Insights into Cancer Immunotherapies: Recent Breakthroughs, Opportunities, and Challenges
Funding
Acknowledgments
Conflicts of Interest
References
- Lau, P.K.H.; Cullinane, C.; Jackson, S.; Walker, R.; Smith, L.K.; Slater, A.; Kirby, L.; Patel, R.P.; von Scheidt, B.; Slaney, C.Y.; et al. Enhancing Adoptive Cell Transfer with Combination BRAF-MEK and CDK4/6 Inhibitors in Melanoma. Cancers 2021, 13, 6342. [Google Scholar] [CrossRef]
- Duarte, J.D.G.; Woods, K.; Quigley, L.; Deceneux, C.; Tutuka, C.; Witkowski, T.; Ostrouska, S.; Hudson, C.; Tsao, S.; Pasam, A.; et al. Ropporin-1 and 1B Are Widely Expressed in Human Melanoma and Evoke Strong Humoral Immune Responses. Cancers 2021, 13, 1805. [Google Scholar] [CrossRef]
- Jazowiecka-Rakus, J.; Hadrys, A.; Rahman, M.; McFadden, G.; Fidyk, W.; Chmielik, E.; Pazdzior, M.; Grajek, M.; Kozik, V.; Sochanik, A. Myxoma Virus Expressing LIGHT (TNFSF14) Pre-Loaded into Adipose-Derived Mesenchymal Stem Cells Is Effective Treatment for Murine Pancreatic Adenocarcinoma. Cancers 2021, 13, 1394. [Google Scholar] [CrossRef]
- Ponath, V.; Frech, M.; Bittermann, M.; Al Khayer, R.; Neubauer, A.; Brendel, C.; Von Strandmann, E.P. The Oncoprotein SKI Acts as A Suppressor of NK Cell-Mediated Immunosurveillance in PDAC. Cancers 2020, 12, 2857. [Google Scholar] [CrossRef]
- Wu, L.; Brzostek, J.; Sankaran, S.; Wei, Q.; Yap, J.; Tan, T.; Lai, J.; MacAry, P.; Gascoigne, N. Targeting CAR to the Peptide-MHC Complex Reveals Distinct Signaling Compared to That of TCR in a Jurkat T Cell Model. Cancers 2021, 13, 867. [Google Scholar] [CrossRef]
- Maruoka, Y.; Furusawa, A.; Okada, R.; Inagaki, F.; Wakiyama, H.; Kato, T.; Nagaya, T.; Choyke, P.L.; Kobayashi, H. Interleukin-15 after Near-Infrared Photoimmunotherapy (NIR-PIT) Enhances T Cell Response against Syngeneic Mouse Tumors. Cancers 2020, 12, 2575. [Google Scholar] [CrossRef]
- Choi, M.; Kim, Y.-M.; Lee, J.-W.; Lee, Y.; Suh, D.; Lee, S.; Lee, T.; Lee, M.; Park, D.; Kim, M.; et al. Real-World Experience of Pembrolizumab Monotherapy in Patients with Recurrent or Persistent Cervical Cancer: A Korean Multi-Center Retrospective Study (KGOG1041). Cancers 2020, 12, 3188. [Google Scholar] [CrossRef]
- Solinas, C.; Fumagalli, D.; Dieci, M. Immune Checkpoint Blockade in HER2-Positive Breast Cancer: What Role in Early Disease Setting? Cancers 2021, 13, 1655. [Google Scholar] [CrossRef]
- Rad SM, A.R.S.; Halpin, J.; Mollaei, M.; Bell, S.S.; Hirankarn, N.; McLellan, A.D. Metabolic and Mitochondrial Functioning in Chimeric Antigen Receptor (CAR)—T Cells. Cancers 2021, 13, 1229. [Google Scholar] [CrossRef]
- Davey, A.S.; Call, M.E.; Call, M.J. The Influence of Chimeric Antigen Receptor Structural Domains on Clinical Outcomes and Associated Toxicities. Cancers 2020, 13, 38. [Google Scholar] [CrossRef]
- Qin, V.M.; D’Souza, C.; Neeson, P.J.; Zhu, J.J. Chimeric Antigen Receptor beyond CAR-T Cells. Cancers 2021, 13, 404. [Google Scholar] [CrossRef]
- Mirlekar, B.; Pylayeva-Gupta, Y. IL-12 Family Cytokines in Cancer and Immunotherapy. Cancers 2021, 13, 167. [Google Scholar] [CrossRef]
- Mercogliano, M.; Bruni, S.; Mauro, F.; Elizalde, P.; Schillaci, R. Harnessing Tumor Necrosis Factor Alpha to Achieve Effective Cancer Immunotherapy. Cancers 2021, 13, 564. [Google Scholar] [CrossRef]
- Toffoli, E.; Sheikhi, A.; Höppner, Y.; de Kok, P.; Yazdanpanah-Samani, M.; Spanholtz, J.; Verheul, H.; van der Vliet, H.; de Gruijl, T. Natural Killer Cells and Anti-Cancer Therapies: Reciprocal Effects on Immune Function and Therapeutic Response. Cancers 2021, 13, 711. [Google Scholar] [CrossRef]
- Apavaloaei, A.; Hardy, M.-P.; Thibault, P.; Perreault, C. The Origin and Immune Recognition of Tumor-Specific Antigens. Cancers 2020, 12, 2607. [Google Scholar] [CrossRef]
- Baugh, R.; Khalique, H.; Seymour, L.W. Convergent Evolution by Cancer and Viruses in Evading the NKG2D Immune Response. Cancers 2020, 12, 3827. [Google Scholar] [CrossRef]
- Tessarollo, N.; Domingues, A.; Antunes, F.; Luz, J.; Rodrigues, O.; Cerqueira, O.; Strauss, B. Nonreplicating Adenoviral Vectors: Improving Tropism and Delivery of Cancer Gene Therapy. Cancers 2021, 13, 1863. [Google Scholar] [CrossRef]
- Aehnlich, P.; Powell, R.; Peeters, M.; Rahbech, A.; Straten, P.T. TAM Receptor Inhibition–Implications for Cancer and the Immune System. Cancers 2021, 13, 1195. [Google Scholar] [CrossRef]
- Burn, O.; Prasit, K.; Hermans, I. Modulating the Tumour Microenvironment by Intratumoural Injection of Pattern Recognition Receptor Agonists. Cancers 2020, 12, 3824. [Google Scholar] [CrossRef]
- Middelburg, J.; Kemper, K.; Engelberts, P.; Labrijn, A.; Schuurman, J.; van Hall, T. Overcoming Challenges for CD3-Bispecific Antibody Therapy in Solid Tumors. Cancers 2021, 13, 287. [Google Scholar] [CrossRef]
- Slaney, C.Y.; Wang, P.; Darcy, P.K.; Kershaw, M.H. CARs versus BiTEs: A Comparison between T Cell–Redirection Strategies for Cancer Treatment. Cancer Discov. 2018, 8, 924–934. [Google Scholar] [CrossRef] [Green Version]
- Slaney, C.Y.; Kershaw, M.H.; Darcy, P.K. Trafficking of T Cells into Tumors. Cancer Res. 2014, 74, 7168–7174. [Google Scholar] [CrossRef] [Green Version]
- Gong, P.; Wang, Y.; Zhang, P.; Yang, Z.; Deng, W.; Sun, Z.; Yang, M.; Li, X.; Ma, G.; Deng, G.; et al. Immunocyte Membrane-Coated Nanoparticles for Cancer Immunotherapy. Cancers 2020, 13, 77. [Google Scholar] [CrossRef]
- Van Gool, S.; Makalowski, J.; Fiore, S.; Sprenger, T.; Prix, L.; Schirrmacher, V.; Stuecker, W. Randomized Controlled Immunotherapy Clinical Trials for GBM Challenged. Cancers 2020, 13, 32. [Google Scholar] [CrossRef]
- Wouters, R.; Bevers, S.; Riva, M.; De Smet, F.; Coosemans, A. Immunocompetent Mouse Models in the Search for Effective Immunotherapy in Glioblastoma. Cancers 2020, 13, 19. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pappas, E.G.; Kershaw, M.H.; Slaney, C.Y. Insights into Cancer Immunotherapies: Recent Breakthroughs, Opportunities, and Challenges. Cancers 2023, 15, 1322. https://doi.org/10.3390/cancers15041322
Pappas EG, Kershaw MH, Slaney CY. Insights into Cancer Immunotherapies: Recent Breakthroughs, Opportunities, and Challenges. Cancers. 2023; 15(4):1322. https://doi.org/10.3390/cancers15041322
Chicago/Turabian StylePappas, Evan G., Michael H. Kershaw, and Clare Y. Slaney. 2023. "Insights into Cancer Immunotherapies: Recent Breakthroughs, Opportunities, and Challenges" Cancers 15, no. 4: 1322. https://doi.org/10.3390/cancers15041322
APA StylePappas, E. G., Kershaw, M. H., & Slaney, C. Y. (2023). Insights into Cancer Immunotherapies: Recent Breakthroughs, Opportunities, and Challenges. Cancers, 15(4), 1322. https://doi.org/10.3390/cancers15041322