Plasma Cytokines/Chemokines as Predictive Biomarkers for Lymphedema in Breast Cancer Patients
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Subjects and Design
2.2. Near-Infrared Fluorescent Lymphatic Imaging (NIRF-LI)
2.3. Perometric (RVC) Arm Volume Measurement/Clinical Diagnosis of LE
2.4. Extra Vascular Dye (EVD) or Dermal Backflow
2.5. Blood Plasma Isolation
2.6. MILLIPLEX Map Human Cytokine/Chemokine Magnetic Bead Panel
2.7. Statistical Analysis
3. Results
3.1. Pre-ALND Cytokine/Chemokine Levels in Patients Who Developed BCRL 12-Months Post-RT Were Elevated
3.2. Several Plasma Cytokine/Chemokine Levels Were Elevated at 12 Months after RT in Those with Clinical BCRL
3.3. Subjects Displaying Dermal Backflow One Year after RT Showed Elevated Cytokine/Chemokine Levels at Pre-ALND
3.4. Several 12-Months Post-RT Plasma Cytokine/Chemokine Levels Trended Higher in Subjects with Dermal Backflow at 12-Months Post-RT
3.5. Several Cytokine/Chemokine Levels Were Elevated at Pre-ALND in Subjects with Both Dermal Backflow and Clinical BCRL/LE at 12-Months Post-RT
3.6. Several 12-Months Post-RT Cytokines/Chemokines Were Elevated in Subjects with Both Clinical BCRL and Dermal Backflow Compared to Subjects with Neither Clinical BCRL nor Dermal Backflow
3.7. Pearson Correlation Coefficients Comparing %RVC and %EVD to Cytokine/Chemokine Levels Exhibited Negligible to Moderate Relevance
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fu, M.R. Breast cancer-related lymphedema: Symptoms, diagnosis, risk reduction, and management. World J. Clin. Oncol. 2014, 5, 241–247. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gillespie, T.C.; Sayegh, H.E.; Brunelle, C.L.; Daniell, K.M.; Taghian, A.G. Breast cancer-related lymphedema: Risk factors, precautionary measures, and treatments. Gland Surg. 2018, 7, 379–403. [Google Scholar] [CrossRef] [PubMed]
- Kayıran, O.; De La Cruz, C.; Tane, K.; Soran, A. Lymphedema: From diagnosis to treatment. Turk. J. Surg. 2017, 33, 51–57. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Armer, J.M.; Stewart, B.R. Post-breast cancer lymphedema: Incidence increases from 12 to 30 to 60 months. Lymphology 2010, 43, 118–127. [Google Scholar] [PubMed] [Green Version]
- Jørgensen, M.G.; Toyserkani, N.M.; Hansen, F.G.; Bygum, A.; Sørensen, J.A. The impact of lymphedema on health-related quality of life up to 10 years after breast cancer treatment. NPJ Breast Cancer 2021, 7, 70. [Google Scholar] [CrossRef]
- Whitworth, P.W.; Shah, C.; Vicini, F.; Cooper, A. Preventing Breast Cancer-Related Lymphedema in High-Risk Patients: The Impact of a Structured Surveillance Protocol Using Bioimpedance Spectroscopy. Front. Oncol. 2018, 8, 197. [Google Scholar] [CrossRef] [Green Version]
- Shah, C.; Zambelli-Weiner, A.; Delgado, N.; Sier, A.; Bauserman, R.; Nelms, J. The impact of monitoring techniques on progression to chronic breast cancer-related lymphedema: A meta-analysis comparing bioimpedance spectroscopy versus circumferential measurements. Breast Cancer Res. Treat. 2021, 185, 709–740. [Google Scholar] [CrossRef]
- Franks, P.; Williams, A.; Moffatt, C. A review of the epidemiology of BCRL. Int. Wound J. 2014, 1, 66–71. [Google Scholar]
- Gardenier, J.C.; Kataru, R.P.; Hespe, G.E.; Savetsky, I.L.; Torrisi, J.S.; Nores, G.D.G.; Jowhar, D.K.; Nitti, M.D.; Schofield, R.C.; Carlow, D.C.; et al. Topical tacrolimus for the treatment of secondary lymphedema. Nat. Commun. 2017, 8, 14345. [Google Scholar] [CrossRef]
- Chang, D.W.; Suami, H.; Skoracki, R. A Prospective Analysis of 100 Consecutive Lymphovenous Bypass Cases for Treatment of Extremity Lymphedema. Plast. Reconstr. Surg. 2013, 132, 1305–1314. [Google Scholar] [CrossRef]
- Hahamoff, M.; Gupta, N.; Munoz, D.; Lee, B.T.; Clevenger, P.; Shaw, C.; Spiguel, L.; Singhal, D. A Lymphedema Surveillance Program for Breast Cancer Patients Reveals the Promise of Surgical Prevention. J. Surg. Res. 2019, 244, 604–611. [Google Scholar] [CrossRef] [PubMed]
- Oliver, G.; Kipnis, J.; Randolph, G.J.; Harvey, N.L. The Lymphatic Vasculature in the 21st Century: Novel Functional Roles in Homeostasis and Disease. Cell 2020, 182, 270–296. [Google Scholar] [CrossRef] [PubMed]
- Eaton, L.H.; Narkthong, N.; Hulett, J.M. Psychosocial Issues Associated with Breast Cancer-Related Lymphedema: A Literature Review. Curr. Breast Cancer Rep. 2020, 12, 216–224. [Google Scholar] [CrossRef] [PubMed]
- Dominick, S.A.; Natarajan, L.; Pierce, J.P.; Madanat, H.; Madlensky, L. The psychosocial impact of lymphedema-related distress among breast cancer survivors in the WHEL Study. Psycho-Oncology 2014, 23, 1049–1056. [Google Scholar] [CrossRef] [Green Version]
- International Society of Lymphology Executive Committee. The diagnosis and treatment of peripheral lymphedema: 2016 consensus document of the International Society of Lymphology. Lymphology 2016, 49, 170–184. [Google Scholar]
- International Society of Lymphology Executive Committee. The diagnosis and treatment of peripheral lymphedema: 2020 consensus document of the International Society of Lymphology. Lymphology 2020, 53, 3–19. [Google Scholar]
- Aldrich, M.B.; Rasmussen, J.C.; DeSnyder, S.M.; Woodward, W.A.; Chan, W.; Sevick-Muraca, E.M.; Mittendorf, E.A.; Smith, B.D.; Stauder, M.C.; Strom, E.A.; et al. Prediction of breast cancer-related lymphedema by dermal backflow detected with near-infrared fluorescence lymphatic imaging. Breast Cancer Res. Treat. 2022, 195, 33–41. [Google Scholar] [CrossRef]
- Aldrich, M.B.; Sevick-Muraca, E.M. Cytokines are systemic effectors of lymphatic function in acute inflammation. Cytokine 2013, 64, 362–369. [Google Scholar] [CrossRef] [Green Version]
- Koelmeyer, L.A.; Borotkanics, R.J.; Alcorso, J.; Prah, P.; Winch, C.J.; Nakhel, K.; Dean, C.M.; Boyages, J. Early surveillance is associated with less incidence and severity of breast cancer-related lymphedema compared with a traditional referral model of care. Cancer 2019, 125, 854–862. [Google Scholar] [CrossRef]
- Bains, S.K.; Peters, A.M.; Zammit, C.; Ryan, N.; Ballinger, J.; Glass, D.M.; Allen, S.; Stanton, A.W.B.; Mortimer, P.S.; Purushotham, A.D. Global abnormalities in lymphatic function following systemic therapy in patients with breast cancer. Br. J. Surg. 2015, 102, 534–540. [Google Scholar] [CrossRef] [PubMed]
- Farnsworth, R.H.; Karnezis, T.; Maciburko, S.J.; Mueller, S.N.; Stacker, S.A. The Interplay Between Lymphatic Vessels and Chemokines. Front. Immunol. 2019, 10, 518. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rasmussen, J.C.; Tan, I.-C.; Marshall, M.V.; Adams, K.E.; Kwon, S.; Fife, C.E.; Maus, E.A.; Smith, L.A.; Covington, K.R.; Sevick-Muraca, E.M. Human Lymphatic Architecture and Dynamic Transport Imaged Using Near-infrared Fluorescence. Transl. Oncol. 2010, 3, 362–372. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ancukiewicz, M.; Russell, T.A.; Otoole, J.; Specht, M.; Singer, M.; Kelada, A.; Murphy, C.D.; Pogachar, J.; Gioioso, V.; Patel, M.; et al. Standardized Method for Quantification of Developing Lymphedema in Patients Treated for Breast Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2011, 79, 1436–1443. [Google Scholar] [CrossRef] [PubMed]
- Moore, R.A.; Waheed, A.; Burns, B. Rule of Nines; StatPearls: Treasure Island, FL, USA, 2022. [Google Scholar]
- Schober, P.; Boer, C.; Schwarte, L.A. Correlation Coefficients: Appropriate Use and Interpretation. Anesth. Analg. 2018, 126, 1763–1768. [Google Scholar] [CrossRef] [PubMed]
- Aldrich, M.B.; Rasmussen, J.C.; Fife, C.E.; Shaitelman, S.F.; Sevick-Muraca, E.M. The Development and Treatment of Lymphatic Dysfunction in Cancer Patients and Survivors. Cancers 2020, 12, 2280. [Google Scholar] [CrossRef] [PubMed]
- Hanley, C.A.; Elias, R.M.; Movat, H.Z.; Johnston, M.G. Suppression of fluid pumping in isolated bovine mesenteric lymphatics by Interleukin-1: Interaction with prostaglandin E2. Microvasc. Res. 1989, 37, 218–229. [Google Scholar] [CrossRef]
- Wee, J.L.-K.; Greenwood, D.L.; Han, X.; Scheerlinck, J.-P. Inflammatory cytokines IL-6 and TNF-α regulate lymphocyte trafficking through the local lymph node. Vet. Immunol. Immunopathol. 2011, 144, 95–103. [Google Scholar] [CrossRef]
- Perera, P.-Y.; Lichy, J.H.; Waldmann, T.A.; Perera, L.P. The role of interleukin-15 in inflammation and immune responses to infection: Implications for its therapeutic use. Microbes Infect. 2012, 14, 247–261. [Google Scholar] [CrossRef] [Green Version]
- Eskan, M.A.; Benakanakere, M.R.; Rose, B.G.; Zhang, P.; Zhao, J.; Stathopoulou, P.; Fujioka, D.; Kinane, D.F. Interleukin-1β Modulates Proinflammatory Cytokine Production in Human Epithelial Cells. Infect. Immun. 2008, 76, 2080–2089. [Google Scholar] [CrossRef] [Green Version]
- Kaneko, N.; Kurata, M.; Yamamoto, T.; Morikawa, S.; Masumoto, J. The role of interleukin-1 in general pathology. Inflamm. Regen. 2019, 39, 12. [Google Scholar] [CrossRef] [Green Version]
- Ly, C.L.; Kataru, R.P.; Mehrara, B.J. Inflammatory Manifestations of Lymphedema. Int. J. Mol. Sci. 2017, 18, 171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Breast Cancer Association Consortium; Dorling, L.; Carvalho, S.; Allen, J.; González-Neira, A.; Luccarini, C.; Wahlström, C.; Pooley, K.A.; Parsons, M.T.; Fortuno, C.; et al. Breast Cancer Risk Genes—Association Analysis in More than 113,000 Women. N. Engl. J. Med. 2021, 384, 428–439. [Google Scholar] [CrossRef] [PubMed]
- Montagna, G.; Zhang, J.; Sevilimedu, V.; Charyn, J.; Abbate, K.; Gomez, E.A.; Mehrara, B.; Morrow, M.; Barrio, A.V. Risk Factors and Racial and Ethnic Disparities in Patients With Breast Cancer–Related Lymphedema. JAMA Oncol. 2022, 8, 1195–2000. [Google Scholar] [CrossRef] [PubMed]
- Alexander, A.; Arnold, T.L.; Bishnoi, S.; Ballinger, C.; Shaitelman, S.F.; Schaverien, M.V.; Cohen, L.; Dev, M.; Ueno, N.T. Survivorship and Advocacy in Inflammatory Breast Cancer. J. Cancer 2018, 9, 1430–1436. [Google Scholar] [CrossRef] [PubMed]
Characteristics | Value |
---|---|
Age, year, median (range) | 48.15 (26–68) |
Race, n (%) | |
Black | 3 (7.5) |
Other (Asian, American Indian/Alaska Native, multi-race) | 5 (12.5) |
White | 32 (80) |
Ethnicity, n (%) | |
Hispanic or Latino | 6 (15) |
Non-Hispanic | 34 (85) |
Sex, n (%) | |
Female | 40 (100) |
Male | 0 (0) |
Body mass index, mean (range), n (%) | |
Underweight (<18.5) | 1 (2.5) |
Normal weight (18.5–24.9) | 10 (25) |
Overweight (25.0–29.9) | 13 (32.5) |
Obese (≥30.0) | 16 (40) |
Clinical T category, n (%) | |
Tx | 1 (2.5) |
T1 | 4 (10) |
T2 | 15 (37.5) |
T3 | 10 (25) |
T4b | 4 (10) |
T4d | 6 (15) |
Clinical N category, n (%) | |
N1 | 16 (40) |
N2 | 4 (10) |
N3a | 7 (17.5) |
N3b | 2 (5) |
N3c | 11 (27.5) |
Neoadjuvant chemotherapy, n (%) | 38 (95) |
Taxanes, n (%) | 37 (92.5) |
Anthracyclines, n (%) | 34 (85) |
Number of lymph nodes removed at ALND, median (range) | 23.37 (6–39) |
Number of lymph nodes involved at ALND, median (range) | 4.57 (0–36) |
Lymphovascular space invasion, n (%) | 10 (25) |
Extracapsular extension, n (%) | 13 (32.5) |
Lumpectomy, n (%) | 10 (25) |
Mastectomy, n (%) | 30 (75) |
Cumulative radiation dose, Gy, median | 49.88 |
Total number of fractions of radiation, median | 26 |
Cytokine/Chemokine | R2 for Pre-ALND pg/mL and RVC at 12-Months Post-RT | R2 for 12-Months Post-RT pg/mL and RVC at 12-Months Post-RT | R2 for Pre-ALND pg/mL and %EVD at 12-Months Post-RT | R2 for 12-Months Post-RT pg/mL and %EVD at 12-Months Post-RT |
---|---|---|---|---|
G-CSF | 0.0362 | 0.0079 | 0.0005 | 0.0066 |
GM-CSF | 0.1189 * | 0.2475 * | 0.0026 | 0.0344 |
IFN-α2 | 0.0025 | 0.3862 * | 0.0449 | 0.0256 |
IL-10 | 0.0089 | 0.0107 | 0.0166 | 0.0454 |
IL-12p40 | 0.0124 | 0.0818 | 0.0164 | 0.1437 * |
IL-15 | 0.0248 | 0.003 | 0.00002 | 0.1563 * |
IL-17A | 0.0384 | 0.5207 ** | 0.078 | 0.0557 |
IL-1β | 0.1636 * | 0.4829 ** | 0.0006 | 0.0296 |
IL-2 | 0.0965 | 0.2442 * | 0.1477 * | 0.0744 |
IL-3 | 0.0336 | 0.0712 | 0.015 | 0.0214 |
IL-6 | 0.0081 | 0.0889 | 0.0023 | 0.122 * |
IP-10 | 0.0022 | 0.1337 * | 0.0002 | 0.0147 |
MIP-1β | 0.0442 | 0.0087 | 0.0872 | 0.006 |
TNF-α | 0.0016 | 0.0348 | 0.0103 | 0.1884 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vang, A.R.; Shaitelman, S.F.; Rasmussen, J.C.; Chan, W.; Sevick-Muraca, E.M.; Aldrich, M.B. Plasma Cytokines/Chemokines as Predictive Biomarkers for Lymphedema in Breast Cancer Patients. Cancers 2023, 15, 676. https://doi.org/10.3390/cancers15030676
Vang AR, Shaitelman SF, Rasmussen JC, Chan W, Sevick-Muraca EM, Aldrich MB. Plasma Cytokines/Chemokines as Predictive Biomarkers for Lymphedema in Breast Cancer Patients. Cancers. 2023; 15(3):676. https://doi.org/10.3390/cancers15030676
Chicago/Turabian StyleVang, Anna R., Simona F. Shaitelman, John C. Rasmussen, Wenyaw Chan, Eva M. Sevick-Muraca, and Melissa B. Aldrich. 2023. "Plasma Cytokines/Chemokines as Predictive Biomarkers for Lymphedema in Breast Cancer Patients" Cancers 15, no. 3: 676. https://doi.org/10.3390/cancers15030676
APA StyleVang, A. R., Shaitelman, S. F., Rasmussen, J. C., Chan, W., Sevick-Muraca, E. M., & Aldrich, M. B. (2023). Plasma Cytokines/Chemokines as Predictive Biomarkers for Lymphedema in Breast Cancer Patients. Cancers, 15(3), 676. https://doi.org/10.3390/cancers15030676