A Series-Based Deep Learning Approach to Lung Nodule Image Classification
Abstract
:Simple Summary
Abstract
1. Introduction
Related Works
2. Methodology
2.1. Series by Radial Scanning
2.2. 3D Nodule Segmentation
2.3. Classification with U-Net
3. Results
4. Discussion and Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rowland, J.H.; Bellizzi, K.M. Cancer survivors and survivorship research: A reflection on today’s successes and tomorrow’s challenges. Hematol. Oncol. Clin. N. Am. 2008, 22, 181–200. [Google Scholar] [CrossRef] [PubMed]
- Elmore, L.W.; Greer, S.F.; Daniels, E.C.; Saxe, C.C.; Melner, M.H.; Krawiec, G.M.; Phelps, W.C. Blueprint for cancer research: Critical gaps and opportunities. CA Cancer J. Clin. 2021, 71, 107–139. [Google Scholar] [CrossRef] [PubMed]
- Benning, L.; Peintner, A.; Peintner, L. Advances in and the applicability of machine learning-based screening and early detection approaches for cancer: A primer. Cancers 2022, 14, 623. [Google Scholar] [CrossRef] [PubMed]
- Nanavaty, P.; Alvarez, M.S.; Alberts, W.M. Lung cancer screening: Advantages, controversies, and applications. Cancer Control 2014, 21, 9–14. [Google Scholar] [CrossRef] [Green Version]
- Khawaja, A.; Bartholmai, B.J.; Rajagopalan, S.; Karwoski, R.A.; Varghese, C.; Maldonado, F.; Peikert, T. Do we need to see to believe?—Radiomics for lung nodule classification and lung cancer risk stratification. J. Thorac. Dis. 2020, 12, 3303. [Google Scholar] [CrossRef]
- Parekh, V.; Jacobs, M.A. Radiomics: A new application from established techniques. Expert Rev. Precis. Med. Drug Dev. 2016, 1, 207–226. [Google Scholar] [CrossRef] [Green Version]
- Oliveira, S.P.; Neto, P.C.; Fraga, J.; Montezuma, D.; Monteiro, A.; Monteiro, J.; Cardoso, J.S. CAD systems for colorectal cancer from WSI are still not ready for clinical acceptance. Sci. Rep. 2021, 11, 14358. [Google Scholar] [CrossRef]
- Yanase, J.; Triantaphyllou, E. A systematic survey of computer-aided diagnosis in medicine: Past and present developments. Expert Syst. Appl. 2019, 138, 112821. [Google Scholar] [CrossRef]
- Yan, Y.; Yao, X.J.; Wang, S.H.; Zhang, Y.D. A survey of computer-aided tumor diagnosis based on convolutional neural network. Biology 2021, 10, 1084. [Google Scholar] [CrossRef]
- Chambara, N.; Ying, M. The diagnostic efficiency of ultrasound computer-aided diagnosis in differentiating thyroid nodules: A systematic review and narrative synthesis. Cancers 2019, 11, 1759. [Google Scholar] [CrossRef]
- Ding, J.; Li, A.; Hu, Z.; Wang, L. Accurate pulmonary nodule detection in computed tomography images using deep convolutional neural networks. In International Conference on Medical Image Computing and Computer-Assisted Intervention; Springer: Cham, Switzerland, 2017; pp. 559–567. [Google Scholar]
- Wang, S.; Zhou, M.; Liu, Z.; Liu, Z.; Gu, D.; Zang, Y.; Tian, J. Central focused convolutional neural networks: Developing a data-driven model for lung nodule segmentation. Med. Image Anal. 2017, 40, 172–183. [Google Scholar] [CrossRef] [PubMed]
- Wu, B.; Zhou, Z.; Wang, J.; Wang, Y. Joint learning for pulmonary nodule segmentation, attributes and malignancy prediction. In 2018 IEEE 15th International Symposium on Biomedical Imaging; Curran Associates: Washington, DC, USA, 2018; pp. 1109–1113. [Google Scholar]
- Shen, S.; Han, S.X.; Aberle, D.R.; Bui, A.A.; Hsu, W. An interpretable deep hierarchical semantic convolutional neural network for lung nodule malignancy classification. Expert Syst. Appl. 2019, 128, 84–95. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferreira-Junior, J.R.; Koenigkam-Santos, M.; Magalhaes Tenorio, A.P.; Faleiros, M.C.; Garcia Cipriano, F.E.; Fabro, A.T.; de Azevedo-Marques, P.M. CT-based radiomics for prediction of histologic subtype and metastatic disease in primary malignant lung neoplasms. Int. J. Comput. Assist. Radiol. Surg. 2020, 15, 163–172. [Google Scholar] [CrossRef] [PubMed]
- Firmino, M.; Angelo, G.; Morais, H.; Dantas, M.R.; Valentim, R. Computer-aided detection (CADe) and diagnosis (CADx) system for lung cancer with likelihood of malignancy. Biomed. Eng. OnLine 2016, 15, 2. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Choy, G.; Khalilzadeh, O.; Michalski, M.; Do, S.; Samir, A.E.; Pianykh, O.S.; Dreyer, K.J. Current applications and future impact of machine learning in radiology. Radiology 2018, 288, 318. [Google Scholar] [CrossRef]
- Ferreira, J.R.; Oliveira, M.C.; de Azevedo-Marques, P.M. Characterization of pulmonary nodules based on features of margin sharpness and texture. J. Digit. Imaging 2018, 31, 451–463. [Google Scholar] [CrossRef]
- Dhara, A.K.; Mukhopadhyay, S.; Dutta, A.; Garg, M.; Khandelwal, N. A combination of shape and texture features for classification of pulmonary nodules in lung CT images. J. Digit. Imaging 2016, 29, 466–475. [Google Scholar] [CrossRef] [Green Version]
- Felix, A.; Oliveira, M.; Machado, A.; Raniery, J. Using 3D texture and margin sharpness features on classification of small pulmonary nodules. In 2016 29th SIBGRAPI Conference on Graphics, Patterns and Images (SIBGRAPI); Curran Associates: Washington, DC, USA, 2016; pp. 394–400. [Google Scholar]
- Beig, N.; Khorrami, M.; Alilou, M.; Prasanna, P.; Braman, N.; Orooji, M.; Madabhushi, A. Perinodular and intranodular radiomic features on lung CT images distinguish adenocarcinomas from granulomas. Radiology 2019, 290, 783. [Google Scholar] [CrossRef]
- Uthoff, J.; Stephens, M.J.; Newell Jr, J.D.; Hoffman, E.A.; Larson, J.; Koehn, N.; Sieren, J.C. Machine learning approach for distinguishing malignant and benign lung nodules utilizing standardized perinodular parenchymal features from CT. Med. Phys. 2019, 46, 3207–3216. [Google Scholar] [CrossRef]
- Chen, G.; Xu, Z. Usage of intelligent medical aided diagnosis system under the deep convolutional neural network in lumbar disc herniation. Appl. Soft Comput. 2021, 111, 107674. [Google Scholar] [CrossRef]
- Bakheet, S.; Al-Hamadi, A. Computer-aided diagnosis of malignant melanoma using Gabor-based entropic features and multilevel neural networks. Diagnostics 2020, 10, 822. [Google Scholar] [CrossRef] [PubMed]
- Maqsood, S.; Damaševičius, R.; Maskeliūnas, R. TTCNN: A breast cancer detection and classification towards computer-aided diagnosis using digital mammography in early stages. Appl. Sci. 2022, 12, 3273. [Google Scholar] [CrossRef]
- Campanella, G.; Hanna, M.G.; Geneslaw, L.; Miraflor, A.; Werneck Krauss Silva, V.; Busam, K.J.; Fuchs, T.J. Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat. Med. 2019, 25, 1301–1309. [Google Scholar] [CrossRef]
- Chlebus, G.; Schenk, A.; Moltz, J.H.; van Ginneken, B.; Hahn, H.K.; Meine, H. Automatic liver tumor segmentation in CT with fully convolutional neural networks and object-based postprocessing. Sci. Rep. 2018, 8, 15497. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Fauw, J.; Ledsam, J.R.; Romera-Paredes, B.; Nikolov, S.; Tomasev, N.; Blackwell, S.; Ronneberger, O. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat. Med. 2018, 24, 1342–1350. [Google Scholar] [CrossRef]
- Dash, M.; Londhe, N.D.; Ghosh, S.; Semwal, A.; Sonawane, R.S. PsLSNet: Automated psoriasis skin lesion segmentation using modified U-Net-based fully convolutional network. Biomed. Signal Process. Control 2019, 52, 226–237. [Google Scholar] [CrossRef]
- Xie, F.; Yang, J.; Liu, J.; Jiang, Z.; Zheng, Y.; Wang, Y. Skin lesion segmentation using high-resolution convolutional neural network. Comput. Methods Programs Biomed. 2020, 186, 105241. [Google Scholar] [CrossRef]
- Abdoulaye, I.B.C.; Demir, Ö. Mamografi görüntülerinden kitle tespiti amacıyla öznitelik çıkarımı. In Ulusal Biyomedikal Cihaz Tasarımı ve Üretmi Sempozyumu; UBICTÜS: Istanbul, Turkey, 2017; Volume 1, pp. 33–36. [Google Scholar]
- Wang, P.; Hu, X.; Li, Y.; Liu, Q.; Zhu, X. Automatic cell nuclei segmentation and classification of breast cancer histopathology images. Signal Process. 2016, 122, 1–13. [Google Scholar] [CrossRef]
- Jiang, H.; Li, Z.; Li, S.; Zhou, F. An effective multi-classification method for NHL pathological images. In 2018 IEEE International Conference on Systems, Man, and Cybernetics (SMC); Curran Associates: Washington, DC, USA, 2018; pp. 763–768. [Google Scholar]
- Muhammad, W.; Hart, G.R.; Nartowt, B.; Farrell, J.J.; Johung, K.; Liang, Y.; Deng, J. Pancreatic cancer prediction through an artificial neural network. Front. Artif. Intell. 2019, 2, 2. [Google Scholar] [CrossRef] [Green Version]
- Busnatu, Ș.; Niculescu, A.G.; Bolocan, A.; Petrescu, G.E.; Păduraru, D.N.; Năstasă, I.; Martins, H. Clinical applications of artificial intelligence—An updated overview. J. Clinic. Med. 2022, 11, 2265. [Google Scholar] [CrossRef]
- Hunter, B.; Hindocha, S.; Lee, R.W. The role of artificial intelligence in early cancer diagnosis. Cancers 2022, 14, 1524. [Google Scholar] [CrossRef] [PubMed]
- Iakovidis, D.K.; Tsevas, S.; Savelonas, M.A.; Papamichalis, G. Image analysis framework for infection monitoring. IEEE Trans. Biomed. Eng. 2012, 59, 1135–1144. [Google Scholar] [CrossRef] [PubMed]
- Baur, B.; Bozdag, S. A canonical correlation analysis-based dynamic Bayesian network prior to infer gene regulatory networks from multiple types of biological data. J. Comput. Biol. 2015, 22, 289–299. [Google Scholar] [CrossRef]
- Guo, S.; Jiang, Q.; Chen, L.; Guo, D. Gene regulatory network inference using PLS-based methods. BMC Bioinform. 2016, 17, 545. [Google Scholar] [CrossRef] [Green Version]
- Penfold, C.A.; Shifaz, A.; Brown, P.E.; Nicholson, A.; Wild, D.L. CSI: A nonparametric Bayesian approach to network inference from multiple perturbed time series gene expression data. Stat. Appl. Genet. Mol. Biol. 2015, 14, 307–310. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isci, S.; Dogan, H.; Ozturk, C.; Otu, H.H. Bayesian network prior: Network analysis of biological data using external knowledge. Bioinformatics 2014, 30, 860–867. [Google Scholar] [CrossRef] [Green Version]
- Schlitt, T. Approaches to modeling gene regulatory networks: A gentle introduction. Methods Mol. Biol. 2013, 1021, 13–35. [Google Scholar]
- Murphy, K.; Mian, S. Modelling Gene Expression Data Using Dynamic Bayesian Networks; Technical Report; Computer Science Division, University of California: Berkeley, CA, USA, 1999. [Google Scholar]
- Ni, Y.; Müller, P.; Wei, L.; Ji, Y. Bayesian graphical models for computational network biology. BMC Bioinform. 2018, 19, 59–69. [Google Scholar] [CrossRef]
- Kim, S.Y.; Imoto, S.; Miyano, S. Inferring gene networks from time series microarray data using dynamic Bayesian networks. Brief. Bioinform. 2003, 4, 228–235. [Google Scholar] [CrossRef] [Green Version]
- Kourou, K.; Rigas, G.; Papaloukas, C.; Mitsis, M.; Fotiadis, D.I. Cancer classification from time series microarray data through regulatory dynamic Bayesian networks. Comput. Biol. Med. 2020, 116, 103577. [Google Scholar] [CrossRef]
- Imani, F.; Daoud, M.; Moradi, M.; Abolmaesumi, P.; Mousavi, P. Tissue classification using depth-dependent ultrasound time series analysis: In-vitro animal study. In Medical Imaging 2011: Ultrasonic Imaging, Tomography, and Therapy; SPIE Medical Imaging: Lake Buena Vista, FL, USA, 2011; Volume 7968, pp. 120–126. [Google Scholar]
- Shen, W.; Zhou, M.; Yang, F.; Yu, D.; Dong, D.; Yang, C.; Tian, J. Multi-crop convolutional neural networks for lung nodule malignancy suspiciousness classification. Pattern Recognit. 2017, 61, 663–673. [Google Scholar] [CrossRef]
- Al-Shabi, M.; Lee, H.K.; Tan, M. Gated-dilated networks for lung nodule classification in CT scans. IEEE Access 2019, 7, 178827–178838. [Google Scholar] [CrossRef]
- Ren, Y.; Tsai, M.Y.; Chen, L.; Wang, J.; Li, S.; Liu, Y.; Shen, C. A manifold learning regularization approach to enhance 3D CT image-based lung nodule classification. Int. J. Comput. Assist. Radiol. Surg. 2020, 15, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Shen, C.; Tsai, M.Y.; Chen, L.; Li, S.; Nguyen, D.; Wang, J.; Jia, X. On the robustness of deep learning-based lung-nodule classification for CT images with respect to image noise. Phys. Med. Biol. 2020, 65, 245037. [Google Scholar] [CrossRef] [PubMed]
- Jiang, H.; Gao, F.; Xu, X.; Huang, F.; Zhu, S. Attentive and ensemble 3D dual path networks for pulmonary nodules classification. Neurocomputing 2020, 398, 422–430. [Google Scholar] [CrossRef]
- Al-Shabi, M.; Lan, B.L.; Chan, W.Y.; Ng, K.H.; Tan, M. Lung nodule classification using deep local-global networks. Int. J. Comput. Assist. Radiol. Surg. 2019, 14, 1815–1819. [Google Scholar] [CrossRef] [Green Version]
- Al-Shabi, M.; Shak, K.; Tan, M. 3D axial-attention for lung nodule classification. Int. J. Comput. Assist. Radiol. Surg. 2021, 16, 1319–1324. [Google Scholar] [CrossRef]
- Bosch, C.M.; Baumann, C.; Dehghani, S.; Sommersperger, M.; Johannigmann-Malek, N.; Kirchmair, K.; Nasseri, M.A. A tool for high-resolution volumetric optical coherence tomography by compounding radial-and linear acquired B-scans using registration. Sensors 2022, 22, 1135. [Google Scholar] [CrossRef]
- Murad, M.; Jalil, A.; Bilal, M.; Ikram, S.; Ali, A.; Khan, B.; Mehmood, K. Radial undersampling-based interpolation scheme for multislice CSMRI reconstruction techniques. BioMed Res. Int. 2021, 2021, 6638588. [Google Scholar] [CrossRef]
- Mendoza, L.; Christopher, M.; Brye, N.; Proudfoot, J.A.; Belghith, A.; Bowd, C.; Zangwill, L.M. Deep learning predicts demographic and clinical characteristics from optic nerve head OCT circle and radial scans. Investig. Ophthalmol. Vis. Sci. 2021, 62, 2120. [Google Scholar]
- Deng, C.X.; Wang, G.B.; Yang, X.R. Image edge detection algorithm based on improved canny operator. In 2013 International Conference on Wavelet Analysis and Pattern Recognition; Curran Associates: Washington, DC, USA, 2013; pp. 168–172. [Google Scholar]
- Douglas, D.H.; Peucker, T.K. Algorithms for the reduction of the number of points required to represent a digitized line or its caricature. Cartogr. Int. J. Geograph. Inf. Geovisualization 1973, 10, 112–122. [Google Scholar] [CrossRef] [Green Version]
- Sato, Y. Piecewise linear approximation of plane curves by perimeter optimization. Pattern Recognit. 1992, 25, 1535–1543. [Google Scholar] [CrossRef]
- Aresta, G.; Jacobs, C.; Araújo, T.; Cunha, A.; Ramos, I.; van Ginneken, B.; Campilho, A. iW-Net: An automatic and minimalistic interactive lung nodule segmentation deep network. Sci. Rep. 2019, 9, 11591. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Aresta, G.; Araújo, T.; Jacobs, C.; Ginneken, B.V.; Cunha, A.; Ramos, I.; Campilho, A. Towards an automatic lung cancer screening system in low dose computed tomography. In Image Analysis for Moving Organ, Breast, and Thoracic Images; Springer: Cham, Switzerland, 2018; pp. 310–318. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In International Conference on Medical Image Computing and Computer-Assisted Intervention; Springer: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Çiçek, Ö.; Abdulkadir, A.; Lienkamp, S.S.; Brox, T.; Ronneberger, O. 3D U-Net: Learning dense volumetric segmentation from sparse annotation. In International Conference on Medical Image Computing and Computer-Assisted Intervention; Springer: Cham, Switzerland, 2016; pp. 424–432. [Google Scholar]
- Giannopoulos, M.; Tsagkatakis, G.; Tsakalides, P. 4D U-nets for multi-temporal remote sensing data classification. Remote Sens. 2022, 14, 634. [Google Scholar] [CrossRef]
- Armato III, S.G.; McLennan, G.; Bidaut, L.; McNitt-Gray, M.F.; Meyer, C.R.; Reeves, A.P.; Clarke, L.P. The lung image database consortium (LIDC) and image database resource initiative (IDRI): A completed reference database of lung nodules on CT scans. Med. Phys. 2011, 38, 915–931. [Google Scholar] [CrossRef] [Green Version]
- Ferreira Junior, J.R.; Oliveira, M.C.; de Azevedo-Marques, P.M. Cloud-based NoSQL open database of pulmonary nodules for computer-aided lung cancer diagnosis and reproducible research. J. Digit. Imaging 2016, 29, 716–729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Clark, K.; Vendt, B.; Smith, K.; Freymann, J.; Kirby, J.; Koppel, P.; Prior, F. The Cancer Imaging Archive (TCIA): Maintaining and operating a public information repository. J. Digit. Imaging 2013, 26, 1045–1057. [Google Scholar] [CrossRef] [Green Version]
- Wormanns, D.; Hamer, O.W. Glossary of terms for thoracic imaging-German version of the Fleischner Society recommendations. RoFo 2015, 187, 638–661. [Google Scholar]
- Calheiros, J.L.L.; de Amorim, L.B.V.; de Lima, L.L.; de Lima Filho, A.F.; Ferreira Júnior, J.R.; de Oliveira, M.C. The effects of perinodular features on solid lung nodule classification. J. Digit. Imaging 2021, 34, 798–810. [Google Scholar] [CrossRef]
- Redmon, J.; Farhadi, A. Yolov3: An incremental improvement. arXiv 2018, arXiv:1804.02767. [Google Scholar]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic minority over-sampling technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
- Huang, X.; Zhang, Y.; Chen, L.; Wang, J. U-net-based deformation vector field estimation for motion-compensated 4D-CBCT reconstruction. Med. Phys. 2020, 47, 3000–3012. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Zhao, Y.; Huang, Q.; Gao, H. 4D-AirNet: A temporally-resolved CBCT slice reconstruction method synergizing analytical and iterative method with deep learning. Phys. Med. Biol. 2020, 65, 175020. [Google Scholar] [CrossRef] [PubMed]
- Choy, C.; Gwak, J.; Savarese, S. 4D spatio-temporal convnets: Minkowski convolutional neural networks. Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit. 2019, 3075–3084. [Google Scholar]
- Liu, T.; Meng, Q.; Huang, J.J.; Vlontzos, A.; Rueckert, D.; Kainz, B. Video summarization through reinforcement learning with a 3D spatio-temporal U-net. IEEE Trans. Image Process. 2022, 31, 1573–1586. [Google Scholar] [CrossRef] [PubMed]
- Ismail Fawaz, H.; Forestier, G.; Weber, J.; Idoumghar, L.; Muller, P.A. Deep learning for time series classification: A review. Data Min. Knowl. Discov. 2019, 33, 917–963. [Google Scholar] [CrossRef] [Green Version]
- Abanda, A.; Mori, U.; Lozano, J.A. A review on distance-based time series classification. Data Min. Knowl. Discov. 2019, 33, 378–412. [Google Scholar] [CrossRef] [Green Version]
- Iwana, B.K.; Uchida, S. An empirical survey of data augmentation for time series classification with neural networks. PLoS ONE 2021, 16, e0254841. [Google Scholar] [CrossRef]
Depth | No. of Filters | Recall | Precision | Accuracy | Time |
---|---|---|---|---|---|
3 | 4 | 80.13 | 81.54 | 83.45 | 469.92 |
8 | 92.41 | 92.63 | 92.84 | 661.8 | |
4 | 4 | 80.04 | 79.63 | 81.22 | 477.74 |
8 | 87.19 | 88.01 | 88.73 | 668.4 |
Method | AUC | Recall | Precision | Accuracy | F1 |
---|---|---|---|---|---|
HSCNN [14] | 85.6 | 70.5 | N/A | 84.2 | N/A |
Multi-Crop [48] | 93.0 | 77.0 | N/A | 87.14 | N/A |
Local-Global [52] | 95.62 | 88.66 | 87.38 | 88.46 | 88.01 |
Gated-Dilated [49] | 95.14 | 92.21 | 91.85 | 92.57 | 92.03 |
3D DPN [53] | N/A | 92.04 | N/A | 90.24 | N/A |
MRC-DNN [50] | N/A | 81.00 | N/A | 90.00 | N/A |
Perturbated DNN [51] | 91.0 | 90.0 | N/A | 83.0 | N/A |
3D Axial-Attention [54] | 96.17 | 92.36 | 92.59 | 92.81 | 92.47 |
Our method | 96.19 | 92.41 | 92.63 | 92.84 | 92.51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Balcı, M.A.; Batrancea, L.M.; Akgüller, Ö.; Nichita, A. A Series-Based Deep Learning Approach to Lung Nodule Image Classification. Cancers 2023, 15, 843. https://doi.org/10.3390/cancers15030843
Balcı MA, Batrancea LM, Akgüller Ö, Nichita A. A Series-Based Deep Learning Approach to Lung Nodule Image Classification. Cancers. 2023; 15(3):843. https://doi.org/10.3390/cancers15030843
Chicago/Turabian StyleBalcı, Mehmet Ali, Larissa M. Batrancea, Ömer Akgüller, and Anca Nichita. 2023. "A Series-Based Deep Learning Approach to Lung Nodule Image Classification" Cancers 15, no. 3: 843. https://doi.org/10.3390/cancers15030843
APA StyleBalcı, M. A., Batrancea, L. M., Akgüller, Ö., & Nichita, A. (2023). A Series-Based Deep Learning Approach to Lung Nodule Image Classification. Cancers, 15(3), 843. https://doi.org/10.3390/cancers15030843