HER2 and BARD1 Polymorphisms in Early HER2-Positive Breast Cancer Patients: Relationship with Response to Neoadjuvant Anti-HER2 Treatment
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Design and Patients
2.2. SNP Selection and Analysis
2.3. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Gene Variants in Relation to Treatment Response and Survival
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rubin, I.; Yarden, Y. The basic biology of HER2. Ann. Oncol. 2001, 12 (Suppl. 1), S3–S8. [Google Scholar] [CrossRef]
- Loibl, S.; Gianni, L. HER2-positive breast cancer. Lancet 2017, 389, 2415–2429. [Google Scholar] [CrossRef]
- Cortazar, P.; Zhang, L.; Untch, M. Pathological complete response and long-term clinical benefit in breast cancer: The CTNeoBC pooled analysis. Lancet 2014, 384, 164–172. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Junttila, T.T.; Akita, R.W.; Parsons, K.; Fields, C.; Lewis Phillips, G.D.; Friedman, L.S.; Sampath, D.; Sliwkowski, M.X. Ligand-independent HER2/HER3/PI3K complex is disrupted by trastuzumab and is effectively inhibited by the PI3K inhibitor GDC-0941. Cancer Cell 2009, 15, 429–440. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moja, L.; Tagliabue, L.; Balduzzi, S.; Parmelli, E.; Pistotti, V.; Guarneri, V. Trastuzumab containing regimens for early breast cancer. Cochrane Database Syst. Rev. 2012, 4, CD006243. [Google Scholar]
- Takada, M.; Toi, M. Neoadjuvant treatment for HER2-positive breast cancer. Chin. Clin. Oncol. 2020, 9, 32. [Google Scholar] [CrossRef] [PubMed]
- Swain, S.M.; Macharia, H.; Cortes, J.; Dang, C.; Gianni, L.; Hurvitz, S.A.; Jackisch, C.; Schneeweiss, A.; Slamon, D.; Valagussa, P.; et al. Event-Free Survival in Patients with Early HER2-Positive Breast Cancer with a Pathological Complete Response after HER2-Targeted Therapy: A Pooled Analysis. Cancers 2022, 14, 5051. [Google Scholar] [CrossRef]
- Takada, M.; Ishiguro, H.; Nagai, S.; Ohtani, S.; Kawabata, H.; Yanagita, Y.; Hozumi, Y.; Shimizu, C.; Takao, S.; Sato, N.; et al. Survival of HER2-positive primary breast cancer patients treated by neoadjuvant chemotherapy plus trastuzumab: A multicenter retrospective observational study (JBCRG-C03 study). Breast Cancer Res. Treat. 2014, 145, 143–153. [Google Scholar] [CrossRef] [Green Version]
- Slamon, D.; Eiermann, W.; Robert, N. Adjuvant trastuzumab in HER2-positive breast cancer. N. Engl. J. Med. 2011, 365, 1273–1283. [Google Scholar] [CrossRef] [Green Version]
- Furrer, D.; Jacob, S.; Michaud, A.; Provencher, L.; Lemieux, J.; Diorio, C. Association of Tobacco Use, Alcohol Consumption and HER2 Polymorphisms with Response to Trastuzumab in HER2-Positive Breast Cancer Patients. Clin. Breast Cancer 2018, 18, e687–e694. [Google Scholar] [CrossRef]
- Coté, D.; Eustace, A.; Toomey, S.; Cremona, M.; Milewska, M.; Furney, S.; Carr, A.; Fay, J.; Kay, E.; Kennedy, S.; et al. Germline single nucleotide polymorphisms in ERBB3 and BARD1 genes result in a worse relapse free survival response for HER2-positive breast cancer patients treated with adjuvant based docetaxel, carboplatin and trastuzumab (TCH). PLoS ONE 2018, 13, e0200996. [Google Scholar] [CrossRef] [PubMed]
- Singla, H.; Kaur, R.P.; Shafi, G.; Vashistha, R.; Banipal, R.P.S.; Kumar, V.; Munshi, A. Genomic alterations associated with HER2+ breast cancer risk and clinical outcome in response to trastuzumab. Mol. Biol. Rep. 2019, 46, 823–831. [Google Scholar] [CrossRef]
- Klocker, E.V.; Suppan, C. Biomarkers in Her2- Positive Disease. Breast Care 2020, 15, 586–593. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.internationalgenome.org/ (accessed on 15 December 2022).
- Cresti, N.; Lee, J.; Rourke, E.; Televantou, D.; Jamieson, D.; Verrill, M.; Boddy, A.V. Genetic variants in the HER2 gene: Influence on HER2 overexpression and loss of heterozygosity in breast cancer. Eur. J. Cancer 2016, 55, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Furrer, D.; Lemieux, J.; Côté, M.A.; Provencher, L.; Laflamme, C.; Barabé, F.; Jacob, S.; Michaud, A.; Diorio, C. Evaluation of human epidermal growth factor receptor 2 (HER2) single nucleotide polymorphisms (SNPs) in normal and breast tumor tissues and their link with breast cancer prognostic factors. Breast 2016, 30, 191–196. [Google Scholar] [CrossRef]
- Stanton, S.E.; Ward, M.M.; Christos, P.; Sanford, R.; Lam, C.; Cobham, M.V.; Donovan, D.; Scheff, R.J.; Cigler, T.; Moore, A.; et al. Pro1170 Ala polymorphism in HER2-neu is associated with risk of trastuzumab cardiotoxicity. BMC Cancer 2015, 15, 267. [Google Scholar] [CrossRef] [Green Version]
- Dokmanovic, M.; King, K.E.; Mohan, N.; Endo, Y.; Wu, W.J. Cardiotoxicity of ErbB2-targeted therapies and its impact on drug development, a spotlight on trastuzumab. Expert Opin. Drug Metab. Toxicol. 2017, 13, 755–766. [Google Scholar] [CrossRef]
- Han, X.; Diao, L.; Xu, Y.; Xue, W.; Ouyang, T.; Li, J.; Wang, T.; Fan, Z.; Fan, T.; Lin, B.; et al. Association between the HER2 Ile655Val polymorphism and response to trastuzumab in women with operable primary breast cancer. Ann. Oncol. Off. J. Eur. Soc. Med. Oncol. 2014, 25, 1158–1164. [Google Scholar] [CrossRef]
- Gianni, L.; Eiermann, W.; Semiglazov, V. Neoadjuvant chemotherapy with trastuzumab followed by adjuvant trastuzumab versus neoadjuvant chemotherapy alone in patients with HER2-positive locally advanced breast cancer (the NOAH trial): A randomised controlled superiority trial with a parallel HER2-negative cohort. Lancet 2010, 375, 377–384. [Google Scholar]
- Rigakos, G.; Razis, E. BRCAness: Finding the Achilles heel in ovarian cancer. Oncologist 2012, 17, 956–962. [Google Scholar] [CrossRef] [Green Version]
- Quax, T.E.; Claassens, N.J.; Söll, D.; van der Oost, J. Codon Bias as a Means to Fine-Tune Gene Expression. Mol. Cell 2015, 59, 149–161. [Google Scholar] [CrossRef] [Green Version]
- Sauna, Z.E.; Kimchi-Sarfaty, C. Understanding the contribution of synonymous mutations to human dis-ease. Nat. Rev. Genet. 2011, 12, 683–691. [Google Scholar] [CrossRef] [PubMed]
- Jagosky, M.; Tan, A.R. Combination of Pertuzumab and Trastuzumab in the Treatment of HER2-Positive Early Breast Cancer: A Review of the Emerging Clinical Data. Breast Cancer 2021, 13, 393–407. [Google Scholar] [CrossRef] [PubMed]
- Gaibar, M.; Novillo, A.; Romero-Lorca, A.; Malón, D.; Antón, B.; Moreno, A.; Fernández-Santander, A. FGFR1 Amplification and Response to Neoadjuvant Anti-HER2 Treatment in Early HER2-Positive Breast Cancer. Pharmaceutics 2022, 14, 242. [Google Scholar] [CrossRef]
- Yang, F.; Fu, Z.; Yang, M.; Sun, C.; Li, Y.; Chu, J.; Zhang, Y.; Li, W.; Huang, X.; Li, J.; et al. Expression pattern of microRNAs related with response to trastuzumab in breast cancer. J. Cell. Physiol. 2019, 234, 16102–16113. [Google Scholar] [CrossRef] [PubMed]
Patient Characteristics | No. (%) |
---|---|
Median age (years) | 51.1, range 28.4–78.2 |
Gender - Female - Male | 50 (100) -- |
Tumor location - Right side - Left side | 19 (38) 31 (62) |
Histology type - Ductal - Lobular | 47 (94) 3 (6) |
Histology grade - Grade 1 - Grade 2 - Grade 3 | 8 (16) 26 (52) 16 (32) |
HER2 status - Positive - Negative | 50 (100) -- |
ER status - Positive - Negative | 50 (100) -- |
PR status - Positive - Negative | 50 (100) -- |
Metastasis - No - Yes | 49 (98) 1 (2) |
Miller–Payne response grade - 1 - 2 - 3 - 4 - 5 | 1 (2) 8 (16) 8 (16) 18 (36) 15 (30) |
Anti-HER2 drug - Trastuzumab - Trastuzumab + pertuzumab | 34 (68) 16 (32) |
Chemotherapy - Anthracycline-based therapy - Carboplatin-docetaxel therapy - Taxane monotherapy | 11 (22) 31 (62) 8 (16) |
Gene Ontology | SNP Gene or Region | Genotypes ww wv vv | Patients | Allele Frequencies w v | 1000 Genomes Allele Frequency (Europeans) | |
---|---|---|---|---|---|---|
n | % | |||||
Xenobiotic metabolism | rs1045642 A > G ABCB1 | AA | 10 | 20.00 | A = 0.46 G = 0.54 | A = 0.52 G = 0.48 |
AG | 26 | 52.00 | ||||
GG | 14 | 28.00 | ||||
DNA damage check-point hypoxia | rs11212617 C > A ATM | CC | 10 | 20.83 | C = 0.44 A = 0.56 | C = 0.38 A = 0.62 |
CA | 22 | 45.83 | ||||
AA | 16 | 33.33 | ||||
DNA repair/polyubiquitination | rs2070096 C > G BARD1 | CC | 36 | 75.00 | C = 0.85 G = 0.15 | C = 0.82 G = 0.18 |
CG | 10 | 20.83 | ||||
GG | 2 | 4.17 | ||||
Cell death/cell cycle | rs62568637 G > A BRINP1 | GG | 47 | 95.92 | G = 0.98 A = 0.02 | G = 0.98 A = 0.02 |
GA | 2 | 4.08 | ||||
AA | 0 | 0.00 | ||||
Hypoxia/response to ROS (reactive oxygen species) | rs1001179 C > T CAT | CC | 27 | 62.79 | C = 0.77 T = 0.23 | C = 0.77 T = 0.23 |
CT | 12 | 27.91 | ||||
TT | 4 | 9.30 | ||||
MAPK cascade/protein phosphorylation | rs2293347 C > T EGFR | CC | 42 | 84.00 | C = 0.92 T = 0.08 | C = 0.89 T = 0.11 |
CT | 8 | 16.00 | ||||
TT | 0 | 0.00 | ||||
rs1140475 T > C EGFR | TT | 0 | 0.00 | T = 0.12 C = 0.88 | T = 0.11 C = 0.89 | |
TC | 12 | 24.49 | ||||
CC | 37 | 75.51 | ||||
Immune response regulation | rs396991 A > C FCGR3 | AA | 17 | 34.69 | A = 0.60 C = 0.40 | A = 0.66 C = 0.34 |
AC | 25 | 51.02 | ||||
CC | 7 | 14.29 | ||||
Lipid metabolism | rs1695 A > G GSTP1 | AA | 24 | 51.06 | A = 0.76 G = 0.24 | A = 0.67 G = 0.33 |
AG | 23 | 48.94 | ||||
GG | 0 | 0.00 | ||||
Signal transduction/protein phosphorylation Signal transduction/protein phosphorylation | rs1057519738 G > A HER2 | GG | 49 | 100.00 | G = 1.00 A = 0.00 | G = 1.00 A = 0.00 |
GA | 0 | 0.00 | ||||
AA | 0 | 0.00 | ||||
rs1057519816 C > A,T HER2 | CC | 50 | 100.00 | C = 1.00 A = 0.00 | G = 1.00 A = 0.00 | |
CA | 0 | 0.00 | ||||
AA | 0 | 0.00 | ||||
rs1057519862 G > A HER2 | GG | 50 | 100.00 | G = 1.00 A = 0.00 | G = 1.00 A = 0.00 | |
GA | 0 | 0.00 | ||||
AA | 0 | 0.00 | ||||
rs121913470 T > C,G HER2 | TT | 49 | 100.00 | T = 1.00 C = 0.00 | -- | |
TC | 0 | 0.00 | ||||
CC | 0 | 0.00 | ||||
rs121913471 G > T HER2 | GG | 48 | 97.96 | G = 0.99 T = 0.01 | -- | |
GT | 1 | 2.04 | ||||
TT | 0 | 0.00 | ||||
rs1058808 C > G HER2 | CC | 11 | 25.00 | C = 0.40 G = 0.60 | C = 0.33 G = 0.67 | |
CG | 13 | 29.55 | ||||
GG | 20 | 45.45 | ||||
rs1136201 A > G HER2 | AA | 35 | 70.00 | A = 0.75 G = 0.25 | A = 0.75 G = 0.25 | |
AG | 5 | 10.00 | ||||
GG | 10 | 20.00 | ||||
Signaling pathway/ tyrosine kinase | rs2229046 T > C HER3 | TT | 41 | 85.42 | T = 0.93 C = 0.07 | T = 0.93 C = 0.07 |
TC | 7 | 14.58 | ||||
CC | 0 | 0.00 | ||||
rs773123 A > T HER3 | AA | 41 | 83.67 | A = 0.91 T = 0.09 | A = 0.89 T = 0.11 | |
AT | 7 | 14.29 | ||||
TT | 1 | 2.04 | ||||
RNA polymerase II transcription regulation | rs55756123 C > T LDB2 | CC | 48 | 97.96 | C = 0.99 T = 0.01 | C = 0.99 T = 0.01 |
CT | 1 | 2.04 | ||||
TT | 0 | 0.00 | ||||
Angiogenesis | rs104886003 G > A PIK3CA | GG | 47 | 95.92 | G = 0.98 A = 0.02 | G = 1.00 A = 0.00 |
GA | 2 | 4.08 | ||||
AA | 0 | 0.00 | ||||
rs121913279 A > G PIK3CA | AA | 46 | 92.00 | A = 0.96 G = 0.04 | A = 1.00 G = 0.00 | |
AG | 4 | 8.00 | ||||
GG | 0 | 0.00 | ||||
rs121913273 G > C,A PIK3CA | GG | 50 | 100.00 | G = 1.00 C = 0.00 | G = 1.00 C = 0.00 | |
GC | 0 | 0.00 | ||||
CC | 0 | 0.00 | ||||
Lipid metabolism process | rs662 T > C PON1 | TT | 23 | 46.00 | T = 0.67 C = 0.33 | T = 0.71 C = 0.29 |
TC | 21 | 42.00 | ||||
CC | 6 | 12.00 | ||||
rs854560 A > T PON1 | AA | 19 | 40.43 | A = 0.64 T = 0.36 | A = 0.64 T = 0.36 | |
AT | 22 | 46.81 | ||||
TT | 6 | 12.77 | ||||
Endocytosis | rs707557 C > T RAB22A | CC | 21 | 42.00 | C = 0.68 T = 0.32 | C = 0.59 T = 0.41 |
CT | 26 | 52.00 | ||||
TT | 3 | 6.00 | ||||
Ion transport | rs77679196 G > A,C TRPC6 | GG | 48 | 96.00 | G = 0.98 A = 0.02 | G = 0.99 A = 0.01 C = 0–0.00003 |
GA | 2 | 4.00 | ||||
AA | 0 | 0.00 | ||||
Not described | rs4305714 C > T chr6 intergenic region | CC | 24 | 48.98 | C = 0.71 T = 0.29 | C = 0.78 T = 0.22 |
CT | 22 | 44.90 | ||||
TT | 3 | 6.12 | ||||
rs7698718 C > A LINC01060 | CC | 20 | 57.14 | C = 0.76 A = 0.24 | C = 0.83 A = 0.17 |
SNP (Gene or Region) | Homozygous Mutation (No = ww + wv Yes = vv) | Patients | Good Responders | Poor Responders | p-Value | |||
---|---|---|---|---|---|---|---|---|
n | % | n | % | n | % | |||
rs1045642 (ABCB1) | No | 36 | 72.00 | 25 | 75.76 | 11 | 64.71 | 0.511 |
Yes | 14 | 28.00 | 8 | 24.24 | 6 | 35.29 | ||
rs11212617 (ATM) | No | 32 | 66.67 | 21 | 67.74 | 11 | 64.71 | 1.000 |
Yes | 16 | 33.33 | 10 | 32.26 | 6 | 35.29 | ||
rs2070096 (BARD1) | No | 46 | 95.83 | 31 | 96.88 | 15 | 93.75 | 1.000 |
Yes | 2 | 4.17 | 1 | 3.13 | 1 | 6.25 | ||
rs1001179 (CAT) | No | 39 | 90.70 | 26 | 92.86 | 13 | 86.77 | 0.602 |
Yes | 4 | 9.30 | 2 | 7.14 | 2 | 13.33 | ||
rs1140475 (EGFR) | No | 12 | 24.49 | 7 | 21.88 | 5 | 29.41 | 0.729 |
Yes | 37 | 75.51 | 25 | 78.13 | 12 | 70.59 | ||
rs396991 (FCGR3) | No | 42 | 85.71 | 28 | 87.5 | 14 | 82.35 | 0.681 |
Yes | 7 | 14.29 | 4 | 12.5 | 3 | 17.65 | ||
rs1058808 (HER2) | No | 24 | 54.55 | 12 | 41.38 | 12 | 80 | 0.025 |
Yes | 20 | 45.45 | 17 | 58.62 | 3 | 20 | ||
rs1136201 (HER2) | No | 40 | 80 | 25 | 75.76 | 15 | 88.24 | 0.461 |
Yes | 10 | 20 | 8 | 24.24 | 2 | 11.76 | ||
rs773123 (HER3) | No | 48 | 97.96 | 33 | 100 | 15 | 93.75 | 0.327 |
Yes | 1 | 2.04 | 1 | 6.25 | ||||
rs4305714 (chr6 intergenic region) | No | 46 | 93.88 | 30 | 93.75 | 16 | 94.12 | 1.000 |
Yes | 3 | 6.12 | 2 | 6.25 | 1 | 5.88 | ||
rs7698718 (LINC01060) | No | 33 | 94.29 | 18 | 90.00 | 15 | 100.00 | 0.496 |
Yes | 2 | 5.71 | 2 | 10.00 | ||||
rs854560 (PON1) | No | 41 | 87.23 | 26 | 81.25 | 15 | 100.00 | 0.157 |
Yes | 6 | 12.77 | 6 | 18.75 | ||||
rs662 (PON1) | No | 44 | 88.00 | 29 | 87.88 | 15 | 88.24 | 1.000 |
Yes | 6 | 12.00 | 4 | 12.12 | 2 | 11.76 | ||
rs707557 (RAB22A) | No | 33 | 94.00 | 32 | 96.97 | 15 | 88.24 | 1.00 |
Yes | 2 | 6.00 | 1 | 3.03 | 2 | 11.76 |
SNP (Gene or Region) | Presence of Mutation (No = ww Yes = wv + vv) | Patients | No pCR | pCR | p-Value | |||
---|---|---|---|---|---|---|---|---|
n | % | n | % | n | % | |||
rs1045642 (ABCB1) | ww | 10 | 20 | 7 | 20 | 3 | 20 | 1.000 |
wv + vv | 40 | 80 | 28 | 80 | 12 | 80 | ||
rs11212617 (ATM) | ww | 10 | 20.41 | 8 | 22.86 | 2 | 14.29 | 0.702 |
wv + vv | 39 | 79.59 | 27 | 77.14 | 12 | 85.71 | ||
rs2070096 (BARD1) | ww | 36 | 75 | 28 | 84.85 | 8 | 53.33 | 0.031 |
wv + vv | 12 | 25 | 5 | 15.15 | 7 | 46.67 | ||
rs62568637 (BRINP1) | ww | 47 | 95.92 | 34 | 97.14 | 13 | 92.86 | 0.494 |
wv + vv | 2 | 4.08 | 1 | 2.86 | 1 | 7.14 | ||
rs1001179 (CAT) | ww | 27 | 62.79 | 19 | 63.33 | 8 | 61.54 | 1.000 |
wv + vv | 16 | 37.21 | 11 | 36.67 | 5 | 38.46 | ||
rs2293347 (EGFR) | ww | 42 | 84 | 29 | 82.86 | 13 | 86.67 | 1.000 |
wv + vv | 8 | 16 | 6 | 17.14 | 2 | 13.33 | ||
rs396991 (FCGR3) | ww | 17 | 34.69 | 13 | 37.14 | 10 | 71.43 | 0.743 |
wv + vv | 32 | 65.31 | 22 | 62.86 | 8 | 53.33 | ||
rs1695 (GSTP1) | ww | 24 | 51.06 | 14 | 43.75 | 10 | 66.67 | 0.212 |
wv + vv | 23 | 48.94 | 18 | 56.25 | 5 | 33.33 | ||
rs121913471 (HER2) | ww | 48 | 97.96 | 34 | 97.14 | 14 | 100 | 1.000 |
wv + vv | 1 | 2.04 | 1 | 2.86 | ||||
rs1058808 (HER2) | ww | 11 | 25 | 6 | 20 | 5 | 35.71 | 0.287 |
wv + vv | 33 | 75 | 24 | 80 | 9 | 64.29 | ||
rs1136201 (HER2) | ww | 35 | 70 | 24 | 68.57 | 11 | 73.33 | 1.000 |
wv + vv | 15 | 30 | 11 | 31.43 | 4 | 26.67 | ||
rs2229046 (HER3) | ww | 41 | 85.42 | 28 | 82.35 | 13 | 92.86 | 0.656 |
wv + vv | 7 | 14.58 | 6 | 17.65 | 1 | 7.14 | ||
rs773123 (HER3) | ww | 41 | 83.67 | 28 | 82.35 | 13 | 86.67 | 1.000 |
wv + vv | 8 | 16.33 | 6 | 17.65 | 2 | 13.33 | ||
rs7698718 (LINC01060) | ww | 20 | 57.14 | 15 | 60 | 5 | 50 | 0.712 |
wv + vv | 15 | 42.86 | 10 | 40 | 5 | 50 | ||
rs55756123 (LDB2) | ww | 48 | 97.96 | 34 | 100 | 14 | 93.33 | 0.306 |
wv + vv | 1 | 2.04 | 1 | 6.67 | ||||
rs104886003 (PIK3CA) | ww | 47 | 95.92 | 33 | 94.29 | 14 | 100 | 1.00 |
wv + vv | 2 | 4.08 | 2 | 5.71 | ||||
rs121913279 (PIK3CA) | ww | 46 | 92 | 32 | 91.43 | 14 | 93.33 | 1.00 |
wv + vv | 4 | 8 | 3 | 8.57 | 1 | 6.67 | ||
rs662 (PON1) | ww | 23 | 46 | 18 | 51.43 | 5 | 33.33 | 0.355 |
wv + vv | 27 | 54 | 17 | 48.57 | 10 | 66.67 | ||
rs707557 (RAB22A) | ww | 21 | 42 | 15 | 42.86 | 6 | 40 | 1.000 |
wv + vv | 29 | 58 | 20 | 57.14 | 9 | 60 | ||
rs77679196 (TRPC6) | ww | 48 | 96 | 34 | 97.14 | 14 | 93.33 | 0.514 |
wv + vv | 2 | 4 | 1 | 2.86 | 1 | 6.67 | ||
rs4305714 (chr6 intergenic region) | ww | 24 | 48.98 | 16 | 47.06 | 8 | 53.33 | 0.762 |
wv + vv | 25 | 51.02 | 18 | 52.94 | 7 | 46.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Novillo, A.; Gaibar, M.; Romero-Lorca, A.; Malón, D.; Antón, B.; Moreno, A.; Fernández-Santander, A. HER2 and BARD1 Polymorphisms in Early HER2-Positive Breast Cancer Patients: Relationship with Response to Neoadjuvant Anti-HER2 Treatment. Cancers 2023, 15, 763. https://doi.org/10.3390/cancers15030763
Novillo A, Gaibar M, Romero-Lorca A, Malón D, Antón B, Moreno A, Fernández-Santander A. HER2 and BARD1 Polymorphisms in Early HER2-Positive Breast Cancer Patients: Relationship with Response to Neoadjuvant Anti-HER2 Treatment. Cancers. 2023; 15(3):763. https://doi.org/10.3390/cancers15030763
Chicago/Turabian StyleNovillo, Apolonia, María Gaibar, Alicia Romero-Lorca, Diego Malón, Beatriz Antón, Amalia Moreno, and Ana Fernández-Santander. 2023. "HER2 and BARD1 Polymorphisms in Early HER2-Positive Breast Cancer Patients: Relationship with Response to Neoadjuvant Anti-HER2 Treatment" Cancers 15, no. 3: 763. https://doi.org/10.3390/cancers15030763
APA StyleNovillo, A., Gaibar, M., Romero-Lorca, A., Malón, D., Antón, B., Moreno, A., & Fernández-Santander, A. (2023). HER2 and BARD1 Polymorphisms in Early HER2-Positive Breast Cancer Patients: Relationship with Response to Neoadjuvant Anti-HER2 Treatment. Cancers, 15(3), 763. https://doi.org/10.3390/cancers15030763