCs | Dendritic cells |
BiTE | Bispecific T-cell engager |
AT-BOIN | Accelerated titration-Bayesian optimal interval |
TAA | Tumor-associated antigen |
MMAE | Monomethyl auristatin E |
Q3W | Once-every-3-weeks |
CRS | Cytokine release syndrome |
DNA | Deoxyribonucleic acid |
NKD2G | Natural killer group 2, member D |
TAC | T-cell antigen coupler |
mRNA | Messenger RNA |
RNase | Ribonuclease |
LNPs | Lipid nanoparticles |
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Yamada, Y. Present status and perspective of chemotherapy for patients with unresectable advanced or metastatic gastric cancer in Japan. Glob. Health. Med. 2020, 2, 156–163. [Google Scholar] [CrossRef]
- Bang, Y.J.; Van Cutsem, E.; Feyereislova, A.; Chung, H.C.; Shen, L.; Sawaki, A.; Lordick, F.; Ohtsu, A.; Omuro, Y.; Satoh, T.; et al. Trastuzumab in combination with chemotherapy versus chemotherapy alone for treatment of HER2-positive advanced gastric or gastro-oesophageal junction cancer (ToGA): A phase 3, open-label, randomised controlled trial. Lancet 2010, 376, 687–697. [Google Scholar] [CrossRef]
- Wilke, H.; Muro, K.; Van Cutsem, E.; Oh, S.C.; Bodoky, G.; Shimada, Y.; Hironaka, S.; Sugimoto, N.; Lipatov, O.; Kim, T.Y.; et al. Ramucirumab plus paclitaxel versus placebo plus paclitaxel in patients with previously treated advanced gastric or gastro-oesophageal junction adenocarcinoma (RAINBOW): A double-blind, randomised phase 3 trial. Lancet Oncol. 2014, 15, 1224–1235. [Google Scholar] [CrossRef]
- Kang, Y.K.; Boku, N.; Satoh, T.; Ryu, M.H.; Chao, Y.; Kato, K.; Chung, H.C.; Chen, J.S.; Muro, K.; Kang, W.K.; et al. Nivolumab in patients with advanced gastric or gastro-oesophageal junction cancer refractory to, or intolerant of, at least two previous chemotherapy regimens (ONO-4538-12, ATTRACTION-2): A randomised, double-blind, placebo-controlled, phase 3 trial. Lancet 2017, 390, 2461–2471. [Google Scholar] [CrossRef]
- Kang, Y.K.; Chen, L.T.; Ryu, M.H.; Oh, D.Y.; Oh, S.C.; Chung, H.C.; Lee, K.W.; Omori, T.; Shitara, K.; Sakuramoto, S.; et al. Nivolumab plus chemotherapy versus placebo plus chemotherapy in patients with HER2-negative, untreated, unresectable advanced or recurrent gastric or gastro-oesophageal junction cancer (ATTRACTION-4): A randomised, multicentre, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol. 2022, 23, 234–247. [Google Scholar] [CrossRef] [PubMed]
- Janjigian, Y.Y.; Shitara, K.; Moehler, M.; Garrido, M.; Salman, P.; Shen, L.; Wyrwicz, L.; Yamaguchi, K.; Skoczylas, T.; Campos Bragagnoli, A.; et al. First-line nivolumab plus chemotherapy versus chemotherapy alone for advanced gastric, gastro-oesophageal junction, and oesophageal adenocarcinoma (CheckMate 649): A randomised, open-label, phase 3 trial. Lancet 2021, 398, 27–40. [Google Scholar] [CrossRef]
- Shitara, K.; Lordick, F.; Bang, Y.J.; Enzinger, P.; Ilson, D.; Shah, M.A.; Van Cutsem, E.; Xu, R.H.; Aprile, G.; Xu, J.; et al. Zolbetuximab plus mFOLFOX6 in patients with CLDN18.2-positive, HER2-negative, untreated, locally advanced unresectable or metastatic gastric or gastro-oesophageal junction adenocarcinoma (SPOTLIGHT): A multicentre, randomised, double-blind, phase 3 trial. Lancet 2023, 401, 1655–1668. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.A.; Shitara, K.; Ajani, J.A.; Bang, Y.J.; Enzinger, P.; Ilson, D.; Lordick, F.; Van Cutsem, E.; Gallego Plazas, J.; Huang, J.; et al. Zolbetuximab plus CAPOX in CLDN18.2-positive gastric or gastroesophageal junction adenocarcinoma: The randomized, phase 3 GLOW trial. Nat. Med. 2023, 29, 2133–2141. [Google Scholar] [CrossRef]
- Krause, G.; Winkler, L.; Mueller, S.L.; Haseloff, R.F.; Piontek, J.; Blasig, I.E. Structure and function of claudins. Biochim. Biophys. Acta 2008, 1778, 631–645. [Google Scholar] [CrossRef]
- Bhat, A.A.; Syed, N.; Therachiyil, L.; Nisar, S.; Hashem, S.; Macha, M.A.; Yadav, S.K.; Krishnankutty, R.; Muralitharan, S.; Al-Naemi, H.; et al. Claudin-1, A Double-Edged Sword in Cancer. Int. J. Mol. Sci. 2020, 21, 569. [Google Scholar] [CrossRef]
- Günzel, D.; Yu, A.S.L. Claudins and the modulation of tight junction permeability. Physiol. Rev. 2013, 93, 525–569. [Google Scholar] [CrossRef]
- Morin, P.J. Claudin proteins in human cancer: Promising new targets for diagnosis and therapy. Cancer Res. 2005, 65, 9603–9606. [Google Scholar] [CrossRef]
- Swisshelm, K.; Macek, R.; Kubbies, M. Role of claudins in tumorigenesis. Adv. Drug Deliv. Rev. 2005, 57, 919–928. [Google Scholar] [CrossRef]
- Zavala-Zendejas, V.E.; Torres-Martinez, A.C.; Salas-Morales, B.; Fortoul, T.I.; Montaño, L.F.; Rendon-Huerta, E.P. Claudin-6, 7, or 9 overexpression in the human gastric adenocarcinoma cell line AGS increases its invasiveness, migration, and proliferation rate. Cancer Investig. 2011, 29, 1–11. [Google Scholar] [CrossRef]
- Yu, S.; Zhang, Y.; Li, Q.; Zhang, Z.; Zhao, G.; Xu, J. CLDN6 promotes tumor progression through the YAP1-snail1 axis in gastric cancer. Cell Death Dis. 2019, 10, 949. [Google Scholar] [CrossRef]
- Peppi, M.; Ghabriel, M.N. Tissue-specific expression of the tight junction proteins claudins and occludin in the rat salivary glands. J. Anat. 2004, 205, 257–266. [Google Scholar] [CrossRef]
- Niimi, T.; Nagashima, K.; Ward, J.M.; Minoo, P.; Zimonjic, D.B.; Popescu, N.C.; Kimura, S. claudin-18, a novel downstream target gene for the T/EBP/NKX2.1 homeodomain transcription factor, encodes lung- and stomach-specific isoforms through alternative splicing. Mol. Cell Biol. 2001, 21, 7380–7390. [Google Scholar] [CrossRef]
- Ohta, H.; Chiba, S.; Ebina, M.; Furuse, M.; Nukiwa, T. Altered expression of tight junction molecules in alveolar septa in lung injury and fibrosis. Am. J. Physiol. Lung Cell Mol. Physiol. 2012, 302, 193–205. [Google Scholar] [CrossRef] [PubMed]
- Schlingmann, B.; Molina, S.A.; Koval, M. Claudins: Gatekeepers of lung epithelial function. Semin. Cell Dev. Biol. 2015, 42, 47–57. [Google Scholar] [CrossRef] [PubMed]
- Koval, M. Claudin heterogeneity and control of lung tight junctions. Annu. Rev. Physiol. 2013, 75, 551–567. [Google Scholar] [CrossRef]
- Tsukita, S.; Furuse, M.; Itoh, M. Multifunctional strands in tight junctions. Nat. Rev. Mol. Cell Biol. 2001, 2, 285–293. [Google Scholar] [CrossRef] [PubMed]
- Sahin, U.; Koslowski, M.; Dhaene, K.; Usener, D.; Brandenburg, G.; Seitz, G.; Huber, C.; Türeci, O. Claudin-18 splice variant 2 is a pan-cancer target suitable for therapeutic antibody development. Clin. Cancer Res. 2008, 14, 7624–7634. [Google Scholar] [CrossRef]
- Soini, Y.; Takasawa, A.; Eskelinen, M.; Juvonen, P.; Kärjä, V.; Hasegawa, T.; Murata, M.; Tanaka, S.; Kojima, T.; Sawada, N. Expression of claudins 7 and 18 in pancreatic ductal adenocarcinoma: Association with features of differentiation. J. Clin. Pathol. 2012, 65, 431–436. [Google Scholar] [CrossRef]
- Cao, W.; Xing, H.; Li, Y.; Tian, W.; Song, Y.; Jiang, Z.; Yu, J. Claudin18.2 is a novel molecular biomarker for tumor-targeted immunotherapy. Biomark Res. 2022, 10, 38. [Google Scholar] [CrossRef]
- Zhang, W.H.; Zhang, S.Y.; Hou, Q.Q.; Qin, Y.; Chen, X.Z.; Zhou, Z.G.; Shu, Y.; Xu, H.; Hu, J.K. The Significance of the CLDN18-ARHGAP Fusion Gene in Gastric Cancer: A Systematic Review and Meta-Analysis. Front. Oncol. 2020, 10, 1214. [Google Scholar] [CrossRef]
- Moran, D.; Maurus, D.; Rohde, C.; Arozullah, A. Prevalence of CLDN18.2, HER2 and PD-L1 in gastric cancer samples. Ann. Oncol. 2018, 29, viii14–viii57. [Google Scholar] [CrossRef]
- The Cancer Genome Atlas Research Network. Comprehensive molecular characterization of gastric adenocarcinoma. Nature 2014, 513, 202–209. [Google Scholar] [CrossRef]
- Sahin, U.; Türeci, Ö.; Manikhas, G.; Lordick, F.; Rusyn, A.; Vynnychenko, I.; Dudov, A.; Bazin, I.; Bondarenko, I.; Melichar, B. FAST: A randomised phase II study of zolbetuximab (IMAB362) plus EOX versus EOX alone for first-line treatment of advanced CLDN18.2-positive gastric and gastro-oesophageal adenocarcinoma. Ann. Oncol. 2021, 32, 609–619. [Google Scholar] [CrossRef] [PubMed]
- Sanada, Y.; Oue, N.; Mitani, Y.; Yoshida, K.; Nakayama, H.; Yasui, W. Down-regulation of the claudin-18 gene, identified through serial analysis of gene expression data analysis, in gastric cancer with an intestinal phenotype. J. Pathol. 2006, 208, 633–642. [Google Scholar] [CrossRef]
- Jun, K.H.; Kim, J.H.; Jung, J.H.; Choi, H.J.; Chin, H.M. Expression of claudin-7 and loss of claudin-18 correlate with poor prognosis in gastric cancer. Int. J. Surg. 2014, 12, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Wang, Y.; Chen, J.; Wang, Y.; Pang, C.; Liang, C.; Yuan, L.; Ma, Y. CLDN18.2 expression and its impact on prognosis and the immune microenvironment in gastric cancer. BMC Gastroenterol. 2023, 23, 283. [Google Scholar] [CrossRef]
- Arnold, A.; Daum, S.; von Winterfeld, M.; Berg, E.; Hummel, M.; Rau, B.; Stein, U.; Treese, C. Prognostic impact of Claudin 18.2 in gastric and esophageal adenocarcinomas. Clin. Transl. Oncol. 2020, 22, 2357–2363. [Google Scholar] [CrossRef]
- Dottermusch, M.; Krüger, S.; Behrens, H.M.; Halske, C.; Röcken, C. Expression of the potential therapeutic target claudin-18.2 is frequently decreased in gastric cancer: Results from a large Caucasian cohort study. Virchows Arch. 2019, 475, 563–571. [Google Scholar] [CrossRef]
- Wainberg, Z.A.; Enzinger, P.C.; Kang, Y.K.; Qin, S.; Yamaguchi, K.; Kim, I.H.; Saeed, A.; Oh, S.C.; Li, J.; Turk, H.M.; et al. Bemarituzumab in patients with FGFR2b-selected gastric or gastro-oesophageal junction adenocarcinoma (FIGHT): A randomised, double-blind, placebo-controlled, phase 2 study. Lancet Oncol. 2022, 23, 1430–1440. [Google Scholar] [CrossRef]
- Gordon, A.; Johnston, E.; Lau, D.K.; Starling, N. Targeting FGFR2 Positive Gastroesophageal Cancer: Current and Clinical Developments. Oncol. Targets Ther. 2022, 15, 1183–1196. [Google Scholar] [CrossRef]
- Klempner, S.J.; Janjigian, Y.Y.; Wainberg, Z.A. Claudin18.who? Examining biomarker overlap and outcomes in claudin18.2-positive gastroesophageal adenocarcinomas. ESMO Open 2023, 8, 100778. [Google Scholar] [CrossRef]
- Jia, K.; Chen, Y.; Sun, Y.; Hu, Y.; Jiao, L.; Ma, J.; Yuan, J.; Qi, C.; Li, Y.; Gong, J.; et al. Multiplex immunohistochemistry defines the tumor immune microenvironment and immunotherapeutic outcome in CLDN18.2-positive gastric cancer. BMC Med. 2022, 20, 223. [Google Scholar] [CrossRef]
- Pellino, A.; Brignola, S.; Riello, E.; Niero, M.; Murgioni, S.; Guido, M.; Nappo, F.; Businello, G.; Sbaraglia, M.; Bergamo, F.; et al. Association of CLDN18 Protein Expression with Clinicopathological Features and Prognosis in Advanced Gastric and Gastroesophageal Junction Adenocarcinomas. J. Pers. Med. 2021, 11, 1095. [Google Scholar] [CrossRef]
- Kubota, Y.; Kawazoe, A.; Mishima, S.; Nakamura, Y.; Kotani, D.; Kuboki, Y.; Bando, H.; Kojima, T.; Doi, T.; Yoshino, T.; et al. Comprehensive clinical and molecular characterization of claudin 18.2 expression in advanced gastric or gastroesophageal junction cancer. ESMO Open 2023, 8, 100762. [Google Scholar] [CrossRef]
- Shitara, K.; Xu, R.H.; Moran, D.M.; Guerrero, A.; Li, R.; Pavese, J.; Matsangou, M.; Bhattacharya, P.P.; Ajani, J.A.; Manish, A.; et al. Global prevalence of CLDN18.2 in patients with locally advanced (LA) unresectable or metastatic gastric or gastroesophageal junction (mG/GEJ) adenocarcinoma: Biomarker analysis of two zolbetuximab phase 3 studies (SPOTLIGHT and GLOW). J. Clin. Oncol. 2023, 41, 4035. [Google Scholar] [CrossRef]
- Maron, S.B.; Catenacci, D.V.T. Novel Targeted Therapies for Esophagogastric Cancer. Surg. Oncol. Clin. N. Am. 2017, 26, 293–312. [Google Scholar] [CrossRef] [PubMed]
- Mitnacht-Kraus, R.; Kreuzberg, M.; Utsch, M.; Sahin, U.; Türeci, Ö. Preclinical characterization of IMAB362 for the treatment of gastric carcinoma. Ann. Oncol. 2017, 28, 126. [Google Scholar] [CrossRef]
- Sahin, U.; Schuler, M.; Richly, H.; Bauer, S.; Krilova, A.; Dechow, T.; Jerling, M.; Utsch, M.; Rohde, C.; Dhaene, K.; et al. A phase I dose-escalation study of IMAB362 (Zolbetuximab) in patients with advanced gastric and gastro-oesophageal junction cancer. Eur. J. Cancer 2018, 100, 17–26. [Google Scholar] [CrossRef] [PubMed]
- Türeci, O.; Sahin, U.; Schulze-Bergkamen, H.; Zvirbule, Z.; Lordick, F.; Koeberle, D.; Thuss-Patience, P.; Ettrich, T.; Arnold, D.; Bassermann, F.; et al. A multicentre, phase IIa study of zolbetuximab as a single agent in patients with recurrent or refractory advanced adenocarcinoma of the stomach or lower oesophagus: The MONO study. Ann. Oncol. 2019, 30, 1487–1495. [Google Scholar] [CrossRef] [PubMed]
- Klempner, S.J.; Lee, K.W.; Shitara, K.; Metges, J.P.; Lonardi, S.; Ilson, D.H.; Fazio, N.; Kim, T.Y.; Bai, L.Y.; Moran, D.; et al. ILUSTRO: Phase 2 Multicohort Trial of Zolbetuximab in Patients with Advanced or Metastatic Claudin 18.2-Positive Gastric or Gastroesophageal Junction Adenocarcinoma. Clin. Cancer Res. 2023, 29, 3882–3891. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Pan, H.; Liu, T.; Xu, N.; Zhang, Y.; Qin, Y.; Shi, J.; Liao, D.; Shen, L.; Luo, S.; et al. A multicenter, phase 1 study of AB011, a recombinant humanized anti-CLDN18.2 monoclonal antibody, as monotherapy and combined with capecitabine and oxaliplatin (CAPOX) in patients with advanced solid tumors. J. Clin. Oncol. 2023, 41, 391. [Google Scholar] [CrossRef]
- Teng, F.; Gu, Y.; Chai, H.; Guo, H.; Li, H.; Wu, X.; Yao, X.; Xu, F.; Shi, L.; Yan, Z.; et al. The Preclinical Characterization of TST001, A Novel Humanized Anti-Claudin18.2 mAb with Enhanced Binding Affinity and Anti-Tumor Activity. Cancer Res. 2020, 80, 5183. [Google Scholar] [CrossRef]
- Shen, L.; Liu, D.; Li, N.; Guo, W.; Liu, T.; Li, H.; Li, J.; Bai, Y.; Deng, Y.; Zhuang, Z.; et al. Osemitamab in combination with capecitabine and oxaliplatin (CAPOX) as a first line treatment of advanced G/GEJ cancer: Updated data of cohort C from a phase I/IIa, multi-center study (TranStar102/TST001-1002). J. Clin. Oncol. 2023, 41, 4046. [Google Scholar] [CrossRef]
- Guo, W.; Germa, C.; Qi, C.; Qian, C.; Yao, J.; Wang, J.; Zhang, L.; Qian, X.; Xia, Z. TST001 (a High Affinity Humanized Anti-Claudin18.2 Monoclonal Antibody) in Combination with Nivolumab plus Capecitabine and Oxaliplatin as First-line or with Nivolumab as Late-line Treatment in Locally Advanced and Metastatic Gastric/Gastroesophageal Junction (G/GEJ) Cancer: Design of Cohorts from a Phase I/IIa Study (TranStar102/TST001-1002). J. Clin. Oncol. 2023, 41, TPS476. [Google Scholar] [CrossRef]
- Zhang, M.; Gong, J.; Wang, J.; Shi, J.; Zhu, H.; Wang, Y.; Chen, Y.; Wang, F.; Qu, X.; Yu, J.; et al. A phase I/II study of ASKB589 (anti-claudin 18.2 [CLDN18.2] monoclonal antibody) in patients with solid tumors. J. Clin. Oncol. 2023, 41, 397. [Google Scholar] [CrossRef]
- Konno, H.; Lin, T.; Wu, R.; Dai, X.; Li, S.; Wang, G.; Chen, M.; Li, W.; Wang, L.; Sun, B.C.; et al. ZL-1211 Exhibits Robust Antitumor Activity by Enhancing ADCC and Activating NK Cell-mediated Inflammation in CLDN18.2-High and -Low Expressing Gastric Cancer Models. Cancer Res. Commun. 2022, 2, 937–950. [Google Scholar] [CrossRef] [PubMed]
- Cao, A.; Ye, Q.; Hsu, K.; Gong, H.; Zhou, H.; Yi, J.; Tang, X. Anti-CLDN18.2 antibody ZL-1211 enhances anti-tumor activities in combination with chemotherapy in gastric cancer models. J. Immunother. Cancer 2022, 10, A844. [Google Scholar] [CrossRef]
- Sharma, S.; Starodub, A.; Xu, N.; Chaudhry, A.; Sun, M.; Pelster, M.; Fu, Y.; Zhang, X.; Huang, Z.; Liu, W.; et al. Preliminary results of a phase Ⅰ/Ⅱ, first-in-human, open-label, dose escalation study of ZL-1211 (anti-CLDN18.2 mAb) in patients with unresectable or metastatic solid tumors. J. Clin. Oncol. 2023, 41, 2537. [Google Scholar] [CrossRef]
- Zhang, H.B.; Wang, Y.; Wang, F.; Yu, Z.; Wu, S.; Zheng, Y.; Cao, Y.; Xu, J.; Lan, D.; Wei, M.; et al. Safety and preliminary efficacy of MIL93 in patients with advanced solid tumors: The monotherapy part of a phase 1 trial. J. Clin. Oncol. 2023, 41, 798. [Google Scholar]
- Fang, Y.; Yao, G.; Zhong, W.; Duan, W.; Zhou, Z.; Wen, X.; Chen, Y.; Fang, J.; Wang, Y.; Jiang, W.; et al. Abstract 2857: DR30303, a SMART-VHHBody powered anti-CLDN18.2 VHH-Fc with enhanced ADCC activity for the treatment of gastric and pancreatic cancers. Cancer Res. 2022, 82, 2857. [Google Scholar] [CrossRef]
- Zhu, G.; Ma, J.; Ye, J.; Qin, J.; Cai, Y. Abstract 3361: Discovery and preclinical characterizations of a humanized anti-claudin 18.2 antibody SPX-101. Cancer Res. 2020, 80, 3361. [Google Scholar] [CrossRef]
- Jiang, W.; Fang, L.; Wang, Z.; Guo, T.B.; Park, E.; Sung, E.; Jung, J. Abstract 5644: Claudin 18.2 × 4-1BB bispecific antibody induced potent tumor inhibition through tumor-specific 4-1BB activation. Cancer Res. 2020, 80, 5644. [Google Scholar] [CrossRef]
- Gao, J.; Wang, Z.; Jiang, W.; Zhang, Y.; Meng, Z.; Niu, Y.; Sheng, Z.; Chen, C.; Liu, X.; Chen, X.; et al. CLDN18.2 and 4-1BB bispecific antibody givastomig exerts antitumor activity through CLDN18.2-expressing tumor-directed T-cell activation. J. Immunother. Cancer 2023, 11, e006704. [Google Scholar] [CrossRef] [PubMed]
- Lordick, F.; Chao, J.; Buxò, E.; van Laarhoven, H.W.M.; Lima, C.M.R.; Lorenzen, S.; Dayyani, F.; Heinemann, V.; Greil, R.; Stienen, S.; et al. 1496TiP Phase I study evaluating safety and tolerability of AMG 910, a half-life extended bispecific T cell engager targeting claudin-18.2 (CLDN18.2) in gastric and gastroesophageal junction (G/GEJ) adenocarcinoma. Ann. Oncol. 2020, 31, S928–S929. [Google Scholar] [CrossRef]
- Gong, J.; Shen, L.; Hou, J.; Chen, X.; Yu, Q.; Zheng, Y.; Wang, Y.; Zhang, J.; Qu, X.; Lu, Q.; et al. Safety results of Q-1802, a Claudin18.2/PD-L1 bsABs, in patients with relapsed or refractory solid tumors in a phase 1 study. J. Clin. Oncol. 2022, 40, 2568. [Google Scholar] [CrossRef]
- Nakazawa, T.; Tanaka, H.; Kikuchi, A.; Rashid, R.; Avery, K.N.; Qi, J.; Nisthal, A.; Shimazaki, M.; Shirasuna, K. Abstract 2962: ASP2138, a novel 2+1 format, claudin 18.2 x CD3 bispecific antibody, demonstrates selectivity and activity in preclinical cancer models. Cancer Res. 2023, 83, 2962. [Google Scholar] [CrossRef]
- Liu, J.; L&L Team. A phase 1 study to evaluate the safety, tolerability, pharmacokinetics, pharmacodynamics and immunogenicity of LB4330, a peptide fused to CLDN18.2 antibody targeting the tumor antigen associated CD8+t CELLS in patients with advanced solid tumors. J. Clin. Oncol. 2023, 41, TPS4196. [Google Scholar] [CrossRef]
- Xu, R.; Wei, X.; Zhang, D.; Qiu, M.; Zhang, Y.; Zhao, H.; Chen, B.; Yan, J. A phase 1a dose-escalation, multicenter trial of anti-claudin 18.2 antibody drug conjugate CMG901 in patients with resistant/refractory solid tumors. J. Clin. Oncol. 2023, 41, 352. [Google Scholar] [CrossRef]
- Dan, M.; Hui, X.; Wang, Y.; Yuan, C.; O’Hare, T.; Jansen, V.M.; Leland, S.M.; Zhang, Y.; Dornan, D.; Wang, X. Abstract 6300: Therapeutic potential of EO-3021/SYSA1801, a Claudin18.2 antibody-drug conjugate, for the treatment of CLDN18.2-expressing cancers. Cancer Res. 2023, 83, 6300. [Google Scholar] [CrossRef]
- Wang, Y.; Gong, J.; Lin, R.; Zhao, S.; Wang, J.; Wang, Q.; Zhang, Y.; Su, D.; Zhang, J.; Dong, Q.; et al. First-in-human dose escalation and expansion study of SYSA1801, an antibody-drug conjugate targeting claudin 18.2 in patients with resistant/refractory solid tumors. J. Clin. Oncol. 2023, 41, 3016. [Google Scholar] [CrossRef]
- Huang, W.; Li, Y.; Liu, Z.; Rodon, L.; Correia, S.; Li, Y.; Li, R. Preclinical activity for TPX-4589 (LM-302), an antibody-drug conjugate targeting tight junction protein CLDN18.2 in solid tumors. Eur. J. Cancer 2022, 174, S41–S42. [Google Scholar] [CrossRef]
- Sadilkova, L.K.; Valentova, I.; Hoskova, S.; Vopalensky, P.; Frantz, C.; Moebius, U.; Bammert, L.; Beerli, R.; Spisek, R. SOT102, a novel CLDN18.2-targeting antibody-drug conjugate with strong therapeutic potential in solid tumors expressing low target levels. ESMO Open 2023, 8, 101196. [Google Scholar]
- Jiang, H.; Shi, Z.; Wang, P.; Wang, C.; Yang, L.; Du, G.; Zhang, H.; Shi, B.; Jia, J.; Li, Q.; et al. Claudin18.2-Specific Chimeric Antigen Receptor Engineered T Cells for the Treatment of Gastric Cancer. Natl. Cancer Inst. 2019, 111, 409–418. [Google Scholar] [CrossRef]
- Qi, C.; Gong, J.; Li, J.; Liu, D.; Qin, Y.; Ge, S.; Zhang, M.; Peng, Z.; Zhou, J.; Cao, Y.; et al. Claudin18.2-specific CAR T cells in gastrointestinal cancers: Phase 1 trial interim results. Nat. Med. 2022, 28, 1189–1198. [Google Scholar] [CrossRef]
- Botta, G.P.; Becerra, C.R.; Jin, Z.; Kim, D.W.; Zhao, D.; Lenz, H.J.; Ma, H.; Ween, A.; Acha, P.; Li, Z.; et al. Multicenter phase Ib trial in the U.S. of salvage CT041 CLDN18.2-specific chimeric antigen receptor T-cell therapy for patients with advanced gastric and pancreatic adenocarcinoma. J. Clin. Oncol. 2022, 40 (Suppl. S16), S2538. [Google Scholar] [CrossRef]
- News Release. Updates on the Phase I Clinical Trial of LY011 Treatment in Patients with Advanced Malignant Solid Tumors. Available online: http://en.longyaobiotech.cn/NewsDetail.aspx?ID=102. (accessed on 2 October 2023).
- Xu, H.; Li, W.; Lv, H.; Gu, D.; Wei, X.; Dai, H. Tandem CAR-T cells targeting CLDN18.2 and NKG2DL for treatment of gastric cancer. J. Clin. Oncol. 2022, 40, 4030. [Google Scholar] [CrossRef]
- Innovent Announces First Patient Dosing of Universal “Modular” CAR-T Cell Product IBI345. Available online: https://www.prnewswire.com/news-releases/innovent-announces-first-patient-dosing-of-universal-modular-car-t-cell-product-ibi345-301486172.html (accessed on 26 September 2023).
- Wang, L.; Stacey, X.; Benatar, T.; Prosser, S.; Shaver, L.; Randhawa, R.; Ip, P.; Lal, P.; Nootan, T.N.; MacGregor, H.; et al. 294 Preclinical studies of TAC01-CLDN18.2, an autologous claudin 18.2-directed TAC T cell therapy, in the treatment of gastric cancer. J. Immunother. Cancer 2022, 10 (Suppl. S2), A309. [Google Scholar] [CrossRef]
- Sahin, U.; Karikó, K.; Türeci, Ö. mRNA-based therapeutics--developing a new class of drugs. Nat. Rev. Drug Discov. 2014, 13, 759–780. [Google Scholar] [CrossRef]
- Wolff, J.A.; Malone, R.W.; Williams, P.; Chong, W.; Acsadi, G.; Jani, A.; Felgner, P.L. Direct gene transfer into mouse muscle in vivo. Science 1990, 247, 1465–1468. [Google Scholar] [CrossRef] [PubMed]
- Wadhwa, A.; Aljabbari, A.; Lokras, A.; Foged, C.; Thakur, A. Opportunities and Challenges in the Delivery of mRNA-based Vaccines. Pharmaceutics 2020, 12, 102. [Google Scholar] [CrossRef]
- Yang, T.; Li, C.; Wang, X.; Zhao, D.; Zhang, M.; Cao, H.; Liang, Z.; Xiao, H.; Liang, X.-J.; Weng, Y.; et al. Efficient hepatic delivery and protein expression enabled by optimized mRNA and ionizable lipid nanoparticle. Bioact. Mater. 2020, 5, 1053–1061. [Google Scholar] [CrossRef] [PubMed]
- Papadopoulos, K.P.; Tehfe, M.; Abdul Razak, A.R.; Pant, S.; Chung, V.; Rasco, D.W.; Jamal, R.; Willis, J.; Antrás, J.F.; Brettschneider, K.; et al. A phase I/II dose escalation and expansion trial to evaluate safety and preliminary efficacy of BNT141 in patients with claudin-18.2-positive solid tumors. J. Clin. Oncol. 2023, 41, TPS2669. [Google Scholar] [CrossRef]
Tissue Distribution | Claudin Family |
---|---|
Skin | claudin1, claudin2, claudin3, claudin4, claudin6, claudin8, claudin12, claudin17, claudin20, claudin23 |
Lung | claudin1, claudin3, claudin4, claudin5, claudin18 |
Stomach | claudin 18 |
Liver | claudin1, claudin2, claudin3, claudin5 |
Brain | claudin1, claudin5 |
Kidney | claudin1, claudin2, claudin3, claudin4, claudin7, claudin8, claudin10, claudin13, claudin15, claudin16, claudin19 |
Cornea | claudin1, claudin2, claudin3, claudin7, claudin14 |
Inner ear | claudin8, claudin9, claudin10, claudin12, claudin14, claudin18 |
Breast | claudin4, claudin7 |
Pancreas | claudin2, claudin3 |
Prostate | claudin4 |
Small intestine | claudin10, claudin15 |
Duodenum | claudin20, claudin22 |
Colon | claudin15 |
Taste receptor cells | claudin17, claudin23 |
Trachea | claudin22 |
Placenta | claudin23 |
Schwann’s cell | claudin19 |
Retrospective Study, Single Center Cohort | Clinical Trials of CLDN 18.2 Antibody | |||||
---|---|---|---|---|---|---|
CLDN18.2+, IHC | ≥40% Tumor Cells | ≥75% Tumor Cells | ≥75% Tumor Cells | ≥75% Tumor Cells | ≥75% Tumor Cells | ≥75% Tumor Cells |
CLDN18.2+ (%) | 52 | 33 | 24 | 38 | 38 | 39 |
References | Jia K et al. [36] | Pelino A et al. [37] | Kubota Y et al. [38] | SPOTLIGHT Trial [8] | GLOW Trial [9] | SPOTLIGH/GLOW [39] |
HER2+ (%) | 21 | 15 | 15 | - | - | - |
dMMR (%) | 14 | 13 | 5 | - | - | - |
PD-L1 CPS < 1 (%) | 21 | 74 | 26 | - | - | - |
PD-L1 CPS ≥ 5 (%) | - | 18 | 42 | 13 | 22 | 17 |
EBV+ (%) | 19 | 6 | 4 | - | - | - |
Diffuse type (%) | 29 | 40 | 48 | 29 | 34 | 49 |
Intestinal type (%) | 38 | 46 | 52 | 25 | 14 | 39 |
Mixed/Other (%) | 33 | 12 | - | 46 | 51 | - |
Type of Drug | Drug | Clinical Trial Number | Phase | Subjects | Primary Endpoint |
---|---|---|---|---|---|
mAb | Zolbetuximab (IMAB362) | NCT03505320 | II | Advanced unresectable GEJ cancer or GC | ORR |
mAb | AB011 | NCT04400383 | I | Solid tumor, GC, PC | DLT, AEs |
mAb | TST001 | NCT04495296 | I | Advanced solid tumors | DLT, AEs, MTD |
mAb | ASKB589 | NCT04632108 | I, II | Advanced solid tumors | DLT, AEs, MTD |
mAb | BNT141 | NCT04683939 | I, II | Advanced solid tumors | TEAE, DLT |
mAb | LM-102 | NCT04735796 | I | Advanced solid tumors | DLT, AEs, MTD |
mAb | LM-102 | NCT05008445 | I, II | Advanced solid tumors | DLT, AEs, MTD, RP2D |
mAb | ZL-1211 | NCT05065710 | I, II | Advanced solid tumors | MTD, TRAE, ORR |
mAb | IMC 002 | NCT05946226 | I | advanced digestive system tumor | DLT |
mAb | MIL93 | NCT04671875 | I | advanced solid tumors | AEs |
mAb | DR30303 | NCT05639153 | I | advanced digestive system tumor | DLT, TEAE, MTD, RP2D |
mAb | TST001 | NCT04396821 | I, II | advanced solid tumors | AEs, MTD, RP2D |
mAb | SPX-101 | NCT05231733 | I | advanced solid tumors | DLT, MTD, MAD |
BiTE antibody | AMG 910 | NCT04260191 | I | GC or GEJ adenocarcinoma | DLT, AEs |
BsAbs | Q-1802 | NCT04856150 | I | Advanced solid tumors | DLT |
BsAbs | SG1906 | NCT05857332 | I | advanced solid tumors | AEs, MTD, MAD, RP2D |
BsAbs | ASP2138 | NCT05365581 | Ⅱ | GC, GEJ cancer, PC | DLT, AEs |
BsAbs | PT886 | NCT05482893 | I | GC, PC | DLT, RP2D, MTD |
BsAbs | IBI315 | NCT05608785 | I, II | GC, GEJ cancer | AEs |
Specific bi-functional molecule | LB4330 | NCT05707676 | I | advanced solid tumors | DLT, AEs, RP2D, MTD |
ADC | CMG901 | NCT04805307 | I | Advanced solid tumors, ST | DLT, TEAE, ORR, RP2D |
ADC | SYSA1801 | NCT05009966 | I | Advanced solid tumors, GC, GEJ cancer, PC | DLT, AEs, RP2D |
ADC | CPO102 | NCT05043987 | I | GC, PC | DLT |
ADC | LM-302 | NCT05161390 | I, II | Advanced solid tumors | DLT, AEs, RP2D, MTD |
ADC | LM-302 | NCT05161390 | I, II | advanced solid tumors | DLT, AEs, RP2D, MTD |
ADC | LM-302 | NCT05001516 | I, II | advanced solid tumors | DLT, AEs |
ADC | RC118 | NCT04914117 | I | advanced solid tumors | DLT, AEs, RP2D, MTD |
ADC | SOT102 | NCT05525286 | I, II | GC, GEJ cancer, PC | AEs, RP2D, ORR |
ADC | TQB2103 | NCT05867563 | I | advanced solid tumors | DLT, MTD, RP2D |
ADC+anti PD-1mAb | LM302+JS001 | NCT05934331 | Ⅱ | GC, PC | PFS |
CAR-T cell | CT041 | NCT03159819 | I | Advanced GC, PC | AEs |
CAR-T cell | CT041 | NCT03874897 | I | Advanced solid tumors | DLT, MTD |
CAR-T cell | CT041 | NCT04404595 | I | GC, PC | AEs, MTD, ORR |
CAR-T cell | CT041 | NCT04581473 | I, II | GC, PC, GEJ adenocarcinoma | AEs, MTD, PFS |
CAR-T cell | LCAR-C18S | NCT04467853 | I | Advanced solid tumors | DLT, TEAE, RP2D |
CAR-T cell | LY011 | NCT04977193 | I | Advanced gastric adenocarcinoma | AEs, MTD |
CAR-T cell | IMC002 | NCT05472857 | I | Advanced solid tumors | SAE, DLT |
CAR-T cell | IMC008 | NCT05837299 | I | advanced solid tumors | DLT |
CAR-T cell | KD-496 | NCT05583201 | I | NKG2DL+solid tumors | TEAE, DLT |
CAR-T cell | IBI345 | NCT05199519 | I | solid tumors | AEs |
CAR-T cell | CT048 | NCT05393986 | I | advanced solid tumors | DLT, MTD |
CAR-T cell | LB1908 | NCT05539430 | I | GC, GEJ cancer, esophageal cancer, PC | RDE, RP2D |
TAC T cell | TAC01-CLDN18.2 | NCT05862324 | I, II | solid tumors | DLT, AEs |
Study Name | MONO | ILUSTRO | FAST | SPOTLIGHT | GLOW | |
---|---|---|---|---|---|---|
(Cohort 1A) | (Cohort 2) | |||||
Trial Number | NCT04396821 | NCT03505320 | NCT01630083 | NCT03504397 | NCT03653507 | |
References | [43] | [44] | [27] | [8] | [9] | |
Phase | II | II | II | III | III | |
Patient number | 54 | 30 | 21 | 246 | 566 | 507 |
Treatment line | ≥2nd line | ≥3rd line | 1st line | 1st line | 1st line | 1st line |
CLDN18.2-positive | ≥50% cells (+) | ≥50% cells (+) | ≥50% cells (+) | ≥40% cells (+) | ≥75% cells (+) | ≥75% cells (+) |
Experimental arm | ZOL | ZOL | mFOLFOX6 + ZOL | EOX + ZOL | mFOLFOX6 + ZOL | CapeOX + ZOL |
Control arm | − | − | − | EOX | mFOLFOX | CapeOX |
ORR (%) | 9 | 0 | 71.4 | 25.0 vs. 39.0 | 62.1 vs. 60.7 | 48.8 vs. 53.8 |
PFS (months) | − | 1.54 | 17.81 | 5.3 vs. 7.5 | 8.7 vs. 10.6 | 6.8 vs. 8.2 |
HR 0.4 | HR 0.75 | HR 0.69 | ||||
p < 0.0005 | p = 0.0066 | p = 0.0007 | ||||
OS (months) | − | 5.62 | − | 8.3 vs. 13.0 | 6.8 vs. 8.2 | 12.2 vs. 14.4 |
HR 0.55 | HR 0.69 | HR 0.77 | ||||
p < 0.0005 | p = 0.0007 | p = 0.0118 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Inamoto, R.; Takahashi, N.; Yamada, Y. Claudin18.2 in Advanced Gastric Cancer. Cancers 2023, 15, 5742. https://doi.org/10.3390/cancers15245742
Inamoto R, Takahashi N, Yamada Y. Claudin18.2 in Advanced Gastric Cancer. Cancers. 2023; 15(24):5742. https://doi.org/10.3390/cancers15245742
Chicago/Turabian StyleInamoto, Rin, Naoki Takahashi, and Yasuhide Yamada. 2023. "Claudin18.2 in Advanced Gastric Cancer" Cancers 15, no. 24: 5742. https://doi.org/10.3390/cancers15245742
APA StyleInamoto, R., Takahashi, N., & Yamada, Y. (2023). Claudin18.2 in Advanced Gastric Cancer. Cancers, 15(24), 5742. https://doi.org/10.3390/cancers15245742