Impact of Perineural Invasion and Preexisting Type 2 Diabetes on Patients with Esophageal Squamous Cell Carcinoma Receiving Neoadjuvant Chemoradiotherapy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patient Eligibility
2.2. Multimodality Treatments
2.3. Endpoints Definition and Study Variables
2.4. Statistical Methods and Tools
3. Results
3.1. Patient Enrollment and Characteristics
3.2. Overall Treatment Outcomes
3.3. Prognostic Factors in Patients with a Non-pCR
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef] [PubMed]
- Rustgi, A.K.; El-Serag, H.B. Esophageal carcinoma. N. Engl. J. Med. 2014, 371, 2499–2509. [Google Scholar] [CrossRef] [PubMed]
- Morgan, E.; Soerjomataram, I.; Rumgay, H.; Coleman, H.G.; Thrift, A.P.; Vignat, J.; Laversanne, M.; Ferlay, J.; Arnold, M. The global landscape of esophageal squamous cell carcinoma and esophageal adenocarcinoma incidence and mortality in 2020 and projections to 2040: New estimates from GLOBOCAN 2020. Gastroenterology 2022, 163, 649–658. [Google Scholar] [CrossRef] [PubMed]
- Arnold, M.; Soerjomataram, I.; Ferlay, J.; Forman, D. Global incidence of oesophageal cancer by histology subtype in 2012. Gut 2015, 64, 381–387. [Google Scholar] [CrossRef]
- Li, Y.; Xu, J.; Gu, Y.; Sun, X.; Dong, H.; Chen, C. The disease and economic burdens of esophageal cancer in China from 2013 to 2030: Dynamic cohort modeling study. JIMI Public Health Surveill. 2022, 8, e33191. [Google Scholar] [CrossRef]
- GBD 2017 Oesophageal Cancer Collaborators. The global, regional, and national burden of oesophageal cancer and its attributable risk factors in 195 countries and territories, 1990-2017: A systemic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol. Hepatol. 2020, 5, 582–597. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Ding, N.; Zhao, Y.; Yuan, L.; Mao, Y. The current optimal multimodality treatments for oesophageal squamous-cell carcinoma: A systemic review and meta-analysis. Int. J. Surg. 2018, 60, 88–100. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, S.; Kawakubo, H.; Okamura, A.; Takahashi, K.; Toihata, T.; Takemura, R.; Mayanagi, H.; Takeuchi, H.; Watanabe, M.; Kitagawa, Y. Prognostic significance of stratification using pathological stage and response to neoadjuvant chemotherapy for esophageal squamous cell carcinoma. Ann. Surg. Oncol. 2021, 28, 8438–8447. [Google Scholar] [CrossRef]
- Nakashima, Y.; Saeki, H.; Hu, Q.; Tsuda, Y.; Hisamatsu, Y.; Ando, K.; Oki, E.; Maehara, Y. Neoadjuvant chemotherapy versus chemoradiotherapy for patients with esophageal squamous cell carcinoma. Anticancer. Res. 2018, 38, 6809–6814. [Google Scholar] [CrossRef]
- von Dobeln, G.A.; Klevebro, F.; Jacobsen, A.B.; Johannessen, H.O.; Nielsen, N.H.; Johnsen, G.; Harlevoll, I.; Glenjen, N.I.; Friesland, S.; Lundell, L.; et al. Neoadjuvant chemotherapy versus neoadjuvant chemoradiotherapy for cancer of the esophagus or gastroesophageal junction: Long-term results of a randomized clinical trial. Dis. Esophagus 2019, 32, doy078. [Google Scholar] [CrossRef]
- Huang, T.C.; Hsu, C.H.; Lin, C.C.; Tu, Y.K. Systemic review and network meta-analysis: Neoadjuvant chemoradiotherapy for locoregional esophageal cancer. Jpn. J. Clin. Oncol. 2015, 45, 1023–1028. [Google Scholar] [CrossRef]
- Li, J.; Ma, S. History and current situation of neoadjuvant treatment for locally advanced esophageal cancer. Thorac. Cancer 2021, 12, 2293–2299. [Google Scholar] [CrossRef] [PubMed]
- van der Wilk, B.J.; Eyck, B.M.; Legarde, S.M.; van der Gaast, A.; Nuyttens, J.J.M.E.; Wijnhoven, B.P.L.; van Lanschot, J.J.B. The optimal neoadjuvant treatment of locally advanced esophageal cancer. J. Thorac. Dis. 2019, 11, S621–S631. [Google Scholar] [CrossRef] [PubMed]
- van Hagen, P.; Hulshof, M.C.C.M.; van Lanschot, J.B.; Steyerberg, E.W.; van Berge Henegouwen, M.I.; Wijnhoven, B.P.L.; Richel, D.J.; Nieuwenhuijzen, G.A.P.; Hospers, G.A.P.; Bonenkamp, J.J.; et al. Preoperative chemoradiotherapy for esophageal or junction cancer. N. Engl. J. Med. 2012, 366, 2074–2084. [Google Scholar] [CrossRef]
- Yang, H.; Liu, H.; Chen, Y.; Zhu, C.; Fang, W.; Yu, Z.; Mao, W.; Xiang, J.; Han, Y.; Chen, Z.; et al. Neoadjuvant chemoradiotherapy followed by surgery versus surgery alone for locally advanced squamous cell carcinoma of the esophagus (NEOCRTEC5010): A phase III multicenter, randomized, open-label clinical trial. J. Clin. Oncol. 2018, 36, 2796–2803. [Google Scholar] [CrossRef] [PubMed]
- Eyck, B.M.; van Lanschot, J.B.; Hulshof, M.C.C.M.; van der Wilk, B.J.; Shapiro, J.; van Hagen, P.; van Berge Henegouwen, M.I.; Wijnhoven, B.P.L.; van Laarhoven, H.W.M.; Nieuwenhuijzen, G.A.P.; et al. Ten-year outcome of neoadjuvant chemoradiotherapy plus surgery for esophageal cancer: The randomized controlled CROSS trial. J. Clin. Oncol. 2021, 39, 1995–2004. [Google Scholar] [CrossRef]
- Yang, H.; Liu, H.; Chen, Y.; Zhu, C.; Fang, W.; Yu, Z.; Mao, W.; Xiang, J.; Han, Y.; Chen, H.; et al. Long-term efficacy of neoadjuvant chemoradiotherapy plus surgery for the treatment of local advanced esophageal squamous cell carcinoma. JAMA Surg. 2021, 15, 721–729. [Google Scholar] [CrossRef]
- Chao, Y.K.; Chang, H.K.; Tseng, C.K.; Liu, Y.H.; Wen, Y.W. Development of a nomogram for the prediction of pathological complete response after neoadjuvant chemoradiotherapy in patients with esophageal squamous cell carcinoma. Dis. Esophagus 2017, 30, 1–8. [Google Scholar] [CrossRef]
- Soro, T.; Kho, G.; Zhao, K.L.; Ismail, M.; Badakhshi, H. Impact of pathological complete response following neoadjuvant chemoradiotherapy in esophageal cancer. J. Thorac. Dis. 2018, 10, 4069–4076. [Google Scholar] [CrossRef]
- Shen, J.; Kong, M.; Yang, H.; Jin, K.; Chen, Y.; Fang, W.; Yu, Z.; Mao, W.; Xiang, J.; Han, Y.; et al. Pathological complete response after neoadjuvant treatment determines survival in esophageal squamous cell carcinoma patients (NEOCRTEC5010). Ann. Transl. Med. 2021, 9, 1516. [Google Scholar] [CrossRef]
- Smit, J.K.; Guler, S.; Beukema, J.C.; Mul, V.E.; Burgerhof, J.G.M.; Hospers, G.A.P.; Plukker, J.T.M. Different recurrence pattern after neoadjuvant chemoradiotherapy compared to surgery alone in esophageal cancer patients. Ann. Surg. Oncol. 2013, 20, 4008–4015. [Google Scholar] [CrossRef] [PubMed]
- Al-Kaabi, A.; van der Post, R.S.; van der Werf, L.R.; Wijnhoven, B.P.L.; Rosman, C.; Hulshof, M.C.C.M.; van Laarhoven, H.W.M.; Verhoeven, R.H.A.; Siersema, P.D. Impact of pathological tumor response after CROSS neoadjuvant chemoradiotherapy followed by surgery on long-term outcome of esophageal cancer: A population-based study. Acta Oncol. 2021, 60, 497–504. [Google Scholar] [CrossRef] [PubMed]
- Worrell, S.G.; Alvarado, C.E.; Thibault, D.; Towe, C.W.; Mitchell, J.D.; Vekstein, A.; Kosinski, A.S.; Hartwig, M.G.; Linden, P.A. Impact of diabetes on pathologic response to multimodality therapy for esophageal cancer. Ann. Thorac. Surg. 2022; Online ahead of print. [Google Scholar] [CrossRef]
- Alvarado, C.E.; Kapcio, K.C.; Lada, M.J.; Linden, P.A.; Towe, C.W.; Worrell, S.G. The effect of diabetes on pathologic complete response among patients with esophageal cancer. Semin. Thorac. Cardiovasc. Surg. 2022; Online ahead of print. [Google Scholar] [CrossRef]
- Ma, Y.; Chen, J.; Yao, X.; Li, Z.; Li, W.; Wang, H.; Zhu, J. Patterns and prognostic predictive value of perineural invasion in esophageal squamous cell carcinoma. MBC Cancer 2022, 22, 1287. [Google Scholar] [CrossRef]
- Oguma, J.; Ishiyama, K.; Kurita, D.; Kanematsu, K.; Kubo, K.; Utsunomiya, D.; Yamamoto, S.; Honma, Y.; Kato, K.; Daiko, H. Significance of lymphovascular invasion in esophageal squamous cell carcinoma undergoing neoadjuvant chemotherapy followed by esophagectomy. Esophagus, 2022; Online ahead of print. [Google Scholar] [CrossRef]
- Obermannova, R.; Alsina, M.; Cervantes, A.; Leong, T.; Lordick, F.; Nilsson, M.; van Grieken, N.C.T.; Vogel, A.; Smyth, E.C. Oesophageal cancer: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2022, 33, 992–1004. [Google Scholar] [CrossRef] [PubMed]
- Shah, M.A.; Kennedy, E.B.; Catenacci, D.V.; Deighton, D.C.; Goodman, K.A.; Malhotra, N.K.; Willett, C.; Stiles, B.; Sharma, P.; Tang, L.; et al. Treatment of locally advanced esophageal carcinoma: ASCO guideline. J. Clin. Oncol. 2020, 38, 2677–2694. [Google Scholar] [CrossRef]
- Valmasoni, M.; Pierobon, E.S.; Zanchettin, G.; Briscolini, D.; Moletta, L.; Ruol, A.; Salvador, R.; Merigliano, S. Cervical esophageal cancer treatment strategies: A cohort study appraising the debated role of surgery. Ann. Surg. Oncol. 2018, 25, 2747–2755. [Google Scholar] [CrossRef] [PubMed]
- Ohno, K.; Nasu, M.; Matsui, H.; Baba, Y.; Yasuda, T.; Sakuma, J.; Ikeda, K.; Maruo, T.; Narita, N.; Kato, H.; et al. Real-world treatment patterns and outcomes in Japanese patients with cervical esophageal cancer. Esophagus 2022, 19, 576–585. [Google Scholar] [CrossRef]
- Toxopeus, E.; van der Schaaf, M.; van Lanschot, J.; Lagergren, J.; Lagergren, P.; van der Gaast, A.; Wijnhoven, B. Outcome of patients treated within and outside a randomized clinical trial on neoadjuvant chemoradiotherapy plus surgery for esophageal cancer: Extrapolation of a randomized clinical trial (CROSS). Ann. Surg. Oncol. 2018, 25, 2441–2448. [Google Scholar] [CrossRef]
- Xi, M.; Zhang, P.; Zhang, L.; Yang, Y.D.; Liu, S.L.; Li, Y.; Fu, J.H.; Liu, M.Z. Comparing docetaxel plus cisplatin versus fluorouracil plus cisplatin in esophageal squamous cell carcinoma treated with neoadjuvant chemoradiotherapy. Jpn. J. Clin. Oncol. 2017, 47, 683–689. [Google Scholar] [CrossRef]
- Haisley, H.R.; Hart, K.D.; Nabavizadeh, N.; Bensch, K.G.; Vaccaro, G.M.; Thomas, C.R., Jr.; Schipper, P.H.; Hunter, J.G.; Dolan, J.P. Neoadjuvant chemoradiotherapy with concurrent cisplatin/5-fluorouracil is associated with increased pathologic complete response and improved survival compared to carboplatin/paclitaxel in patients with locally advanced esophageal cancer. Dis. Esophagus 2017, 30, 1–7. [Google Scholar] [CrossRef]
- Motoyama, S.; Sato, Y.; Sasaki, T.; Wakita, A.; Kawakita, Y.; Liu, J.; Nagaki, Y.; Saito, H.; Imai, K.; Konno, H.; et al. Efficacy and safety of neoadjuvant chemoradiotherapy following esophagectomy with Japanese-style extended 3-field lymphadenectomy for thoracic esophageal cancer. Anticancer. Res. 2017, 37, 5837–5843. [Google Scholar] [CrossRef] [PubMed]
- van den Ende, T.; de Clercq, N.C.; van Berge Henegouwen, M.I.; Gisbertz, S.S.; Geijsen, E.D.; Verhoeven, R.H.A.; Meijer, S.L.; Schokker, S.; Dings, M.P.G.; Bergman, J.J.G.H.M.; et al. Neoadjuvant chemoradiotherapy combined with atezolizumab for resectable esophageal adenocarcinoma: A single-arm phase II feasibility study (PERFECT). Clin. Cancer Res. 2021, 27, 3351–3359. [Google Scholar] [CrossRef] [PubMed]
- Yamamoto, S.; Kato, K.; Daiko, H.; Kojima, T.; Hara, H.; Abe, T.; Tsubosa, Y.; Nagashima, K.; Aoki, K.; Mizoguchi, Y.; et al. Feasibility study of nivolumab as neoadjuvant chemotherapy for locally esophageal carcinoma: FRONTiER (JCOG1804E). Future Oncol. 2020, 16, 1351–1357. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Lin, W.; Shao, D.; Depypere, L.; Zhang, Z.; Li, X.; Cui, F.; Du, Z.; Zeng, Y.; Jiang, S.; et al. Neoadjuvant camrelizumab plus chemotherapy for resectable, locally advanced esophageal squamous cell carcinoma (NIC-ESCC2019): A multicenter, phase 2 study. Int. J. Cancer 2022, 151, 128–137. [Google Scholar] [CrossRef]
- He, W.; Leng, X.; Mao, T.; Luo, X.; Zhou, L.; Yan, J.; Peng, L.; Fang, Q.; Liu, G.; Wei, X.; et al. Toripalimab plus paclitaxel and carboplatin as neoadjuvant therapy in locally advanced resectable esophageal squamous cell carcinoma. Oncologist 2022, 27, e18–e28. [Google Scholar] [CrossRef]
- Wang, J.; Zhang, K.; Liu, T.; Song, Y.; Hua, P.; Chen, S.; Li, J.; Liu, Y.; Zhao, Y. Efficacy and safety of neoadjuvant immunotherapy combined with chemotherapy in locally advanced esophageal cancer: A meta-analysis. Front. Oncol. 2022, 12, 974684. [Google Scholar] [CrossRef]
- Shlomai, G.; Neel, B.; LeRoith, D.; Gallagher, E.J. Type 2 diabetes mellitus and cancer: The role of pharmacotherapy. J. Clin. Oncol. 2016, 34, 4261–4269. [Google Scholar] [CrossRef] [Green Version]
- Garcia-Jimenez, C.; Gutierrez-Salmeron, M.; Chocarro-Calvo, A.; Garcia-Martinez, J.M.; Castano, A.; De la Vieja, A. From obesity to diabetes and cancer: Epidemiological links and role of therapies. Br. J. Cancer 2016, 114, 716–722. [Google Scholar] [CrossRef]
- Zeng, X.; Xu, C.; Cheng, J.; Sun, C.; Wang, Z.; Gong, Z.; Long, H.; Zhu, B. Poor glycemic control might compromise the efficacy of chemotherapy in non-small cell lung cancer patients with diabetes mellitus. Cancer Med. 2020, 9, 902–911. [Google Scholar] [CrossRef]
- Kleeff, J.; Costelloa, E.; Jackson, R.; Halloran, C.; Greenhalf, W.; Ghaneh, P.; Lamb, R.F.; Lerch, M.M.; Mayerle, J.; Palmer, D.; et al. The impact of diabetes mellitus on survival following resection and adjuvant chemotherapy for pancreatic cancer. Br. J. Cancer 2016, 115, 887–894. [Google Scholar] [CrossRef]
- Maskarinec, G.; Shvetsov, Y.B.; Conroy, S.M.; Haiman, C.A.; Setiewan, V.W.; Le Marchand, L. Type 2 diabetes as a predictor of survival among breast cancer patients: The multiethnic cohort. Breast Cancer Res. Treat. 2019, 173, 637–645. [Google Scholar] [CrossRef] [PubMed]
- Zheng, X.; Ma, X.; Deng, H.Y.; Zha, P.; Zhou, J.; Wang, R.L.; Jiang, R. Diabetes mellitus and survival of esophageal cancer patienta after esophagectomy: A systemic review and meta-analysis. Dis. Esophagus 2020, 33, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Backemar, L.; Djarv, T.; Wikman, A.; Johar, A.; Ross, P.; Lagergren, P.; Lagergren, J. The role of diabetes and other co-morbidities on survival after esophageal cancer surgery in a population-based study. Am. J. Surg. 2013, 206, 539–543. [Google Scholar] [CrossRef] [PubMed]
- Kitagawa, H.; Namikawa, T.; Munekage, M.; Fujisawa, K.; Kawanishi, Y.; Kobayashi, M.; Hanazaki, K. Preoperative patient-related factors associated with prognosis after esophagectomy for esophageal cancer. Esophagus 2017, 14, 360–365. [Google Scholar] [CrossRef]
- Okamura, A.; Watanabe, M.; Imamura, Y.; Hayami, M.; Yamashita, K.; Kurogochi, T.; Mine, S. Glycemic status and prognosis of patients with squamous cell carcinoma of the esophagus. World J. Surg. 2017, 41, 2591–2597. [Google Scholar] [CrossRef]
- Liu, B.; Cheng, B.; Wang, C.; Chen, P.; Cheng, Y. The prognostic significance of metabolic syndrome and weight loss in esophageal squamous cell carcinoma. Sci. Rep. 2018, 8, 10101. [Google Scholar] [CrossRef]
- Peng, F.; Hu, D.; Lin, X.; Chen, G.; Liang, B.; Zhang, H.; Dong, X.; Lin, J.; Zheng, X.; Nio, W. Analysis of preoperative metabolic risk factors affecting the prognosis of patients with esophageal squamous cell carcinoma: The Fujian Prospective Investigation of Cncer (FIESTA) study. EBioMedicine 2017, 16, 115–123. [Google Scholar] [CrossRef]
- Kim, Y.H.; Song, S.Y.; Shim, H.J.; Chung, W.K.; Ahn, S.J.; Yoon, M.S.; Jeong, J.U.; Song, J.Y.; Nam, T.K. Treatment outcomes of neoadjuvant concurrent chemoradiotherapy followed by esophagectomy for patients with esophageal cancer. Radiat. Oncol. J. 2015, 3, 12–20. [Google Scholar] [CrossRef]
- Spierings, L.E.A.M.M.; Lagarde, S.M.; van Oijen, M.G.H.; Gisbertz, S.S.; Wilmink, J.W.; Hulshof, M.C.C.M.; Meijer, S.L.; Anderegg, M.C.; van Berge Henegouwen, M.I. Metformin use during treatment of potentially curable esophageal cancer patients is not associated with better outcomes. Ann. Surg. Oncol. 2015, 22, S766–S771. [Google Scholar] [CrossRef]
- Yao, W.; Meng, Y.; Lu, M.; Fan, W.; Huang, J.; Li, J.; Zhu, Z. Impact of type 2 diabetes mellitus on short-term and long-term outcomes of patients with esophageal squamous cell cancer undergoing resection: A propensity score analysis. Cancer Commun. 2018, 38, 14. [Google Scholar] [CrossRef]
- Bakst, R.L.; Glastinbury, C.M.; Parvathaneni, U.; Katabi, N.; Hu, K.S.; Yom, S.S. Perineural invasion and perineural tumor spread in head and neck cancer. Int. J. Radiation Oncol. Biol. Phys. 2019, 103, 1109–1124. [Google Scholar] [CrossRef] [PubMed]
- Liang, D.; Shi, S.; Xu, J.; Zhang, B.; Qin, Y.; Ji, S.; Xu, W.; Liu, J.; Liu, L.; Liu, C.; et al. New insights into perineural invasion of pancreatic cancer: More than pain. Biochim. Biophys. Acta. 2016, 1865, 111–122. [Google Scholar] [CrossRef]
- Chen, S.H.; Zhang, B.Y.; Zhou, B.; Zhu, C.Z.; Sun, L.Q.; Feng, Y.J. Perineural invasion of cancer: A complex crosstalk between cells and molecules in the perineural niche. Am. J. Cancer Res. 2019, 9, 1–21. [Google Scholar] [PubMed]
- Bakst, R.L.; Xiong, H.; Chen, C.H.; Deborde, S.; Lyubchik, A.; Zhou, Y.; He, S.; McNamara, W.; Lee, S.Y.; Olson, O.C.; et al. Inflammatory monocytes promote perineural invasion via CCL2-mediated recruitment and cathepsin B expression. Cancer Res. 2017, 77, 6400–6414. [Google Scholar] [CrossRef] [PubMed]
- Demir, I.E.; Boldis, A.; Pfitzinger, P.L.; Teller, S.; Brunner, E.; Klose, N.; Kehl, T.; Maak, M.; Lesina, M.; Laschinger, M.; et al. Investigation of Schwann cells at neoplastic cell sites before the onset of cancer invasion. J. Natl. Cancer Int. 2014, 106, dju184. [Google Scholar] [CrossRef]
- Zhou, J.; Yang, Y.; Zhang, H.; Luan, S.; Xiao, X.; Li, X.; Fang, P.; Gu, Y.; Chen, L.; Zeng, X.; et al. Lymphovascular and perineural invasion after neoadjuvant therapy in esophageal squamous cell carcinoma. Ann. Thorac. Surg. 2022. [Google Scholar] [CrossRef]
- Chen, J.W.; Xie, J.D.; Ling, Y.H.; Li, P.; Yan, S.M.; Xi, S.Y.; Luo, R.Z.; Yun, J.P.; Xie, D.; Cai, M.Y. The prognostic effect of perineural invasion in esophageal squamous cell carcinoma. BMC Cancer 2014, 14, 313. [Google Scholar] [CrossRef] [Green Version]
- Guo, Y.N.; Tian, D.P.; Gong, Q.Y.; Huang, H.; Yang, P.; Chen, S.B.; Billan, S.; He, J.Y.; Huang, H.H.; Xiong, P.; et al. Perineural invasion is a better prognostic indicator than lymphvascular invasion and a potential adjuvant therapy indicator for pN0M0 esophageal squamous cell carcinoma. Ann. Surg. Oncol. 2020, 27, 4371–4381. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.E.; Park, S.Y.; Kim, H.; Kim, D.J.; Kim, S.I. Prognostic effect of perineural invasion in surgically treated esophageal squamous cell carcinoma. Thorac. Cancer 2021, 12, 1605–1612. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Shao, J.; Liu, Z.; Pan, J.; Li, B.; Yang, Y.; He, Y.; Han, Y.; Li, Z. Occurrence and prognostic value of perineural invasion in esophageal squamous cell cancer: A retrospective study. Ann. Surg. Oncol. 2022, 29, 586–597. [Google Scholar] [CrossRef]
- Wu, C.H.; Wu, T.Y.; Li, C.C.; Lui, M.T.; Chang, K.W.; Kao, S.Y. Impact of diabetes mellitus on the prognosis of patients with oral squamous cell carcinoma: A retrospective cohort study. Ann. Surg. Oncol. 2010, 17, 2175–2183. [Google Scholar] [CrossRef]
- Li, J.; Ma, Q.; Liu, H.; Gui, K.; Li, F.; Li, W.; Han, L.; Wang, F.; Wu, E. Relationship between neural alteration and perineural invasion in pancreatic cancer patients with hyperglycemia. PLoS ONE 2011, 6, e17385. [Google Scholar] [CrossRef] [PubMed]
- Sahin, I.H.; Shama, M.A.; Tanaka, M.; Abbruzzese, J.L.; Curley, S.A.; Hassan, M.; Li, D. Association of diabetes and perineural invasion in pancreatic cancer. Cancer Med. 2012, 1, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Kelly, R.J.; Ajani, J.A.; Kuzdzal, J.; Zander, T.; Van Cutsem, E.; Piessen, G.; Mendez, G.; Feliciano, J.; Motoyama, S.; Lievre, A.; et al. Adjuvant nivolumab in resected esophageal or gastroesophageal junction cancer. N. Engl. J. Med. 2021, 384, 1191–1203. [Google Scholar] [PubMed]
Variable | Overall (N = 140) | pCR (N = 45) | Non-pCR (N = 95) |
---|---|---|---|
Age | 57.5 ± 8.7 | 59.6 ± 8.8 | 56.6 ± 8.5 |
Sex Male Female | 130 (92.9%) 10 (7.1%) | 41 (91.1%) 4 (8.9%) | 89 (93.7%) 6 (6.3%) |
ECOG 0 1 | 42 (30%) 98 (70%) | 12 (26.7%) 33 (73.3%) | 30 (31.6%) 65 (68.4%) |
Tumor Location Cervical Upper Thoracic Middle Thoracic Lower Thoracic | 10 (7.1%) 31 (22.1%) 60 (42.9%) 39 (27.9%) | 2 (4.4%) 8 (17.8%) 23 (51.1%) 12 (26.7%) | 8 (8.4%) 24 (25.3%) 36 (37.9%) 27 (28.4%) |
Clinical T Stage T1 T2 T3 T4 | 5 (3.6%) 39 (27.9%) 86 (61.4%) 10 (7.1%) | 3 (6.7%) 14 (31.1%) 28 (62.2%) 0 | 2 (2.1%) 25 (26.3%) 58 (61.1%) 10 (10.5%) |
Clinical N Stage N0 N1 N2 N3 | 11 (7.9%) 47 (33.6%) 63 (45%) 19 (13.6%) | 2 (4.4%) 15 (33.3%) 26 (57.8%) 2 (4.4%) | 9 (9.5%) 32 (33.7%) 37 (38.9%) 17 (17.9%) |
Clinical Stage II III Iva | 24 (17.1%) 89 (63.6%) 27 (19.3%) | 7 (15.6%) 36 (80%) 2 (4.4%) | 17 (17.9%) 53 (55.8%) 25 (26.3%) |
CT regimen Platinum/Paclitaxel Platinum Only | 63 (45%) 77 (55%) | 19 (42.2%) 26 (57.8%) | 44 (46.3%) 51 (53.7%) |
CT Cycles ≥5 <5 | 102 (72.8%) 38 (27.2%) | 38 (84.4%) 7 (15.6%) | 70 (73.7%) 25 (26.3%) |
RT Dose (cGy) | 4704 ± 328.7 | 4742 ± 231.1 | 4686 ± 365.8 |
CRT_Op Time (days) ≤42 days >42 days | 41.5 ± 10.2 78 (55.7%) 62 (44.3%) | 38.8 ± 10.3 32 (71.1%) 13 (28.9%) | 42.8 ± 9.9 46 (48.4%) 49 (51.6%) |
History of HNSCC No Yes | 127 (90.7%) 13 (9.3%) | 41 (91.1%) 4 (8.9%) | 86 (90.5%) 9 (9.5%) |
History of T2DM No Yes | 119 (85%) 21 (5%) | 36 (80%) 9 (20%) | 83 (87.4%) 12 (6.3%) |
Pathologic T Stage T0 T1 T2 T3 T4 | 7 (7.4%) 15 (15.8%) 35 (36.8%) 33 (34.7%) 5 (5.3%) | Differentiation Well Moderate Poor | 4 (4.2%) 72 (75.8%) 19 (20.0%) |
Pathologic N Stage N0 N1 N2 N3 | 47 (49.5%) 25 (26.3%) 18 (18.9%) 5 (5.3%) | LVI Yes No | 25 (26.3%) 70 (73.7%) |
Residual Disease Status Residual T Only Residual N Only Residual T + N | 47 (49.5%) 7 (7.4%) 41 (43.1%) | PNI Yes No | 27 (28.4%) 68 (71.6%) |
ypStage Stage I Stage II Stage IIIa Stage IIIb Stage Iva | 27 (28.4%) 16 (16.8%) 16 (16.8%) 26 (27.4%) 10 (10.5%) | Dissected Lymph Nodes <15 ≥15 | 44 (46.3%) 51 (53.7%) |
Univariate Analysis of DFS | Multivariate Analysis of DFS | |||
---|---|---|---|---|
Variables | HR (95% CI) | p-Value | HR (95% CI) | p-Value |
Age (years) <57 ≥57 | Ref 1.081 (0.689–1.695) | 0.734 | ||
Sex Male Female | Ref 0.566 (0.178–1.800) | 0.335 | ||
ECOG 0 1 | Ref 1.278 (0.787–2.075) | 0.322 | ||
Tumor Location cervical + upper middle + lower | Ref 1.321 (0.797–2.189) | 0.280 | ||
History of HNSCC No Yes | Ref 1.606 (0.768–3.360) | 0.208 | ||
History of T2DM No Yes | Ref 2.139 (1.141–4.011) | 0.018 | Ref 2.354 (1.270–4.467) | 0.009 |
CT Regimen Platinum/Paclitaxel Others | Ref 1.349 (0.855–2.219) | 0.199 | ||
CT Cycles ≥5 <5 | Ref 0.780 (0.472–1.289) | 0.333 | ||
neoCRT to Op time ≤42 days >42 days | - Ref 0.846 (0.542–1.320) | 0.461 | ||
Differentiation Well + moderate Poor | Ref 1.434 (0.845–2.434) | 0.182 | ||
Dissected LNs ≥15 <15 | Ref 0.922 (0.587–1.447) | 0.723 | ||
Presence of LVI No Yes | Ref 1.235 (0.751–2.031) | 0.405 | ||
Presence of PNI No Yes | Ref 2.449 (1.497–4.007) | 0.001 | Ref 2.368 (1.351–4.150) | 0.003 |
Pathological T Stage T0–T2 T3–T4 | Ref 1.390 (0.887–2.177) | 0.151 | ||
Pathological N Stage N0–N1 N2–N3 | Ref 1.843 (1.117–3.041) | 0.017 | Ref 1.231 (0.688–2.203) | 0.483 |
Presence of LVI No Yes | Ref 1.235 (0.751–2.031) | 0.405 | ||
Presence of PNI No Yes | Ref 2.449 (1.497–4.007) | 0.001 | Ref 2.368 (1.351–4.150) | 0.003 |
Pathological T Stage T0–T2 T3–T4 | Ref 1.390 (0.887–2.177) | 0.151 |
Author/Reference /Country | Year of Study | Total Patient Number | Pre-Op Treatment | PNI No. (Percentage) | Results |
---|---|---|---|---|---|
Zhou, et al. [59] China | 2017–2020 | 321 | neoCRT (all patients) | 57 (17.8%) | Inferior OS, DFS (univariate only) |
Chen, et al. [60] China | 2000–2007 | 433 | No pre-op Treatment | 209 (47.7%) | Inferior OS in overall and pN0 subgroup |
Gou, et al. [61] China | 2009–2013 | 162 (all pN0M0) | No pre-op Treatment | 119 (73.5%) | Inferior OS in pN0 patients |
Kim, et al. [62] Korea | 2007–2016 | 316 | Neoadjuvant treatment (22.2%) | 25 (7.9%) | Inferior DFS in overall and pN0 subgroup |
Zhang, et al. [63] China | 2017–2018 | 794 | No pre-op Treatment | 125 (15.7%) | Not a poor prognostic factor |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Su, N.-W.; Mok, L.-M.; Chan, M.-L.; Liu, H.-C.; Chang, W.-C.; Yun, C.-H.; Shieh, T.-Y.; Wu, M.-C.; Lin, H.-C.; Huang, W.-C.; et al. Impact of Perineural Invasion and Preexisting Type 2 Diabetes on Patients with Esophageal Squamous Cell Carcinoma Receiving Neoadjuvant Chemoradiotherapy. Cancers 2023, 15, 1122. https://doi.org/10.3390/cancers15041122
Su N-W, Mok L-M, Chan M-L, Liu H-C, Chang W-C, Yun C-H, Shieh T-Y, Wu M-C, Lin H-C, Huang W-C, et al. Impact of Perineural Invasion and Preexisting Type 2 Diabetes on Patients with Esophageal Squamous Cell Carcinoma Receiving Neoadjuvant Chemoradiotherapy. Cancers. 2023; 15(4):1122. https://doi.org/10.3390/cancers15041122
Chicago/Turabian StyleSu, Nai-Wen, Lai-Man Mok, Mei-Lin Chan, Hung-Chang Liu, Wei-Chin Chang, Chun-Ho Yun, Tze-Yu Shieh, Ming-Che Wu, Huan-Chau Lin, Wen-Chien Huang, and et al. 2023. "Impact of Perineural Invasion and Preexisting Type 2 Diabetes on Patients with Esophageal Squamous Cell Carcinoma Receiving Neoadjuvant Chemoradiotherapy" Cancers 15, no. 4: 1122. https://doi.org/10.3390/cancers15041122
APA StyleSu, N. -W., Mok, L. -M., Chan, M. -L., Liu, H. -C., Chang, W. -C., Yun, C. -H., Shieh, T. -Y., Wu, M. -C., Lin, H. -C., Huang, W. -C., & Chen, Y. -J. (2023). Impact of Perineural Invasion and Preexisting Type 2 Diabetes on Patients with Esophageal Squamous Cell Carcinoma Receiving Neoadjuvant Chemoradiotherapy. Cancers, 15(4), 1122. https://doi.org/10.3390/cancers15041122