Characterization of Inorganic Scintillator Detectors for Dosimetry in Image-Guided Small Animal Radiotherapy Platforms
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Inorganic Scintillator-Based Detector
2.2. Experimental Measurements
2.2.1. Detector’s Response with Temperature Variation
2.2.2. Signal Repeatability, Linearity with Dose and Detector Response with the Dose Rate
2.2.3. Angular Response
2.2.4. Energy Dependence and Cross-Calibration in Medium Energy X-ray Beams
- A.
- Measurements with DWS1, Full_BS, and 30 s for counts collection.
- B.
- Measurements with the SS 2611 and PTW Unidos electrometer, 3 cm backscatter (3 cm_BS), and 60 s for charge collection
- C.
- Measurements with DWS1, 3 cm_BS, and 30 s counts collection time.
2.2.5. Cross-Calibration in the User’s Beam
2.2.6. SARRP Relative OUTPUT Factor Measurements
2.3. Uncertainties
3. Results
3.1. Detectors Response with Temperature Variations
3.2. Repeatability, Linearity with Dose and Detector Response with the Dose Rate
3.3. Angular Response of the DoseWire
3.4. Energy Dependence and Scintillator’s Cross-Calibration
3.4.1. Scintillator Detector Calibration Coefficients at NPL Reference Medium Energy X-rays
3.4.2. Scintillator Cross-Calibration in the User’s Beam
3.4.3. Uncertainty Budget of the Determination of the Scintillator Detector HVL-Dependent Calibration Coefficient
NPL 300 kV Facility | UCL SARRP | |||
---|---|---|---|---|
Sources of Uncertainty | Type A (%) | Type B (%) | Type A (%) | Type B (%) |
Dose at 2 cm depth with SS (Gy/s) | 3.2 1 | 3.63 2 | ||
SS charge measurement repeatability (nC) | 0.09 | 0.08 | ||
Temperature (K) | 0.02 | 0.10 | ||
Pressure (kPa) | 0.04 | 0.10 | ||
DWS1 readings repeatability (counts) | 1.12 3 | 0.39 4 | ||
Reproducibility of the setup | 1.55 5 | 1.56 5 | ||
Combined standard uncertainty (k = 1) | 3.73 | 3.97 |
3.5. Relative Output Factors
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Draeger, E.; Sawant, A.; Johnstone, C.; Koger, B.; Becker, S.; Vujaskovic, Z.; Jackson, I.L.; Poirier, Y. A Dose of Reality: How 20 Years of Incomplete Physics and Dosimetry Reporting in Radiobiology Studies May Have Contributed to the Reproducibility Crisis. Int. J. Radiat. Oncol. Biol. Phys. 2020, 106, 243–252. [Google Scholar] [CrossRef] [PubMed]
- Verhaegen, F.; Dubois, L.; Gianolini, S.; Hill, M.A.; Karger, C.P.; Lauber, K.; Prise, K.M.; Sarrut, D.; Thorwarth, D.; Vanhove, C.; et al. ESTRO ACROP: Technology for precision small animal radiotherapy research: Optimal use and challenges. Radiother. Oncol. 2018, 126, 471–478. [Google Scholar] [CrossRef]
- Pedersen, K.H.; Kunugi, K.A.; Hammer, C.G.; Culberson, W.S.; DeWerd, L.A. Radiation Biology Irradiator Dose Verification Survey. Radiat. Res. 2016, 185, 163–168. [Google Scholar] [CrossRef]
- Trompier, F.; Baumann, M.; Barrios, L.; Gregoire, E.; Abend, M.; Ainsbury, E.; Barnard, S.; Barquinero, J.F.; Bautista, J.A.; Brzozowska, B.; et al. Investigation of the influence of calibration practices on cytogenetic laboratory performance for dose estimation. Int. J. Radiat. Biol. 2017, 93, 118–126. [Google Scholar] [CrossRef]
- Coleman, C.N.; Higgins, G.S.; Brown, J.M.; Baumann, M.; Kirsch, D.G.; Willers, H.; Prasanna, P.G.; Dewhirst, M.W.; Bernhard, E.J.; Ahmed, M.M. Improving the Predictive Value of Preclinical Studies in Suort of Radiotherapy Clinical Trials. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2016, 22, 3138–3147. [Google Scholar] [CrossRef]
- Klevenhagen, S.C.; Aukett, R.J.; Harrison, R.; Moretti, C.; E Nahum, A.; E Rosser, K. The IPEMB code of practice for the determination of absorbed dose for X-rays below 300 kV generating potential (0.035 mm Al-4 mm Cu HVL; 10–300 kV generating potential). Institution of Physics and Engineering in Medicine and Biology. Phys. Med. Biol. 1996, 41, 2605–2625. [Google Scholar] [CrossRef]
- Ma, C.M.; Coffey, C.W.; DeWerd, L.A.; Liu, C.; Nath, R.; Seltzer, S.M.; Seuntjens, J.P.; American Association of Physicists in Medicine. AAPM protocol for 40-300 kV X-ray beam dosimetry in radiotherapy and radiobiology. Med. Phys. 2001, 28, 868–893. [Google Scholar] [CrossRef] [PubMed]
- Grimbergen, T.W.M.; Aalbers, A.H.L.; Mijnheer, B.J.; Seuntjens, J.; Thierens, H.; Van Dam, J.; Wittkamper, F.W.; Zoetelief, J.; Netherlands Commission on Radiation Dosimetry. NCS Report 10: Dosimetry of low and medium energy X-rays. 1997. Available online: https://radiationdosimetry.org/ncs/documents/ncs-10-dosimetry-of-low-and-medium-energy-X-rays (accessed on 28 December 2022).
- Andreo, P.; Burns, D.T.; Hohlfeld, K.; Huq, M.S.; Kanai, T.; Laitano, F.; Smyth, V.G.; Vynckier, S. Absorbed Dose Determination in External Beam Radiotherapy: An International Code of Practice for Dosimetry Based on Standards of Absorbed Dose to Water; IAEA Technical Reports Series no. 398; International Atomic Energy Agency: Vienna, Austria, 2000. [Google Scholar]
- Chen, Q.; Molloy, J.; Izumi, T.; Sterpin, E. Impact of backscatter material thickness on the depth dose of orthovoltage irradiators for radiobiology research. Phys. Med. Biol. 2019, 64, 055001. [Google Scholar] [CrossRef]
- Subiel, A.; Silvestre Patallo, I.; Palmans, H.; Barry, M.; Tulk, A.; Soultanidis, G.; Greenman, J.; Green, V.L.; Cawthorne, C.; Schettino, G. The influence of lack of reference conditions on dosimetry in pre-clinical radiotherapy with medium energy X-ray beams. Phys. Med. Biol. 2020, 65, 085016. [Google Scholar] [CrossRef]
- Du, S.; Lockamy, V.; Zhou, L.; Xue, C.; LeBlanc, J.; Glenn, S.; Shukla, G.; Yu, Y.; Dicker, A.P.; Leeper, D.B.; et al. Stereotactic Body Radiation Therapy Delivery in a Genetically Engineered Mouse Model of Lung Cancer. Int. J. Radiat. Oncol. Biol. Phys. 2016, 96, 529–537. [Google Scholar] [CrossRef] [Green Version]
- Woods, K.; Neph, R.; Nguyen, D.; Sheng, K. A sparse orthogonal collimator for small animal intensity-modulated radiation therapy. Part II: Hardware development and commissioning. Med. Phys. 2019, 46, 5733–5747. [Google Scholar] [CrossRef] [PubMed]
- Prezado, Y.; Dos Santos, M.; Gonzalez, W.; Jouvion, G.; Guardiola, C.; Heinrich, S.; Labiod, D.; Juchaux, M.; Jourdain, L.; Sebrie, C.; et al. Transfer of Minibeam Radiation Therapy into a cost-effective equipment for radiobiological studies: A proof of concept. Sci. Rep. 2017, 7, 17295. [Google Scholar] [CrossRef]
- Rezaee, M.; Iordachita, I.; Wong, J.W. Ultrahigh dose-rate (FLASH) X-ray irradiator for pre-clinical laboratory research. Phys. Med. Biol. 2021, 66, 095006. [Google Scholar] [CrossRef] [PubMed]
- Biglin, E.R.; Aitkenhead, A.H.; Price, G.J.; Chadwick, A.L.; Santina, E.; Williams, K.J.; Kirkby, K.J. A preclinical radiotherapy dosimetry audit using a realistic 3D printed murine phantom. Sci. Rep. 2022, 12, 1–13. [Google Scholar] [CrossRef]
- Silvestre Patallo, I.; Subiel, A.; Westhorpe, A.; Gouldstone, C.; Tulk, A.; Sharma, R.A.; Schettino, G. Development and Implementation of an End-To-End Test for Absolute Dose Verification of Small Animal Preclinical Irradiation Research Platforms. Int. J. Radiat. Oncol. Biol. Phys. 2020, 107, 587–596. [Google Scholar] [CrossRef] [PubMed]
- DeWerd, L.A.; Kunugi, K. Accurate Dosimetry for Radiobiology. Int. J. Radiat. Oncol. Biol. Phys. 2021, 111, e75–e81. [Google Scholar] [CrossRef]
- Hammer, C.G.; Rosen, B.S.; Fagerstrom, J.M.; Culberson, W.S.; DeWerd, L.A. Experimental investigation of GafChromic® EBT3 intrinsic energy dependence with kilovoltage X-rays, 137 Cs, and 60 Co. Med. Phys. 2018, 45, 448–459. [Google Scholar] [CrossRef] [PubMed]
- Anton, M.; Büermann, L. Relative response of the alanine dosimeter to medium energy X-rays. Phys. Med. Biol. 2015, 60, 6113–6129. [Google Scholar] [CrossRef] [PubMed]
- Hjørringgaard, J.G.; Ankjærgaard, C.; Claus, E.; Andersen, C.E. The microdosimetric one-hit detector model for calculating the relative efficiency of the alanine pellet dosimeter in low energy X-ray beams. Radiat. Meas. 2022, 150, 106659. [Google Scholar] [CrossRef]
- Silvestre Patallo, I.; Carter, R.; Maughan, D.; Nisbet, A.; Schettino, G.; Subiel, A. Evaluation of a micro ionization chamber for dosimetric measurements in image-guided preclinical irradiation platforms. Phys. Med. Biol. 2021, 66, 245012. [Google Scholar] [CrossRef]
- Dimitriadis, A.; Silvestre Patallo, I.; Billas, I.; Duane, S.; Nisbet, A.; Clark, C.H. Characterisation of a plastic scintillation detector to be used in a multicentre stereotactic radiosurgery dosimetry audit. Radiation Phys. Chem. 2017, 140, 373–378. [Google Scholar] [CrossRef]
- Linares Rosales, H.M.; Archambault, L.; Beddar, S.; Beaulieu, L. Dosimetric performance of a multipoint plastic scintillator dosimeter as a tool for real-time source tracking in high dose rate 192 Ir brachytherapy. Med. Phys. 2020, 47, 4477–4490. [Google Scholar] [CrossRef] [PubMed]
- Debnath, S.B.C.; Fauquet, C.; Tallet, A.; Goncalves, A.; Lavandier, S.; Jandard, F.; Tonneau, D.; Darreon, J. High spatial resolution inorganic scintillator detector for high-energy X-ray beam at small field irradiation. Med. Phys. 2020, 47, 1364–1371. [Google Scholar] [CrossRef]
- Cusumano, D.; Placidi, L.; D’Agostino, E.; Boldrini, L.; Menna, S.; Valentini, V.; De Spirito, M.; Azario, L. Characterization of an inorganic scintillator for small-field dosimetry in MR-guided radiotherapy. J. Appl. Clin. Med. Phys. 2020, 21, 244–251. [Google Scholar] [CrossRef]
- Scintillation Dosimetry; Beddar, S.; Beaulieu, L. (Eds.) CRC Press: Boca Raton, FL, USA, 2016; ISBN 978-1-4822-0899-3. [Google Scholar]
- Byrne, K.; Alharbi, M.; Esplen, N.; Woulfe, P.; O’Keeffe, S.; Bazalova-Carter, M.; Foley, M. Initial Evaluation of the Performance of Novel Inorganic Scintillating Detectors for Small Animal Irradiation Dosimetry. IEEE Sens. J. 2020, 20, 4704–4712. [Google Scholar] [CrossRef]
- Beddar, S. On possible temperature dependence of plastic scintillator response. Med. Phys. 2012, 39, 6522. [Google Scholar] [CrossRef]
- Refrigerated thermostatic baths and circulators. Available online: http://www.keison.co.uk/products/grantinstruments/RefrigeratedCirculatingBaths.pdf (accessed on 26 July 2022).
- Peralta, L. Temperature dependence of plastic scintillators. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2018, 883, 20–23. [Google Scholar] [CrossRef]
- Poludniowski, G.; Landry, G.; DeBlois, F.; Evans, P.M.; Verhaegen, F. SpekCalc: A program to calculate photon spectra from tungsten anode X-ray tubes. Phys. Med. Biol. 2009, 54, N433–N438. [Google Scholar] [CrossRef] [PubMed]
- Soultanidis, G.; Subiel, A.; Renard, I.; Reinhart, A.M.; Green, V.L.; Oelfke, U.; Archibald, S.J.; Greenman, J.; Tulk, A.; Walker, A.; et al. Development of an anatomically correct mouse phantom for dosimetry measurement in small animal radiotherapy research. Phys. Med. Biol. 2019, 64, 12NT02. [Google Scholar] [CrossRef]
- Bolus Material. Available online: https://osl.uk.com/radiotherapy/i/bolus-material/ (accessed on 26 July 2022).
- Lu, B. Dosimetric Commissioning of UCL Cancer Institute Small-Animal Radiation Research Platform (SARRP) with Fixed Collimation Settings. Internal. Report. 2017. [Google Scholar]
- Aukett, R.J.; Burns, J.E.; Greener, A.G.; Harrison, R.M.; Moretti, C.; Nahum, A.E.; Rosser, K.E.; IPEM Working Party. Addendum to the IPEMB code of practice for the determination of absorbed dose for X-rays below 300 kV generating potential (0.035 mm Al-4 mm Cu HVL). Phys. Med. Biol. 2005, 50, 2739–2748. [Google Scholar] [CrossRef]
- Jager, R.; Bartelds, P.; Staut, N.; van Hoof, S.; Beera, K.; Glenn, S.; McLaughlin, W.; Verhaegen, F. Review of 10 years of commissioning of commercial X-ray-based image guided small animal irradiation systems. In Proceedings of the 5th Conference on Small Animal Precision Image-Guided Radiotherapy, Munich, Germany, 21–23 March 2022. [Google Scholar]
- Lindsay, P.E.; Granton, P.V.; Gasparini, A.; Jelveh, S.; Clarkson, R.; van Hoof, S.; Hermans, J.; Kaas, J.; Wittkamper, F.; Sonke, J.J.; et al. Multi-institutional dosimetric and geometric commissioning of image-guided small animal irradiators. Med. Phys. 2014, 41, 031714. [Google Scholar] [CrossRef] [PubMed]
- Ghita, M.; McMahon, S.J.; Thompson, H.F.; McGarry, C.K.; King, R.; Osman, S.O.S.; Kane, J.L.; Tulk, A.; Schettino, G.; Butterworth, K.T.; et al. Small field dosimetry for the small animal radiotherapy research platform (SARRP). Radiat. Oncol. 2017, 12, 204. [Google Scholar] [CrossRef]
- Palmer, A.L.; Dimitriadis, A.; Nisbet, A.; Clark, C.H. Evaluation of Gafchromic EBT-XD film, with comparison to EBT3 film, and alication in high dose radiotherapy verification. Phys. Med. Biol. 2015, 60, 8741–8752. [Google Scholar] [CrossRef]
- Sedgwick, I.; Das, D.; Guerrini, N.; Marsh, B.; Turchetta, R. LASSENA: A 6.7 Megapixel, 3-sides Buttable Wafer-Scale CMOS Sensor using a novel grid-addressing architecture. In Proceedings of the International Image Sensor Workshop, Snowbird Resort, UT, USA, 12–16 June 2013; pp. 3–6. Available online: https://imagesensors.org/2013-papers (accessed on 28 December 2022).
- Micke, A.; Lewis, D.F.; Yu, X. Multichannel film dosimetry with nonuniformity correction. Med. Phys. 2011, 38, 2523–2534. [Google Scholar] [CrossRef] [PubMed]
- Flynn, S.; Price, T.; Allport, P.P.; Silvestre Patallo, I.; Thomas, R.; Subiel, A.; Bartzsch, S.; Treibel, F.; Ahmed, M.; Jacobs-Headspith, J.; et al. Evaluation of a pixelated large format CMOS sensor for X-ray microbeam radiotherapy. Med. Phys. 2020, 47, 1305–1316. [Google Scholar] [CrossRef] [PubMed]
- Mateos, J.C.; Sánchez, F.; Horno, J.; Ureña, J.; Zaragoza, J.R.; Madurga, G. A geometric calculation of square and circular size equivalents for rectangular radiation fields in radiotherapy. IMA J. Math. Alied Med. Biol. 1985, 2, 131–137. [Google Scholar] [CrossRef]
- Guide to the Expression of Uncertainty in Measurement, JCGM 100:2008 (GUM 1995 with Minor Corrections). 2008. Available online: https://www.bipm.org/documents/20126/2071204/JCGM_100_2008_E.pdf/cb0ef43f-baa5-11cf-3f85-4dcd86f77bd6 (accessed on 14 October 2022).
- Nutbrown, R.F.; Shipley, D.R. NPL REPORT CIRM 41: Calculation of Factors to Convert from Air Kerma to Absorbed Dose to Water for Medium Energy Photons. 2000. Available online: https://eprintspublications.npl.co.uk/1612/1/cirm41.pdf (accessed on 14 October 2022).
- Anvari, A.; Poirier, Y.; Sawant, A. Development and implementation of EPID-based quality assurance tests for the small animal radiation research platform (SARRP). Med. Phys. 2018, 45, 3246–3257. [Google Scholar] [CrossRef]
- International Atomic Energy Agency, Dosimetry of Small Static Fields Used in External Beam Radiotherapy, Technical Reports Series No. 483, IAEA, Vienna. 2017. Available online: https://www.iaea.org/publications/11075/dosimetry-of-small-static-fields-used-in-external-beam-radiotherapy (accessed on 15 September 2022).
Nominal Generating Potential (kV) | Additional Filtration (mm Sn + mm Cu + mm Al) 1 | HVL (mm Cu) | |
---|---|---|---|
First | Second 2 | ||
135 | 0 + 0.27 + 1.2 | 0.50 | 0.85 |
180 | 0 + 0.54 + 1.0 | 1.00 | 1.69 |
220 | 0 + 1.40 + 0.9 | 2.00 | 2.87 |
280 | 1.5 + 0.26 + 1.0 | 4.00 | 4.39 |
0.5 mm Cu | 1 mm Cu | 2 mm Cu | 4 mm Cu | ||
---|---|---|---|---|---|
Scintillator (counts) 1 | DWS1 | 21,057.36 | 19,765.84 | 10,028.23 | 3205.56 |
DWS2 | 25,115.18 | 23,626.34 | 12,005.56 | 3831.85 | |
DWS3 | 22,514.24 | 21,097.56 | 10,699.68 | 3416.74 | |
Standard Deviation | DWS1 | 84.74 | 56.65 | 33.40 | 24.40 |
DWS2 | 83.83 | 58.13 | 34.78 | 33.76 | |
DWS3 | 82.25 | 57.21 | 34.62 | 16.43 | |
Coefficient of variation (%) | DWS1 | 0.40 | 0.29 | 0.33 | 0.76 |
DWS2 | 0.33 | 0.25 | 0.29 | 0.88 | |
DWS3 | 0.37 | 0.27 | 0.32 | 0.48 | |
Monitor IC (µC) 1 | 0.047055 | 0.067651 | 0.066751 | 0.065559 | |
Standard Deviation | 0.000014 | 0.000030 | 0.000029 | 0.000025 | |
Coefficient of variation (%) | 0.03 | 0.04 | 0.04 | 0.04 |
0.5 mm Cu | 1 mm Cu | 2 mm Cu | 4 mm Cu | |
---|---|---|---|---|
Set 1: Full Backscatter (A and B) | ||||
SS 2611 average dose rate (Gy/s) | 1.745 ×10−3 | 2.564 × 10−3 | 2.464 × 10−3 | 2.335 × 10−3 |
DWS1 average signal (counts/s) | 700.98 | 626.00 | 311.90 | 97.37 |
Set 1: Full Backscatter (A and B) | ||||
SS 2611 average dose rate (Gy/s) | 1.748 × 10−3 | 2.560 × 10−3 | 2.460 × 10−3 | 2.332 × 10−3 |
DWS1 average signal (counts/s) | 702.10 | 628.70 | 316.23 | 99.02 |
Set 1: Full Backscatter (A and B) | ||||
SS 2611 average dose rate (Gy/s) | 1.690 × 10−3 | 2.499 × 10−3 | 2.460 × 10−3 | 2.302 × 10−3 |
DWS1 average signal (counts/s) | 668.62 | 618.51 | 304.97 | 92.41 |
Set 1: Full Backscatter (A and B) | ||||
SS 2611 average dose rate (Gy/s) | 1.688 × 10−3 | 2.495 × 10−3 | 2.421 × 10−3 | 2.294 × 10−3 |
DWS1 average signal (counts/s) | 669.45 | 622.39 | 306.11 | 93.03 |
0.667 mm Cu | ||
---|---|---|
Day 1 | SS 2611 average dose rate (Gy/s) Set 1 | 6.254 × 10−2 |
DWS1 average signal (counts/s) Set 1 | 23,620.03 | |
SS 2611 average dose rate (Gy/s) Set 2 | 6.314 × 10−2 | |
DWS1 average signal (counts/s) Set 2 | 23,927.97 | |
Day 2 | SS PTW 30012 average dose rate (Gy/s) Set 1 | 6.242 × 10−2 |
DWS1 average signal (counts/s) Set 1 | 23,486.45 | |
SS PTW 30012 average dose rate (Gy/s) Set 2 | 6.333 × 10−2 | |
DWS1 average signal (counts/s) Set 2 | 23,710.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Silvestre Patallo, I.; Subiel, A.; Carter, R.; Flynn, S.; Schettino, G.; Nisbet, A. Characterization of Inorganic Scintillator Detectors for Dosimetry in Image-Guided Small Animal Radiotherapy Platforms. Cancers 2023, 15, 987. https://doi.org/10.3390/cancers15030987
Silvestre Patallo I, Subiel A, Carter R, Flynn S, Schettino G, Nisbet A. Characterization of Inorganic Scintillator Detectors for Dosimetry in Image-Guided Small Animal Radiotherapy Platforms. Cancers. 2023; 15(3):987. https://doi.org/10.3390/cancers15030987
Chicago/Turabian StyleSilvestre Patallo, Ileana, Anna Subiel, Rebecca Carter, Samuel Flynn, Giuseppe Schettino, and Andrew Nisbet. 2023. "Characterization of Inorganic Scintillator Detectors for Dosimetry in Image-Guided Small Animal Radiotherapy Platforms" Cancers 15, no. 3: 987. https://doi.org/10.3390/cancers15030987
APA StyleSilvestre Patallo, I., Subiel, A., Carter, R., Flynn, S., Schettino, G., & Nisbet, A. (2023). Characterization of Inorganic Scintillator Detectors for Dosimetry in Image-Guided Small Animal Radiotherapy Platforms. Cancers, 15(3), 987. https://doi.org/10.3390/cancers15030987