Rational Targets of Therapy in Extranodal NK/T-Cell Lymphoma
Abstract
:Simple Summary
Abstract
1. Background
2. Evolving Understanding of the Biology of ENKTL
3. Epigenetic Aberrations in ENKTL
3.1. Promoter Hypermethylation
3.2. Epigenetic Regulatory Genes
3.3. Epigenetic Biomarkers
4. Cell Survival and Proliferation
4.1. JAK/STAT Signaling Pathway
4.2. DDX3X and RAS/MAPK Signaling Pathway
4.3. NF-κB Signaling Pathway and Survivin
4.4. C-MYC
4.5. PDGFRa
4.6. PI3K/Akt/mTOR Signaling Pathway
5. Avoiding Autophagy
Histone Acetylation and HDAC Inhibitors
6. Tumor Microenvironment
6.1. Immune Surveillance and the PD-1/PD-L1 Signaling Pathway
6.2. Angiogenesis
6.3. Cytokines and Chemokines
6.4. S100A9
7. Other Therapeutic Targets
7.1. CD38
7.2. CD30
7.3. EBV-Targeted Approaches
8. Conclusions and Future Directions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Haverkos, B.M.; Pan, Z.; Gru, A.A.; Freud, A.G.; Rabinovitch, R.; Xu-Welliver, M.; Otto, B.; Barrionuevo, C.; Baiocchi, R.A.; Rochford, R.; et al. Extranodal NK/T Cell Lymphoma, Nasal Type (ENKTL-NT): An Update on Epidemiology, Clinical Presentation, and Natural History in North American and European Cases. Curr. Hematol. Malig. Rep. 2016, 11, 514–527. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Doesum, J.A.; Niezink, A.G.H.; Huls, G.A.; Beijert, M.; Diepstra, A.; van Meerten, T. Extranodal Natural Killer/T-cell Lymphoma, Nasal Type: Diagnosis and Treatment. HemaSphere 2021, 5, e523. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Zhao, W. What we should know about natural killer/T-cell lymphomas. Hematol. Oncol. 2019, 37, 75–81. [Google Scholar] [CrossRef] [Green Version]
- William, B.M.; Armitage, J.O. International analysis of the frequency and outcomes of NK/T-cell lymphomas. Best Pract. Res. Clin. Haematol. 2013, 26, 23–32. [Google Scholar] [CrossRef] [PubMed]
- Asano, N.; Kato, S.; Nakamura, S. Epstein–Barr virus-associated natural killer/T-cell lymphomas. Best Pract. Res. Clin. Haematol. 2013, 26, 15–21. [Google Scholar] [CrossRef]
- Chihara, D.; Ito, H.; Matsuda, T.; Shibata, A.; Katsumi, A.; Nakamura, S.; Tomotaka, S.; Morton, L.M.; Weisenburger, D.D.; Matsuo, K. Differences in incidence and trends of haematological malignancies in Japan and the United States. Br. J. Haematol. 2014, 164, 536–545. [Google Scholar] [CrossRef]
- Li, Z.; Xia, Y.; Feng, L.-N.; Chen, J.-R.; Li, H.-M.; Cui, J.; Cai, Q.-Q.; Sim, K.S.; Nairismägi, M.-L.; Laurensia, Y.; et al. Genetic risk of extranodal natural killer T-cell lymphoma: A genome-wide association study. Lancet Oncol. 2016, 17, 1240–1247. [Google Scholar] [CrossRef]
- Wang, J.; Wei, L.; Ye, J.; Yang, L.; Li, X.; Cong, J.; Yao, N.; Cui, X.; Wu, Y.; Ding, J.; et al. Autologous hematopoietic stem cell transplantation may improve long-term outcomes in patients with newly diagnosed extranodal natural killer/T-cell lymphoma, nasal type: A retrospective controlled study in a single center. Int. J. Hematol. 2018, 107, 98–104. [Google Scholar] [CrossRef]
- Kwong, Y.L.; Kim, W.S.; Lim, S.T.; Kim, S.J.; Tang, T.; Tse, E.; Leung, A.Y.H.; Chim, C.-S. SMILE for natural killer/T-cell lymphoma: Analysis of safety and efficacy from the Asia Lymphoma Study Group. Blood 2012, 120, 2973–2980. [Google Scholar] [CrossRef] [Green Version]
- Kim, S.J.; Yoon, D.H.; Jaccard, A.; Chng, W.J.; Lim, S.T.; Hong, H.; Park, Y.; Chang, K.M.; Maeda, Y.; Ishida, F.; et al. A prognostic index for natural killer cell lymphoma after non-anthracycline-based treatment: A multicentre, retrospective analysis. Lancet Oncol. 2016, 17, 389–400. [Google Scholar] [CrossRef]
- Fox, C.P.; Civallero, M.; Ko, Y.H.; Manni, M.; Skrypets, T.; Pileri, S.; Kim, S.J.; Cabrera, M.E.; Shustov, A.R.; Chiattone, C.S.; et al. Survival outcomes of patients with extranodal natural-killer T-cell lymphoma: A prospective cohort study from the international T-cell Project. Lancet Haematol. 2020, 7, e284–e294. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, L.; Jiang, M.; Xie, L.; Zhang, H.; Liu, W.; Zhang, W.; Zhao, S.; Zou, L. A 10-year survival update on early-stage extranodal natural killer/T-cell lymphoma with ‘sandwich’ therapy. Acta Oncol. 2022, 61, 611–614. [Google Scholar] [CrossRef] [PubMed]
- Cai, Q.; Cai, J.; Fang, Y.; Young, K.H. Epstein-Barr Virus-Positive Natural Killer/T-Cell Lymphoma. Front. Oncol. 2019, 9, 386. [Google Scholar] [CrossRef]
- Wang, H.; Fu, B.; Gale, R.P.; Liang, Y. NK-/T-cell lymphomas. Leukemia 2021, 35, 2460–2468. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.H.; Hong, J.Y.; Lim, S.T.; Hong, H.; Arnoud, J.; Zhao, W.; Yoon, D.H.; Tang, T.; Cho, J.; Park, S.; et al. Beyond first-line non-anthracycline-based chemotherapy for extranodal NK/T-cell lymphoma: Clinical outcome and current perspectives on salvage therapy for patients after first relapse and progression of disease. Ann. Oncol. 2017, 28, 2199–2205. [Google Scholar] [CrossRef] [PubMed]
- Brammer, J.E.; Chihara, D.; Poon, L.M.; Caimi, P.; de Lima, M.; Ledesma, C.; Rondon, G.; Ciurea, S.O.; Nieto, Y.; Fanale, M.; et al. Management of Advanced and Relapsed/Refractory Extranodal Natural Killer T-Cell Lymphoma: An Analysis of Stem Cell Transplantation and Chemotherapy Outcomes. Clin. Lymphoma Myeloma Leuk. 2018, 18, e41–e50. [Google Scholar] [CrossRef]
- Mundy-Bosse, B.L.; Weigel, C.; Wu, Y.-Z.; Abdelbaky, S.; Youssef, Y.; Casas, S.B.; Polley, N.; Ernst, G.; Young, K.A.; McConnell, K.K.; et al. Identification and Targeting of the Developmental Blockade in Extranodal Natural Killer/T-cell Lymphoma. Blood Cancer Discov. 2022, 3, 154–169. [Google Scholar] [CrossRef]
- Saleem, A.; Natkunam, Y. Extranodal NK/T-Cell Lymphomas: The Role of Natural Killer Cells and EBV in Lymphomagenesis. Int. J. Mol. Sci. 2020, 21, 1501. [Google Scholar] [CrossRef] [Green Version]
- Kim, H.; Ko, Y.H. The Pathologic and Genetic Characteristics of Extranodal NK/T-Cell Lymphoma. Life 2022, 12, 73. [Google Scholar] [CrossRef]
- Hong, M.; Lee, T.; Young Kang, S.; Kim, S.J.; Kim, W.; Ko, Y.H. Nasal-type NK/T-cell lymphomas are more frequently T rather than NK lineage based on T-cell receptor gene, RNA, and protein studies: Lineage does not predict clinical behavior. Mod. Pathol. 2016, 29, 430–443. [Google Scholar] [CrossRef] [Green Version]
- Nakhoul, H.; Lin, Z.; Wang, X.; Roberts, C.; Dong, Y.; Flemington, E. High-Throughput Sequence Analysis of Peripheral T-Cell Lymphomas Indicates Subtype-Specific Viral Gene Expression Patterns and Immune Cell Microenvironments. mSphere 2019, 4, e00248-19. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- de Mel, S.; Hue, S.S.S.; Jeyasekharan, A.D.; Chng, W.J.; Ng, S.B. Molecular pathogenic pathways in extranodal NK/T cell lymphoma. J. Hematol. Oncol. Hematol. Oncol. 2019, 12, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sun, K.-H.; Wong, Y.-T.; Cheung, K.-M.; Yuen, C.; Chan, Y.-T.; Lai, W.-Y.; Chao, C.; Fan, W.-S.; Chow, Y.-K.; Law, M.-F.; et al. Update on Molecular Diagnosis in Extranodal NK/T-Cell Lymphoma and Its Role in the Era of Personalized Medicine. Diagnostics 2022, 12, 409. [Google Scholar] [CrossRef]
- Takahara, M.; Kis, L.L.; Nagy, N.; Liu, A.; Harabuchi, Y.; Klein, G.; Klein, E. Concomitant increase of LMP1 and CD25 (IL-2-receptor α) expression induced by IL-10 in the EBV-positive NK lines SNK6 and KAI3. Int. J. Cancer 2006, 119, 2775–2783. [Google Scholar] [CrossRef]
- Zhu, L.; Xie, S.; Yang, C.; Hua, N.; Wu, Y.; Wang, L.; Ni, W.; Tong, X.; Fei, M.; Wang, S. Current Progress in Investigating Mature T- and NK-Cell Lymphoma Gene Aberrations by Next-Generation Sequencing (NGS). Cancer Manag. Res. 2021, 13, 5275–5286. [Google Scholar] [CrossRef]
- Küçük, C.; Hu, X.; Jiang, B.; Klinkebiel, D.; Geng, H.; Gong, Q.; Bouska, A.; Iqbal, J.; Gaulard, P.; McKeithan, T.W.; et al. Global Promoter Methylation Analysis Reveals Novel Candidate Tumor Suppressor Genes in Natural Killer Cell Lymphoma. Clin. Cancer Res. 2015, 21, 1699–1711. [Google Scholar] [CrossRef] [Green Version]
- Ying, J.; Li, H.; Murray, P.; Gao, Z.; Chen, Y.-W.; Wang, Y.; Lee, K.Y.; Chan, A.T.; Ambinder, R.F.; Srivastava, G.; et al. Tumor-Specific Methylation of the 8p22 Tumor Suppressor Gene DLC1 is an Epigenetic Biomarker for Hodgkin, Nasal NK/T-Cell and Other Types of Lymphomas. Epigenetics 2007, 2, 15–21. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dong, G.; Liu, X.; Wang, L.; Yin, W.; Bouska, A.; Gong, Q.; Shetty, K.; Chen, L.; Sharma, S.; Zhang, J.; et al. Genomic profiling identifies distinct genetic subtypes in extra-nodal natural killer/T-cell lymphoma. Leukemia 2022, 36, 2064–2075. [Google Scholar] [CrossRef]
- Küçük, C.; Iqbal, J.; Hu, X.; Gaulard, P.; De Leval, L.; Srivastava, G.; Au, W.Y.; McKeithan, T.W.; Chan, W.C. PRDM1 is a tumor suppressor gene in natural killer cell malignancies. Proc. Natl. Acad. Sci. USA 2011, 108, 20119–20124. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.W.; Guo, T.; Shen, L.; Wong, K.-Y.; Tao, Q.; Choi, W.W.L.; Au-Yeung, R.K.H.; Chan, Y.-P.; Wong, M.L.Y.; Tang, J.C.O.; et al. Receptor-type tyrosine-protein phosphatase κ directly targets STAT3 activation for tumor suppression in nasal NK/T-cell lymphoma. Blood 2015, 125, 1589–1600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Küçük, C.; Hu, X.; Iqbal, J.; Gaulard, P.; Klinkebiel, D.; Cornish, A.; Dave, B.J.; Chan, W.C. HACE1 Is a Tumor Suppressor Gene Candidate in Natural Killer Cell Neoplasms. Am. J. Pathol. 2013, 182, 49–55. [Google Scholar] [CrossRef] [Green Version]
- Küçük, C.; Wang, J.; Xiang, Y.; You, H. Epigenetic aberrations in natural killer/T-cell lymphoma: Diagnostic, prognostic and therapeutic implications. Ther. Adv. Med. Oncol. 2020, 12, 175883591990085. [Google Scholar] [CrossRef] [Green Version]
- Yan, J.; Ng, S.-B.; Tay, J.L.-S.; Lin, B.; Koh, T.L.; Tan, J.; Selvarajan, V.; Liu, S.-C.; Bi, C.; Wang, S.; et al. EZH2 overexpression in natural killer/T-cell lymphoma confers growth advantage independently of histone methyltransferase activity. Blood 2013, 121, 4512–4520. [Google Scholar] [CrossRef] [Green Version]
- Yan, J.; Li, B.; Lin, B.; Lee, P.T.; Chung, T.-H.; Tan, J.; Bi, C.; Lee, X.T.; Selvarajan, V.; Ng, S.-B.; et al. EZH2 phosphorylation by JAK3 mediates a switch to noncanonical function in natural killer/T-cell lymphoma. Blood 2016, 128, 948–958. [Google Scholar] [CrossRef] [Green Version]
- Morschhauser, F.; Tilly, H.; Chaidos, A.; McKay, P.; Phillips, T.; Assouline, S.; Batlevi, C.L.; Campbell, P.; Ribrag, V.; Damaj, G.L.; et al. Tazemetostat for patients with relapsed or refractory follicular lymphoma: An open-label, single-arm, multicentre, phase 2 trial. Lancet Oncol. 2020, 21, 1433–1442. [Google Scholar] [CrossRef]
- Momparler, R.L.; Côté, S.; Marquez, V.E.; Momparler, L.F. Comparison of the antineoplastic action of 3-deazaneplanocin-A and inhibitors that target the catalytic site of EZH2 histone methyltransferase. Cancer Rep. Rev. 2019, 3, 1–4. [Google Scholar] [CrossRef]
- Akpa, C.A.; Kleo, K.; Lenze, D.; Oker, E.; Dimitrova, L.; Hummel, M. DZNep-mediated apoptosis in B-cell lymphoma is independent of the lymphoma type, EZH2 mutation status and MYC, BCL2 or BCL6 translocations. PLoS ONE 2019, 14, e0220681. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, J.; Liang, L.; Huang, S.; Nong, L.; Li, D.; Zhang, B.; Li, T. Aberrant differential expression of EZH2 and H3K27me3 in extranodal NK/T-cell lymphoma, nasal type, is associated with disease progression and prognosis. Hum. Pathol. 2019, 83, 166–176. [Google Scholar] [CrossRef] [PubMed]
- Hee, Y.T.; Yan, J.; Nizetic, D.; Chng, W.J. LEE011 and ruxolitinib: A synergistic drug combination for natural killer/T-cell lymphoma (NKTCL). Oncotarget 2018, 9, 31832–31841. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, Y.; Li, C.; Xue, W.; Zhang, M.; Li, Z. Frequent Mutations in Natural Killer/T Cell Lymphoma. Cell. Physiol. Biochem. 2018, 49, 1–16. [Google Scholar] [CrossRef]
- Dobashi, A.; Tsuyama, N.; Asaka, R.; Togashi, Y.; Ueda, K.; Sakata, S.; Baba, S.; Sakamoto, K.; Hatake, K.; Takeuchi, K. Frequent BCOR aberrations in extranodal NK/T-Cell lymphoma, nasal type: BCOR Aberrations In Nk/T-Cell Lymphoma. Genes Chromosomes Cancer 2016, 55, 460–471. [Google Scholar] [CrossRef] [PubMed]
- Kang, J.H.; Lee, S.H.; Lee, J.; Choi, M.; Cho, J.; Kim, S.J.; Kim, W.S.; Ko, Y.H.; Yoo, H.Y. The mutation of BCOR is highly recurrent and oncogenic in mature T-cell lymphoma. BMC Cancer 2021, 21, 82. [Google Scholar] [CrossRef]
- Gao, L.-M.; Zhao, S.; Zhang, W.-Y.; Wang, M.; Li, H.-F.; Lizaso, A.; Liu, W.-P. Somatic mutations in KMT2D and TET2 associated with worse prognosis in Epstein-Barr virus-associated T or natural killer-cell lymphoproliferative disorders. Cancer Biol. Ther. 2019, 20, 1319–1327. [Google Scholar] [CrossRef] [PubMed]
- Hathuc, V.; Kreisel, F. Genetic Landscape of Peripheral T-Cell Lymphoma. Life 2022, 12, 410. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.; Cui, M.; Fu, X.; Zhang, L.; Li, X.; Li, L.; Wu, J.; Sun, Z.; Zhang, X.; Li, Z.; et al. MiRNA-155 regulates lymphangiogenesis in natural killer/T-cell lymphoma by targeting BRG1. Cancer Biol. Ther. 2019, 20, 31–41. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Küçük, C.; Jiang, B.; Hu, X.; Zhang, W.; Chan, J.K.C.; Xiao, W.; Lack, N.; Alkan, C.; Williams, J.C.; Avery, K.N.; et al. Activating mutations of STAT5B and STAT3 in lymphomas derived from γδ-T or NK cells. Nat. Commun. 2015, 6, 6025. [Google Scholar] [CrossRef] [Green Version]
- Sim, S.H.; Kim, S.; Kim, T.M.; Jeon, Y.K.; Nam, S.J.; Ahn, Y.-O.; Keam, B.; Park, H.H.; Kim, D.-W.; Kim, C.W.; et al. Novel JAK3-Activating Mutations in Extranodal NK/T-Cell Lymphoma, Nasal Type. Am. J. Pathol. 2017, 187, 980–986. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koo, G.C.; Tan, S.Y.; Tang, T.; Poon, S.L.; Allen, G.E.; Tan, L.; Chong, S.C.; Ong, W.S.; Tay, K.; Tao, M.; et al. Janus Kinase 3–Activating Mutations Identified in Natural Killer/T-cell Lymphoma. Cancer Discov. 2012, 2, 591–597. [Google Scholar] [CrossRef] [Green Version]
- Bouchekioua, A.; Scourzic, L.; de Wever, O.; Zhang, Y.; Cervera, P.; Aline-Fardin, A.; Mercher, T.; Gaulard, P.; Nyga, R.; Jeziorowska, D.; et al. JAK3 deregulation by activating mutations confers invasive growth advantage in extranodal nasal-type natural killer cell lymphoma. Leukemia 2014, 28, 338–348. [Google Scholar] [CrossRef]
- Liu, J.; Liang, L.; Li, D.; Nong, L.; Zheng, Y.; Huang, S.; Zhang, B.; Li, T. JAK3/STAT3 oncogenic pathway and PRDM1 expression stratify clinicopathologic features of extranodal NK/T-cell lymphoma, nasal type. Oncol. Rep. 2019, 41, 3219–3232. [Google Scholar] [CrossRef]
- Moskowitz, A.J.; Ghione, P.; Jacobsen, E.; Ruan, J.; Schatz, J.H.; Noor, S.; Myskowski, P.; Vardhana, S.; Ganesan, N.; Hancock, H.; et al. A phase 2 biomarker-driven study of ruxolitinib demonstrates effectiveness of JAK/STAT targeting in T-cell lymphomas. Blood 2021, 138, 2828–2837. [Google Scholar] [CrossRef] [PubMed]
- Parri, E.; Kuusanmäki, H.; Bulanova, D.; Mustjoki, S.; Wennerberg, K. Selective drug combination vulnerabilities in STAT3- and TP53-mutant malignant NK cells. Blood Adv. 2021, 5, 1862–1875. [Google Scholar] [CrossRef] [PubMed]
- Dufva, O.; Kankainen, M.; Kelkka, T.; Sekiguchi, N.; Awad, S.A.; Eldfors, S.; Yadav, B.; Kuusanmäki, H.; Malani, D.; I Andersson, E.; et al. Aggressive natural killer-cell leukemia mutational landscape and drug profiling highlight JAK-STAT signaling as therapeutic target. Nat. Commun. 2018, 9, 1567. [Google Scholar] [CrossRef] [PubMed]
- Sun, L.; Zhao, Y.; Shi, H.; Ma, C.; Wei, L. LMP1 promotes nasal NK/T-cell lymphoma cell function by eIF4E via NF-κB pathway. Oncol. Rep. 2015, 34, 3264–3271. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ng, S.-B.; Selvarajan, V.; Huang, G.; Zhou, J.; Feldman, A.L.; Law, M.; Kwong, Y.-L.; Shimizu, N.; Kagami, Y.; Aozasa, K.; et al. Activated oncogenic pathways and therapeutic targets in extranodal nasal-type NK/T cell lymphoma revealed by gene expression profiling: Gene expression profiling in NK/T lymphoma. J. Pathol. 2011, 223, 496–510. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.J.; Hong, M.; Do, I.-G.; Lee, S.H.; Ryu, K.J.; Yoo, H.Y.; Hong, J.Y.; Ko, Y.H.; Kim, W.S. Serum survivin and vascular endothelial growth factor in extranodal NK/T-cell lymphoma, nasal type: Implications for a potential new prognostic indicator. Haematologica 2015, 100, e106–e109. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Wei, Y.; Yan, X.; Li, N.; Song, H.; Yang, L.; Wu, Y.; Xi, Y.-F.; Weng, H.-W.; Li, J.-H.; et al. Survivin is a prognostic marker and therapeutic target for extranodal, nasal-type natural killer/T cell lymphoma. Ann. Transl. Med. 2019, 7, 316. [Google Scholar] [CrossRef] [PubMed]
- Li, J.H. Bortezomib Inhibits Extranodal Natural Killer/T Cell Lymphoma, Nasal Type by Targeting NF-κB Signaling Pathway. J. Sichuan Univ. 2019, 50, 311–316. [Google Scholar]
- Chen, C.; He, H. Treatment of relapsed extranodal natural killer/T-cell lymphoma with bortezomib plus fludarabine. Mol. Clin. Oncol. 2017, 7, 525–528. [Google Scholar] [CrossRef] [Green Version]
- Tang, T.; Tay, K.; Tao, M.; Quek, R.H.H.; Farid, M.; Lim, S.T. A Phase II Study of Bortezomib-GIFOX (Gemcitabine, Ifosfamide, Oxaliplatin) in Patients with Newly Diagnosed Natural-Killer/T-Cell Lymphoma. Blood 2016, 128, 5353. [Google Scholar] [CrossRef]
- Kim, S.J.; Yoon, D.H.; Kang, H.J.; Kim, J.S.; Park, S.K.; Kim, H.J.; Lee, J.; Ryoo, B.-Y.; Ko, Y.H.; Huh, J.; et al. Bortezomib in combination with CHOP as first-line treatment for patients with stage III/IV peripheral T-cell lymphomas: A multicentre, single-arm, phase 2 trial. Eur. J. Cancer 2012, 48, 3223–3231. [Google Scholar] [CrossRef] [PubMed]
- Nagato, T.; Ueda, S.; Takahara, M.; Kishibe, K.; Komabayashi, Y.; Kumai, T.; Ohara, K.; Hirata-Nozaki, Y.; Harabuchi, S.; Hayashi, R.; et al. Cyclin-dependent kinase 1 and survivin as potential therapeutic targets against nasal natural killer/T-cell lymphoma. Lab. Investig. 2019, 99, 612–624. [Google Scholar] [CrossRef] [PubMed]
- Xiong, J.; Cui, B.W.; Wang, N.; Dai, Y.-T.; Zhang, H.; Wang, C.-F.; Zhong, H.-J.; Cheng, S.; Ou-Yang, B.-S.; Hu, Y.; et al. Genomic and Transcriptomic Characterization of Natural Killer T Cell Lymphoma. Cancer Cell 2020, 37, 403–419.e6. [Google Scholar] [CrossRef] [PubMed]
- Jiang, L.; Gu, Z.-H.; Yan, Z.-X.; Zhao, X.; Xie, Y.-Y.; Zhang, Z.-G.; Pan, C.-M.; Hu, Y.; Cai, C.-P.; Dong, Y.; et al. Exome sequencing identifies somatic mutations of DDX3X in natural killer/T-cell lymphoma. Nat. Genet. 2015, 47, 1061–1066. [Google Scholar] [CrossRef] [PubMed]
- Anders, P.; Bhende, P.M.; Foote, M.; Dittmer, D.P.; Park, S.I.; Damania, B. Dual inhibition of phosphatidylinositol 3-kinase/mammalian target of rapamycin and mitogen activated protein kinase pathways in non-Hodgkin lymphoma. Leuk. Lymphoma 2015, 56, 263–266. [Google Scholar] [CrossRef]
- Henslee, A.B.; Steele, T.A. Combination statin and chemotherapy inhibits proliferation and cytotoxicity of an aggressive natural killer cell leukemia. Biomark Res. 2018, 6, 26. [Google Scholar] [CrossRef]
- Selvarajan, V.; Osato, M.; Nah, G.S.S.; Yan, J.; Chung, T.-H.; Voon, D.C.-C.; Ito, Y.; Ham, M.F.; Salto-Tellez, M.; Shimizu, N.; et al. RUNX3 is oncogenic in natural killer/T-cell lymphoma and is transcriptionally regulated by MYC. Leukemia 2017, 31, 2219–2227. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.-P.; Chen, B.-Z.; Zhu, W.-F.; Lin, J.-Y.; Zhou, Y.; He, T.-M.; Lu, J.-P.; Ye, X.-A.; Ma, H.-M.; Xu, C.; et al. The clinical significance of c-MYC expression, rearrangement, and copy number gain in extranodal NK/T-cell lymphoma: A retrospective study in China. Exp. Mol. Pathol. 2017, 103, 38–43. [Google Scholar] [CrossRef]
- Lu, L.; Fu, X.; Li, Z.; Qiu, Y.; Li, W.; Zhou, Z.; Xue, W.; Wang, Y.; Jin, M.; Zhang, M. Platelet-derived growth factor receptor alpha (PDGFRα) is overexpressed in NK/T-cell lymphoma and mediates cell survival. Biochem. Biophys. Res. Commun. 2018, 504, 525–531. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Chen, P.; Liu, W.; Xia, Z.; Shi, F.; Zhong, M. Expression and significance of Ku80 and PDGFR-α in nasal NK/T-cell lymphoma. Pathol. Res. Pract. 2016, 212, 204–209. [Google Scholar] [CrossRef]
- Huang, Y.; de Reyniès, A.; de Leval, L.; Ghazi, B.; Martin-Garcia, N.; Travert, M.; Bosq, J.; Brière, J.; Petit, B.; Thomas, E.; et al. Gene expression profiling identifies emerging oncogenic pathways operating in extranodal NK/T-cell lymphoma, nasal type. Blood 2010, 115, 1226–1237. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Park, H.Y.; Kang, S.Y.; Kim, S.J.; Hwang, J.; Lee, S.; Kwak, S.H.; Park, K.S.; Yoo, H.Y.; Kim, W.S.; et al. Genetic alterations of JAK/STAT cascade and histone modification in extranodal NK/T-cell lymphoma nasal type. Oncotarget 2015, 6, 17764–17776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Horwitz, S.M.; Koch, R.; Porcu, P.; Oki, Y.; Moskowitz, A.; Perez, M.; Myskowski, P.; Officer, A.; Jaffe, J.D.; Morrow, S.N.; et al. Activity of the PI3K-δ,γ inhibitor duvelisib in a phase 1 trial and preclinical models of T-cell lymphoma. Blood 2018, 131, 888–898. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Flinn, I.W.; O’Brien, S.; Kahl, B.; Patel, M.; Oki, Y.; Foss, F.F.; Porcu, P.; Jones, J.; Burger, J.A.; Jain, N.; et al. Duvelisib, a novel oral dual inhibitor of PI3K-δ,γ, is clinically active in advanced hematologic malignancies. Blood 2018, 131, 877–887. [Google Scholar] [CrossRef] [Green Version]
- Huen, A.; Haverkos, B.M.; Zain, J.; Radhakrishnan, R.; Lechowicz, M.J.; Devata, S.; Korman, N.J.; Pinter-Brown, L.; Oki, Y.; Barde, P.J.; et al. Phase I/Ib Study of Tenalisib (RP6530), a Dual PI3K δ/γ Inhibitor in Patients with Relapsed/Refractory T-Cell Lymphoma. Cancers 2020, 12, 2293. [Google Scholar] [CrossRef]
- Yhim, H.-Y.; Kim, T.; Kim, S.J.; Shin, H.-J.; Koh, Y.; Kim, J.; Park, J.; Park, G.; Kim, W.; Moon, J.; et al. Combination treatment of copanlisib and gemcitabine in relapsed/refractory PTCL (COSMOS): An open-label phase I/II trial. Ann. Oncol. 2021, 32, 552–559. [Google Scholar] [CrossRef]
- Kuusanmäki, H.; Dufva, O.; Parri, E.; van Adrichem, A.J.; Rajala, H.; Majumder, M.M.; Yadav, B.; Parsons, A.; Chan, W.C.; Wennerberg, K.; et al. Drug sensitivity profiling identifies potential therapies for lymphoproliferative disorders with overactive JAK/STAT3 signaling. Oncotarget 2017, 8, 97516–97527. [Google Scholar] [CrossRef] [Green Version]
- Major, A.; Kline, J.; Karrison, T.G.; Fishkin, P.A.S.; Kimball, A.S.; Petrich, A.M.; Nattam, S.; Rao, K.; Sleckman, B.G.; Cohen, K.; et al. Phase I/II clinical trial of temsirolimus and lenalidomide in patients with relapsed and refractory lymphomas. Haematologica 2021, 107, 1608–1618. [Google Scholar] [CrossRef]
- Chen, I.C.; Sethy, B.; Liou, J.P. Recent Update of HDAC Inhibitors in Lymphoma. Front. Cell. Dev. Biol. 2020, 8, 576391. [Google Scholar] [CrossRef]
- Kim, S.J.; Kim, J.H.; Ki, C.S.; Ko, Y.H.; Kim, J.S.; Kim, W.S. Epstein–Barr virus reactivation in extranodal natural killer/T-cell lymphoma patients: A previously unrecognized serious adverse event in a pilot study with romidepsin. Ann. Oncol. 2016, 27, 508–513. [Google Scholar] [CrossRef]
- Shi, Y.; Dong, M.; Hong, X.; Zhang, W.; Feng, J.; Zhu, J.; Yu, L.; Ke, X.; Huang, H.; Shen, Z.; et al. Results from a multicenter, open-label, pivotal phase II study of chidamide in relapsed or refractory peripheral T-cell lymphoma. Ann. Oncol. 2015, 26, 1766–1771. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Jia, B.; Xu, W.; Li, W.; Liu, T.; Liu, P.; Zhao, W.; Zhang, H.; Sun, X.; Yang, H.; et al. Chidamide in relapsed or refractory peripheral T cell lymphoma: A multicenter real-world study in China. J. Hematol. Oncol. Hematol. Oncol. 2017, 10, 69. [Google Scholar] [CrossRef] [Green Version]
- Yan, G. Chidamide, Oral Subtype-Selective Histone Deacetylase Inhibitor (HDACI) Monotherapy Was Effective on the Patients with Relapsed or Refractory Extranodal Natural Killer (NK)/T-Cell Lymphoma. Blood 2017, 130 (Suppl. 1), 2797. [Google Scholar] [CrossRef]
- O’Connor, O.A.; Horwitz, S.; Masszi, T.; Van Hoof, A.; Brown, P.; Doorduijn, J.; Hess, G.; Jurczak, W.; Knoblauch, P.; Chawla, S.; et al. Belinostat in Patients With Relapsed or Refractory Peripheral T-Cell Lymphoma: Results of the Pivotal Phase II BELIEF (CLN-19) Study. J. Clin. Oncol. 2015, 33, 2492–2499. [Google Scholar] [CrossRef] [Green Version]
- McEachron, T.A.; Kirov, I.; Wungwattana, M.; Cortes, D.; Ms, K.B.Z.; Sassoon, A.; Craig, D.; Carpten, J.D.; Sender, L.S. Successful Treatment of Genetically Profiled Pediatric Extranodal NK/T-Cell Lymphoma Targeting Oncogenic STAT3 Mutation: Pediatric Extranodal NK/T-Cell Lymphoma. Pediatr. Blood Cancer 2016, 63, 727–730. [Google Scholar] [CrossRef]
- Kim, W.Y.; Jung, H.Y.; Nam, S.J.; Kim, T.M.; Heo, D.S.; Kim, C.-W.; Jeon, Y.K. Expression of programmed cell death ligand 1 (PD-L1) in advanced stage EBV-associated extranodal NK/T cell lymphoma is associated with better prognosis. Virchows Arch. 2016, 469, 581–590. [Google Scholar] [CrossRef]
- Jo, J.C.; Kim, M.; Choi, Y.; Kim, H.-J.; Kim, J.E.; Chae, S.W.; Kim, H.; Cha, H.J. Expression of programmed cell death 1 and programmed cell death ligand 1 in extranodal NK/T-cell lymphoma, nasal type. Ann. Hematol. 2017, 96, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Nagato, T.; Ohkuri, T.; Ohara, K.; Hirata, Y.; Kishibe, K.; Komabayashi, Y.; Ueda, S.; Takahara, M.; Kumai, T.; Ishibashi, K.; et al. Programmed death-ligand 1 and its soluble form are highly expressed in nasal natural killer/T-cell lymphoma: A potential rationale for immunotherapy. Cancer Immunol. Immunother. 2017, 66, 877–890. [Google Scholar] [CrossRef]
- Kwong, Y.-L.; Chan, T.S.Y.; Tan, D.; Kim, S.J.; Poon, L.-M.; Mow, B.; Khong, P.-L.; Loong, F.; Au-Yeung, R.; Iqbal, J.; et al. PD1 blockade with pembrolizumab is highly effective in relapsed or refractory NK/T-cell lymphoma failing l-asparaginase. Blood 2017, 129, 2437–2442. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, X.; Cheng, Y.; Zhang, M.; Yan, J.; Li, L.; Fu, X.; Zhang, X.; Chang, Y.; Sun, Z.; Yu, H.; et al. Activity of pembrolizumab in relapsed/refractory NK/T-cell lymphoma. J. Hematol. Oncol. Hematol. Oncol. 2018, 11, 15. [Google Scholar] [CrossRef] [Green Version]
- Chan, T.S.Y.; Li, J.; Loong, F.; Khong, P.L.; Tse, E.; Kwong, Y.L. PD1 blockade with low-dose nivolumab in NK/T cell lymphoma failing l-asparaginase: Efficacy and safety. Ann. Hematol. 2018, 97, 193–196. [Google Scholar] [CrossRef]
- Lai, J.; Xu, P.; Jiang, X.; Zhou, S.; Liu, A. Successful treatment with anti-programmed-death-1 antibody in a relapsed natural killer/T-cell lymphoma patient with multi-line resistance: A case report. BMC Cancer 2017, 17, 507. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Asif, S.; Begemann, M.; Bennett, J.; Fatima, R.; Masood, A.; Raza, S. Pembrolizumab in newly diagnosed EBV-negative extranodal natural killer/T-cell lymphoma: A case report. Mol. Clin. Oncol. 2019, 10, 397–400. [Google Scholar] [CrossRef] [Green Version]
- Tao, R.; Fan, L.; Song, Y.; Hu, Y.; Zhang, W.; Wang, Y.; Xu, W.; Li, J. Sintilimab for relapsed/refractory extranodal NK/T cell lymphoma: A multicenter, single-arm, phase 2 trial (ORIENT-4). Signal Transduct. Target. Ther. 2021, 6, 365. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Liu, P.; Huang, H.; Li, Y.; Ma, S.; Zhou, H.; Tian, X.; Zhang, Y.; Gao, Y.; Xia, Y.; et al. Combination of anti-PD-1 antibody with P-GEMOX as a potentially effective immunochemotherapy for advanced natural killer/T cell lymphoma. Signal Transduct. Target. Ther. 2020, 5, 289. [Google Scholar] [CrossRef]
- Cai, Q.; Huang, H.; Liu, P.; Zhou, H.; Li, Y.; Zhang, Y.; Lu, L.; Gao, Y.; Zhang, X.; Xia, Y.; et al. Safety and Preliminary Efficacy of Sintilimab Plus P-Gemox (Pegaspargase, Gemcitabine and Oxaliplatin) Regimen As First-Line Treatment for Patients with Advanced Extranodal Natural Killer/T Cell Lymphoma, Nasal Type: An Open-Label, Multicenter, Phase 2 Study. Blood 2020, 136 (Suppl. 1), 26–27. [Google Scholar] [CrossRef]
- Yan, G.; Zhang, Y.; Wang, X.; Bai, B.; Huang, Y.; He, H.; Ping, L.; He, Y.; Huang, C.; Li, J.; et al. Novel Induction Therapy for Newly Diagnosed Extranodal Natural Killer/T Cell Lymphoma (ENKTL) Treated By Anti-PD-1 Antibody Plus Histone Deacetylase Inhibitor Followed By P-GemOx Regimen. Blood 2021, 138 (Suppl. S1), 137. [Google Scholar] [CrossRef]
- Huang, H.; Gao, Y.; Wang, X.; Bai, B.; Zhang, L.; Xiao, Y.; Liu, X.; Li, W.; Cai, Q.; Li, Z.; et al. Sintilimab plus chidamide for relapsed/refractory (R/R) extranodal NK/T cell lymphoma (ENKTL): A prospective, multicenter, single-arm, phase IB/II trial (SCENT). Hematol. Oncol. 2021, 39, 298–300. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, X.; Wang, X.; Chang, Y.; Fu, X.; Li, X.; Li, L.; Yan, J.; Nan, F.; Wu, X.; et al. Anti-PD-1-Antibody (Tislelizumab) Combined with Deacetylase Inhibitor (Chidamide), Lenalidomide and Etoposide for the Treatment of Refractory/Relapsed Extranodal Natural Killer/T Cell Lymphoma, Nasal Type (r/r-ENKTL): Preliminary Results from a Prospective, Multicenter, Single -Arm, Phase II Trial. Blood 2021, 138 (Suppl. 1), 1368. [Google Scholar] [CrossRef]
- Du, L.; Zhang, L.; Li, L.; Li, X.; Yan, J.; Wang, X.; Fu, X.; Sun, Z.; Zhang, X.; Li, Z.; et al. Effective Treatment with PD-1 Antibody, Chidamide, Etoposide, and Thalidomide (PCET) for Relapsed/Refractory Natural Killer/T-Cell Lymphoma: A Report of Three Cases. OncoTargets Ther. 2020, 13, 7189–7197. [Google Scholar] [CrossRef]
- Xu, J.; Xu, X.; Chen, J.; Wang, J.; Jiang, C.; Lv, C.; Chen, B. Sustained remission of multi-line relapsed extranodal NK/T-cell lymphoma, nasal type, following sintilimab and chidamide: A case report. Medicine 2021, 100, e24824. [Google Scholar] [CrossRef]
- Wang, J.; Gao, Y.S.; Xu, K.; Li, X.D. Combination of atezolizumab and chidamide to maintain long-term remission in refractory metastatic extranodal natural killer/T-cell lymphoma: A case report. World J. Clin. Cases 2022, 10, 1609–1616. [Google Scholar] [CrossRef]
- NCT04899414: Dexamethasone, Azacytidine, Pegaspargase and Tislelizumab for NK/T Cell Lymphoma. ClinicalTrials.gov. Published 1 June 2022. Available online: https://clinicaltrials.gov/ct2/show/NCT04899414 (accessed on 1 December 2022).
- Yan, G.; Huang, C.; Li, X.-P.; Wang, X.; Bai, B.; He, Y.; Ping, L.; Huang, H. DNA-Demethylating Agents Combined with Anti-PD-1 Inhibitors Showed Activity in Patients with Relapsed or Refractory Extranodal NK/T Cell Lymphoma Who Have Failed Immunotherapy: An Exploratory Study. Blood 2022, 140 (Suppl. 1), 9393–9394. [Google Scholar] [CrossRef]
- Kaplon, H.; Chenoweth, A.; Crescioli, S.; Reichert, J.M. Antibodies to watch in 2022. mAbs 2022, 14, 2014296. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Tao, R.; Yang, Y.; Cen, H.; Zhou, H.; Guo, Y.; Zou, L.; Cao, J.; Huang, Y.; Jin, J.; et al. GEMSTONE-201: Preplanned primary analysis of a multicenter, single-arm, phase 2 study of sugemalimab (suge) in patients (pts) with relapsed or refractory extranodal natural killer/T cell lymphoma (R/R ENKTL). J. Clin. Oncol. 2022, 40 (Suppl. S16), 7501. [Google Scholar] [CrossRef]
- Kim, S.J.; Lim, J.Q.; Laurensia, Y.; Cho, J.; Yoon, S.E.; Lee, J.Y.; Ryu, K.J.; Ko, Y.H.; Koh, Y.; Cho, D.; et al. Avelumab for the treatment of relapsed or refractory extranodal NK/T-cell lymphoma: An open-label phase 2 study. Blood 2020, 136, 2754–2763. [Google Scholar] [CrossRef]
- Ganjoo, K.; Hong, F.; Horning, S.J.; Gascoyne, R.D.; Natkunam, Y.; Swinnen, L.J.; Habermann, T.M.; Kahl, B.S.; Advani, R. Bevacizumab and cyclosphosphamide, doxorubicin, vincristine and prednisone in combination for patients with peripheral T-cell or natural killer cell neoplasms: An Eastern Cooperative Oncology Group study (E2404). Leuk. Lymphoma 2014, 55, 768–772. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Wang, Y.; Huang, J.J.; Gao, T.X.; Wu, K.; Feng, F.; Sun, P.; Liu, P.; Bi, X.; Xia, Y.; et al. A phase II trial of bevacizumab-GemAOD regimen for newly diagnosed extranodal NK/T cell lymphoma. J. Clin. Oncol. 2018, 36 (Suppl. S15), 7564. [Google Scholar] [CrossRef]
- Lin, N.; Song, Y.; Zhu, J. Immune checkpoint inhibitors in malignant lymphoma: Advances and perspectives. Chin. J. Cancer Res. 2020, 32, 303–318. [Google Scholar] [CrossRef]
- Kumai, T.; Matsuda, Y.; Ohkuri, T.; Oikawa, K.; Ishibashi, K.; Aoki, N.; Kimura, S.; Harabuchi, Y.; Celis, E.; Kobayashi, H. c-Met is a novel tumor associated antigen for T-cell based immunotherapy against NK/T cell lymphoma. OncoImmunology 2015, 4, e976077. [Google Scholar] [CrossRef]
- Mossé, Y.P.; Voss, S.D.; Lim, M.S.; Rolland, D.; Minard, C.G.; Fox, E.; Adamson, P.; Wilner, K.; Blaney, S.M.; Weigel, B.J. Targeting ALK With Crizotinib in Pediatric Anaplastic Large Cell Lymphoma and Inflammatory Myofibroblastic Tumor: A Children’s Oncology Group Study. J. Clin. Oncol. 2017, 35, 3215–3221. [Google Scholar] [CrossRef] [PubMed]
- Huo, J.; Fu, L.; Jin, M.; Li, Z.; Zhang, M. IL-10 contributes to gemcitabine resistance in extranodal NK/T-cell lymphoma cells via ABCC4. Investig. New. Drugs 2022, 40, 537–545. [Google Scholar] [CrossRef]
- Kumai, T.; Nagato, T.; Kobayashi, H.; Komabayashi, Y.; Ueda, S.; Kishibe, K.; Ohkuri, T.; Takahara, M.; Celis, E.; Harabuchi, Y. CCL17 and CCL22/CCR4 signaling is a strong candidate for novel targeted therapy against nasal natural killer/T-cell lymphoma. Cancer Immunol. Immunother 2015, 64, 697–705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhou, Z.; Chen, X.; Li, Z.; Wang, X.; Zhang, M. Overexpression of S100A9 in tumor stroma contribute to immune evasion of NK/T cell lymphoma and predict poor response rate. Sci. Rep. 2021, 11, 11220. [Google Scholar] [CrossRef]
- Wang, L.; Wang, H.; Li, P.-F.; Lu, Y.; Xia, Z.-J.; Huang, H.-Q.; Zhang, Y.-J. CD38 expression predicts poor prognosis and might be a potential therapy target in extranodal NK/T cell lymphoma, nasal type. Ann. Hematol. 2015, 94, 1381–1388. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.; Zhu, J.; Yao, M.; Kim, T.M.; Yoon, D.H.; Cho, S.-G.; Eom, H.S.; Lim, S.T.; Yeh, S.-P.; Song, Y.; et al. Daratumumab monotherapy for patients with relapsed or refractory natural killer/T-cell lymphoma, nasal type: An open-label, single-arm, multicenter, phase 2 study. J. Hematol. Oncol. Hematol. Oncol. 2021, 14, 25. [Google Scholar] [CrossRef]
- Mustafa, N.; Nee, A.H.F.; Chooi, J.Y.; Toh, S.H.M.; Chung, T.-H.; Selvarajan, V.; Fan, S.; Ng, S.B.; Poon, M.; Chan, E.; et al. Determinants of response to daratumumab in Epstein-Barr virus-positive natural killer and T-cell lymphoma. J. Immunother. Cancer 2021, 9, e002123. [Google Scholar] [CrossRef]
- Kawamoto, K.; Miyoshi, H.; Suzuki, T.; Sasaki, Y.; Yamada, K.; Yanagida, E.; Muto, R.; Kiryu, M.; Sone, H.; Seto, M.; et al. Frequent expression of CD30 in extranodal NK/T-cell lymphoma: Potential therapeutic target for anti-CD30 antibody-based therapy. Hematol. Oncol. 2018, 36, 166–173. [Google Scholar] [CrossRef]
- Kim, S.J.; Yoon, D.H.; Kim, J.S.; Kang, H.J.; Lee, H.W.; Eom, H.-S.; Hong, J.Y.; Cho, J.; Ko, Y.H.; Huh, J.; et al. Efficacy of Brentuximab Vedotin in Relapsed or Refractory High-CD30–Expressing Non-Hodgkin Lymphomas: Results of a Multicenter, Open-Labeled Phase II Trial. Cancer Res. Treat. 2020, 52, 374–387. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.W.; Chen, L.; Herrera, A.F.; Mei, M.; McBride, K.; Abary, R.; Siddiqi, T.; Popplewell, L.; Forman, S.J.; Rosen, S.T.; et al. Phase 1 Study of MDR1 Inhibitor Plus Brentuximab Vedotin in Relapsed/Refractory Hodgkin Lymphoma. Blood 2018, 132 (Suppl. S1), 1636. [Google Scholar] [CrossRef]
- Haverkos, B.M.; Alpdogan, O.; Baiocchi, R.; E Brammer, J.; Feldman, T.A.; Capra, M.; A Brem, E.; Nair, S.M.; Scheinberg, P.; Pereira, J.; et al. Nanatinostat (Nstat) and Valganciclovir (VGCV) in Relapsed/Refractory (R/R) Epstein-Barr Virus-Positive (EBV +) Lymphomas: Final Results from the Phase 1b/2 VT3996-201 Study. Blood 2021, 138 (Suppl. 1), 623. [Google Scholar] [CrossRef]
- Cao, Z.; Zeng, L.; Feng, L.; Feng, X. Comprehensive analysis of the differential cellular and EBV miRNA expression profiles in mature T and NK cell lymphomas. Pathol. Res. Pract. 2022, 233, 153846. [Google Scholar] [CrossRef]
- Bollard, C.M.; Gottschalk, S.; Torrano, V.; Diouf, O.; Ku, S.; Hazrat, Y.; Carrum, G.; Ramos, C.; Fayad, L.; Shpall, E.J.; et al. Sustained Complete Responses in Patients with Lymphoma Receiving Autologous Cytotoxic T Lymphocytes Targeting Epstein-Barr Virus Latent Membrane Proteins. J. Clin. Oncol. 2014, 32, 798–808. [Google Scholar] [CrossRef]
- McLaughlin, L.P.; Rouce, R.; Gottschalk, S.; Torrano, V.; Carrum, G.; Wu, M.-F.; Hoq, F.; Grilley, B.; Marcogliese, A.M.; Hanley, P.J.; et al. EBV/LMP-specific T cells maintain remissions of T- and B-cell EBV lymphomas after allogeneic bone marrow transplantation. Blood 2018, 132, 2351–2361. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, S.-G.; Kim, N.; Sohn, H.-J.; Lee, S.K.; Oh, S.T.; Lee, H.-J.; Cho, H.-I.; Yim, H.W.; Jung, S.E.; Park, G.; et al. Long-term Outcome of Extranodal NK/T Cell Lymphoma Patients Treated With Postremission Therapy Using EBV LMP1 and LMP2a-specific CTLs. Mol. Ther. 2015, 23, 1401–1409. [Google Scholar] [CrossRef] [Green Version]
- Kim, W.S.; Oki, Y.; Kim, S.J.; Yoon, S.E.; Ardeshna, K.M.; Lin, Y.; Ruan, J.; Porcu, P.; Brammer, J.E.; Jacobsen, E.D.; et al. Autologous EBV-specific T cell treatment results in sustained responses in patients with advanced extranodal NK/T lymphoma: Results of a multicenter study. Ann. Hematol. 2021, 100, 2529–2539. [Google Scholar] [CrossRef]
- Li, Q.; Zhang, W.; Li, J.; Xiong, J.; Liu, J.; Chen, T.; Wen, Q.; Zeng, Y.; Gao, L.; Zhang, C.; et al. Plasma circulating tumor DNA assessment reveals KMT2D as a potential poor prognostic factor in extranodal NK/T-cell lymphoma. Biomark. Res. 2020, 8, 27. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.Q.; Huang, G.L.; Guo, C.C.; Pu, X.X.; Lin, T.Y. Diagnostic and Prognostic Value of Circulating miR-221 for Extranodal Natural Killer/T-Cell Lymphoma. Dis. Markers 2010, 29, 251–258. [Google Scholar] [CrossRef]
- Zhang, X.; Ji, W.; Huang, R.; Li, L.; Wang, X.; Li, L.; Fu, X.; Sun, Z.; Li, Z.; Chen, Q.; et al. MicroRNA-155 is a potential molecular marker of natural killer/T-cell lymphoma. Oncotarget 2016, 7, 53808–53819. [Google Scholar] [CrossRef] [Green Version]
- Zhu, L.; Zhang, X.; Fu, X.; Li, Z.; Sun, Z.; Wu, J.; Wang, X.; Wang, F.; Li, X.; Niu, S.; et al. c-Myc mediated upregulation of long noncoding RNA SNHG12 regulates proliferation and drug sensitivity in natural killer/T-cell lymphoma. J. Cell. Biochem. 2019, 120, 12628–12637. [Google Scholar] [CrossRef]
- Wang, L.; Yang, J.; Wang, H.-N.; Fu, R.-Y.; Liu, X.-D.; Piao, Y.-S.; Wei, L.-Q.; Wang, J.-W.; Zhang, L. LncRNA BCYRN1-induced autophagy enhances asparaginase resistance in extranodal NK/T-cell lymphoma. Theranostics 2021, 11, 925–940. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.S.; Liao, C.K.; Liu, T.T.; You, H.L.; Wang, M.C.; Huang, W.T. TP53 mutations in peripheral mature T and NK cell lymphomas: A whole-exome sequencing study with correlation to p53 expression. Hum. Pathol. 2018, 80, 145–151. [Google Scholar] [CrossRef]
- Bi, X.-W.; Wang, H.; Zhang, W.-W.; Wang, J.-H.; Liu, W.-J.; Xia, Z.-J.; Huang, H.-Q.; Jiang, W.-Q.; Zhang, Y.-J.; Wang, L. PD-L1 is upregulated by EBV-driven LMP1 through NF-κB pathway and correlates with poor prognosis in natural killer/T-cell lymphoma. J. Hematol. Oncol. Hematol. Oncol. 2016, 9, 109. [Google Scholar] [CrossRef] [Green Version]
- Lim, J.Q.; Huang, D.; Tang, T.; Tan, D.; Laurensia, Y.; Peng, R.-J.; Wong, E.K.Y.; Cheah, D.M.Z.; Chia, B.K.H.; Iqbal, J.; et al. Whole-genome sequencing identifies responders to Pembrolizumab in relapse/refractory natural-killer/T cell lymphoma. Leukemia 2020, 34, 3413–3419. [Google Scholar] [CrossRef] [PubMed]
- Cho, J.; Kim, S.J.; Park, W.-Y.; Kim, J.; Woo, J.; Kim, G.; Yoon, S.E.; Ko, Y.H.; Kim, W.S. Immune subtyping of extranodal NK/T-cell lymphoma: A new biomarker and an immune shift during disease progression. Mod. Pathol. 2020, 33, 603–615. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.W.; Ryu, K.J.; Lee, H.; Ko, Y.H.; Kim, W.S.; Kim, S.J. Serum IL18 is associated with hemophagocytosis and poor survival in extranodal natural killer/T-cell lymphoma. Leuk. Lymphoma 2019, 60, 317–325. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Zheng, Y.; Shou, L.; Shi, Y.; Shen, H.; Zhu, M.; Ye, X.; Jin, J.; Xie, W. Increased Serum Level of Interleukin-10 Predicts Poor Survival and Early Recurrence in Patients With Peripheral T-Cell Lymphomas. Front. Oncol. 2020, 10, 584261. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.Y.; Lim, J.Q.; Ong, C.K. Towards Next Generation Biomarkers in Natural Killer/T-Cell Lymphoma. Life 2021, 11, 838. [Google Scholar] [CrossRef]
- Zhang, Y.T.; Li, N.; Wang, J.J.; Li, Y.M.; Huang, H.; Zhang, Y.J. Association of B Symptoms With Plasma EBV-DNA Copy Number and Cytokine Profiles in Patients With Nasal Type Extranodal Natural Killer/T-Cell Lymphoma (ENKTL): A Mechanism and Prognostic Study. Int. J. Radiat Oncol. 2021, 111, e304. [Google Scholar] [CrossRef]
- Bao, C.; Zhou, D.; Zhu, L.; Qian, W.; Ye, X. Increased serum level of interleukin-6 correlates with negative prognostic factors in extranodal NK/T-cell lymphoma. Transl. Cancer Res. 2020, 9, 2378–2389. [Google Scholar] [CrossRef]
- Reneau, J.C.; Shindiapina, P.; Braunstein, Z.; Youssef, Y.; Ruiz, M.; Farid, S.; Hanel, W.; Brammer, J.E. Extranodal Natural Killer/T-Cell Lymphomas: Current Approaches and Future Directions. J. Clin. Med. 2022, 11, 2699. [Google Scholar] [CrossRef] [PubMed]
- Lv, K.; Li, X.; Yu, H.; Chen, X.; Zhang, M.; Wu, X. Selection of new immunotherapy targets for NK/T cell lymphoma. Am. J. Transl. Res. 2020, 12, 7034–7047. [Google Scholar] [PubMed]
- Tian, X.-P.; Ma, S.-Y.; Young, K.H.; Ong, C.K.; Liu, Y.-H.; Li, Z.-H.; Zhai, Q.-L.; Huang, H.-Q.; Lin, T.-Y.; Xia, Z.-J.; et al. A composite single-nucleotide polymorphism prediction signature for extranodal natural killer/T-cell lymphoma. Blood 2021, 138, 452–463. [Google Scholar] [CrossRef] [PubMed]
- Ito, Y.; Marouf, A.; Kogure, Y.; Koya, J.; Tabata, M.; Saito, Y.; Shingaki, S.; Yuasa, M.; Yamaguchi, K.; Bruneau, J.; et al. Frequent Alterations of Driver Genes in Chromosome X and Their Clinical Relevance in Extranodal NK/T-Cell Lymphoma. Blood 2022, 140 (Suppl. S1), 1737–1739. [Google Scholar] [CrossRef]
- Fu, L.; Gao, Z.; Zhang, X.; Tsang, Y.H.; Goh, H.K.; Geng, H.; Shimizu, N.; Tsuchiyama, J.; Srivastava, G.; Tao, Q. Frequent concomitant epigenetic silencing of the stress-responsive tumor suppressor gene CADM1, and its interacting partner DAL.-1 in nasal NK/T-cell lymphoma. Int. J. Cancer 2009, 124, 1572–1578. [Google Scholar] [CrossRef]
- O’Connor, O.A.; Falchi, L.; Lue, J.K.; Marchi, E.; Kinahan, C.; Sawas, A.; Deng, C.; Montanari, F.; Amengual, J.E.; Kim, H.A.; et al. Oral 5-azacytidine and romidepsin exhibit marked activity in patients with PTCL: A multicenter phase 1 study. Blood 2019, 134, 1395–1405. [Google Scholar] [CrossRef]
- Chan, A.T.C.; Tao, Q.; Robertson, K.D.; Flinn, I.W.; Mann, R.B.; Klencke, B.; Kwan, W.H.; Leung, T.W.-T.; Johnson, P.J.; Ambinder, R.F. Azacitidine Induces Demethylation of the Epstein-Barr Virus Genome in Tumors. J. Clin. Oncol. 2004, 22, 1373–1381. [Google Scholar] [CrossRef] [PubMed]
- Shafiee, A.; Shamsi, S.; Kohandel Gargari, O.; Beiky, M.; Allahkarami, M.M.; Miyanaji, A.B.; Aghajanian, S.; Mozhgani, S. EBV associated T- and NK-cell lymphoproliferative diseases: A comprehensive overview of clinical manifestations and novel therapeutic insights. Rev. Med. Virol. 2022, 32, e2328. [Google Scholar] [CrossRef]
- Wang, B.; Li, X.Q.; Ma, X.; Hong, X.; Lu, H.; Guo, Y. Immunohistochemical expression and clinical significance of P-glycoprotein in previously untreated extranodal NK/T-cell lymphoma, nasal type. Am. J. Hematol. 2008, 83, 795–799. [Google Scholar] [CrossRef]
- Li, B.; Wan, Q.; Li, Z.; Chng, W.J. Janus Kinase Signaling: Oncogenic Criminal of Lymphoid Cancers. Cancers 2021, 13, 5147. [Google Scholar] [CrossRef]
- Karube, K.; Nakagawa, M.; Tsuzuki, S.; Takeuchi, I.; Honma, K.; Nakashima, Y.; Shimizu, N.; Ko, Y.-H.; Morishima, Y.; Ohshima, K.; et al. Identification of FOXO3 and PRDM1 as tumor-suppressor gene candidates in NK-cell neoplasms by genomic and functional analyses. Blood 2011, 118, 3195–3204. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tan, D.; Phipps, C.; Hwang, W.Y.K.; Tan, S.-Y.; Yeap, C.H.; Chan, Y.H.; Tay, K.; Lim, S.T.; Lee, Y.S.; Kumar, S.G.; et al. Panobinostat in combination with bortezomib in patients with relapsed or refractory peripheral T-cell lymphoma: An open-label, multicentre phase 2 trial. Lancet Haematol. 2015, 2, e326–e333. [Google Scholar] [CrossRef] [PubMed]
- Tan, D.; Diong, C.P.; Loh, Y.; Goh, Y.T. Histone deacetylase (HDAC) inhibitors when combined with a proteasome inhibitor are safe and effective in patients with extranodal natural killer/T-cell lymphoma (ENKTL). Ann. Oncol. 2016, 27, 1811–1812. [Google Scholar] [CrossRef]
- Chai, Y.; Chen, B.; Qi, F.; Fang, H.; Qi, S.-N.; Guo, R.-Y.; Li, N.; Yang, Y.; Wang, S.-L.; Song, Y.-W.; et al. First-Line Chemoradiation With or Without Chidamide (Tucidinostat) in Patients With Intermediate- and High-Risk Early-Stage Extranodal Nasal-Type Natural Killer/T-Cell Lymphoma: A Randomized Phase 2 Study in China. Int. J. Radiat. Oncol. 2022, 113, 833–844. [Google Scholar] [CrossRef] [PubMed]
- Ji, J.; Liu, Z.; Kuang, P.; Dong, T.; Chen, X.; Li, J.; Zhang, C.; Liu, J.; Zhang, L.; Shen, K.; et al. A new conditioning regimen with chidamide, cladribine, gemcitabine and busulfan significantly improve the outcome of high-risk or relapsed/refractory non-Hodgkin ’s lymphomas. Int. J. Cancer 2021, 149, 2075–2082. [Google Scholar] [CrossRef]
- Cosenza, M.; Civallero, M.; Marcheselli, L.; Sacchi, S.; Pozzi, S. Citarinostat and Momelotinib co-target HDAC6 and JAK2/STAT3 in lymphoid malignant cell lines: A potential new therapeutic combination. Apoptosis 2020, 25, 370–387. [Google Scholar] [CrossRef]
- Xu, L.; Qin, Y.; Liu, M.; Jiao, J.; Tu, D.; Zhang, M.; Yan, D.; Song, X.; Sun, C.; Zhu, F.; et al. The Acetyltransferase KAT5 Inhibitor NU 9056 Promotes Apoptosis and Inhibits JAK2/STAT3 Pathway in Extranodal NK/T Cell Lymphoma. Anticancer Agents Med. Chem. 2022, 22, 1530–1540. [Google Scholar] [CrossRef]
- Reinke, S.; Bröckelmann, P.J.; Iaccarino, I.; Garcia-Marquez, M.A.; Borchmann, S.; Jochims, F.; Kotrova, M.; Pal, K.; Brüggemann, M.; Hartmann, E.; et al. Tumor and microenvironment response but no cytotoxic T-cell activation in classic Hodgkin lymphoma treated with anti-PD1. Blood 2020, 136, 2851–2863. [Google Scholar] [CrossRef]
- Song, T.L.; Nairismägi, M.-L.; Laurensia, Y.; Lim, J.-Q.; Tan, J.; Li, Z.-M.; Pang, W.-L.; Kizhakeyil, A.; Wijaya, G.-C.; Huang, D.; et al. Oncogenic activation of the STAT3 pathway drives PD-L1 expression in natural killer/T-cell lymphoma. Blood 2018, 132, 1146–1158. [Google Scholar] [CrossRef] [Green Version]
- NCT03363555: SHR-1210 in Patients with Relapsed or Refractory Extranodal NK/T Cell Lymphoma. ClinicalTrials.gov. Published 1 June 2022. Available online: https://clinicaltrials.gov/ct2/show/NCT03363555 (accessed on 1 December 2022).
- Assatova, B.; Trevisani, C.; Willim, R.; Duffy, J.; Louissaint, J.A.; Kim, W.-S.; Feith, D.J.; Loughran, J.T.; Powers, F.; A Morgan, E.; et al. KLRG1 Depletion Is a Novel Therapeutic Strategy for Patients with Mature T and NK/T-Cell Lymphomas. Blood 2022, 140 (Suppl. S1), 2253–2255. [Google Scholar] [CrossRef]
Identified Mutation and Prevalence (If Available) | Biologic Significance in ENKTL | Hypothetical Therapeutic Approach | References |
---|---|---|---|
Promoter hypermethylation | |||
BCL2L11 (BIM) | sensitizes NK cell lines to chemotherapy-induced apoptosis | hypomethylating agents (azacitidine, decitabine) | [26] |
DAPK1 | mediates p53-dependent apoptosis | [26] | |
PTPN6 (SHP1) | inactivates the JAK/STAT signaling pathway | [26] | |
TET2 9% | contributes to early global hypermethylation | [26] | |
SOCS6 | inactivates the JAK/STAT signaling pathway | [26] | |
ASNS | downregulation is associated with increased sensitivity to L-asparaginase | [26] | |
DLC1 | RAS signaling | [27] | |
PRDM1 6% | apoptosis | [28,29] | |
PTPRK 10% | JAK/STAT signaling and apoptosis | [30] | |
HACE1 | apoptosis | [31] | |
P73 , hMLH1, CDKN2A, CDKN2B, RARβ, PCDH10, DLEC1, CADM, DAL1 | currently unknown functions | [32] | |
Epigenetic regulatory genes | |||
EZH2 61% | aberrant overexpression results in tumor growth independent of its histone methyltransferase activity via non-canonical transcriptional activator | 3-deazaneplanocin-A (DZNep) tazemetostat (minimal activity in ENKTL) CDK4/6 inhibitors (i.e., ribociclib) for downstream cyclin D1 inhibition | [33,34,35,36,37,38,39] |
BCOR
17–32% | tumor suppressor: suppression leads to enhanced cell proliferation and IL-2 production via HDACs | none | [19,28,40,41,42] |
MLL2
(KMT2D) and MLL3 (KMT2C)
13–19% | tumor suppressor related to histone methylation | none | [19,28,32,43] |
TET1/TET2, EP200, ASXL3, CREBBP and ARID1A 5–9% | currently unknown functions | none | [19,32,44] |
MicroRNAs (i.e., miR-155) | miR-155 activates STAT3 and VEGF signaling to promote lymphomagenesis | novel miRNA inhibitors (i.e., for mIR-155) | [22,45] |
Cell survival and proliferation | |||
JAK/STAT pathway
(usually STAT3 or JAK3 mutations) 18% | constitutive activation and downstream EZH2 upregulation | tofacitinib ruxolitinib (combined with novel TP53-MDM2, farnesyltransferase, or MCL-1 inhibitors, or with BCL2 inhibitor venetoclax or aurora kinase inhibitor alisertib) novel pan-JAK and STAT inhibitors momelotinib (combined with HDAC inhibitor citarinostat) | [23,28,34,38,46,47,48,49,50,51,52,53] |
NF-κB signaling pathway and survivin
7% | constitutive activation and downstream upregulation of anti-apoptotic protein survivin | proteasome inhibitors (bortezomib, carfilzomib) survivin inhibitors (terameprocol, mithramycin) | [22,23,54,55,56,57,58,59,60,61,62] |
DDX3X and RAS/MAPK pathway 14% | tumor suppressor: upregulation of downstream NF-κB and MAPK pathways, resulted in cell proliferation | previous inhibitors of MAPK pathway not effective statins (i.e., fluvastatin, atorvastatin) | [17,18,19,23,28,40,63,64,65,66] |
C-MYC 45% | oncogene causing downstream upregulation of EZH2 and RUNX3 | novel small molecule MYC inhibitors (i.e., JQ1) | [22,67,68] |
PDGFRa pathway 89–91% | upregulated by PI3K/Akt/mTOR and JAK/STAT pathways and mediates cell survival via tyrosine kinase activity | tyrosine kinase inhibitors (i.e., imatinib) | [69,70,71] |
PI3K/Akt/mTOR pathway | upregulated by JAK/STAT pathway and mediates cell survival | PI3K inhibitors (i.e., duvelisib) Akt inhibitor lenalidomide mTOR inhibitors (i.e., temsirolimus) may be more effective in combination | [18,23,72,73,74,75,76,77,78] |
Avoiding autophagy | |||
HDACs | inactivation of tumor suppressor genes | HDAC inhibitors (i.e., romidepsin, vorinostat, chidamide, panobinostat, nantinostat, citarinostat) novel histone acetyltransferase inhibitors (KAT5 inhibitor NU9056) | [32,79,80,81,82,83,84,85] |
TP53 (63%), PRDM1, FOXO3 | tumor suppressors | none (putative inhibitors for TP53-mutated and TP53-wild type disease) | [19,28,40,52,64] |
Tumor microenvironment | |||
PD-1/PD-L1 pathway 56–80% | PD-L1 overexpression on tumor cells and tumor-infiltrating macrophages enabling escape from immune surveillance | PD-1 inhibitors (pembrolizumab, nivolumab, sintilimab, tislelizumab, toripalimab, geptanolimab, camrelizumab) PD-L1 inhibitors (atezolizumab, sugemalimab, avelumab) | [86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107] |
VEGF | overexpression and tumor angiogenesis | anti-VEGF monoclonal antibodies (i.e., bevacizumab) VEGF receptor inhibitor apatinib | [71,108,109,110] |
MET and HGF | overexpression and tumor angiogenesis, invasion, and metastasis | MET inhibitors (i.e., crizotinib) | [71,111,112] |
Cytokines (IL-2, IL-18, IL-10, IL-9, IL-15, MIP-1a, IL-6, interferon) | growth promotion | cytokine inhibitors (not currently being studied in ENKTL) | [24,113] |
Chemokines (CCR4) | promote tumor angiogenesis and metastasis | mogamulizumab | [114] |
S100A9 | upregulates PD-L1 expression and escape from immune surveillance | none | [115] |
Other therapeutic targets | |||
CD38 50% | cell surface binding mediates cell adhesion and proliferation of lymphocytes | daratumumab (ATRA may enhance daratumumab-induced cytotoxicity) | [116,117,118] |
CD30
57% | cell surface binding stimulates the NF-κB and MAPK pathways with pro-survival and anti-apoptotic effects | brentuximab vedotin | [119,120,121] |
EBV | overexpression of the oncoprotein LMP1, leading to ligand-independent activation of the pro-survival and anti-apoptotic NF-κB and MAPK pathways | autologous or allogeneic cytotoxic T-lymphocyte cellular therapies (i.e., baltaleucel-T) antiviral therapy (valganciclovir, in combination with HDAC inhibitors) | [122,123,124,125,126,127] |
Identified Mutation | Prognostic or Predictive | Significance in ENKTL | References |
---|---|---|---|
MLL2 (KMT2D) | prognostic | mutation associated with inferior overall survival mutation in circulating ctDNA associated with total metabolic tumor volume | [43,128] |
TET2 | prognostic | mutation associated with inferior overall survival | [43] |
EZH2 | prognostic | overexpression associated with higher tumor cell proliferation, advanced stage, and inferior overall survival | [38] |
MicroRNAs (i.e., miR-221 and miR-155) | prognostic | high serum miR-221 associated with inferior overall survival high serum miR-155 associated with disease response | [22,129,130] |
PTPRK | predictive | tumors with methylated PTPRK promoter regions treated with SMILE protocol had an inferior overall survival | [30] |
ASNS | predictive | high expression associated with asparaginase resistance | [26] |
lnRNAs (i.e., SNHG12 and BCYRN1) | prognostic predictive | high SNHG12 expression associated with cisplatin resistance as well as multidrug resistance via P-glycoprotein high BCYRN1 expression associated with inferior PFS and resistance to asparaginase | [131,132] |
Gene expression signatures | prognostic predictive | three molecular subtypes of ENKTL: tumor-suppressor/immune-modulator (TSIM), MYC-related (MB) and histone epigenetic altered (HEA) superior survival in HEA subtype and inferior survival in MB subtype TSIM subtype predicts response to checkpoint inhibitors, MB subtype predicts response to MYC inhibitors, and HEA subtype predicts response to HDAC inhibitors | [63] |
JAK/STAT | predictive | activating JAK/STAT mutations or STAT3 overexpression predicts response to ruxolitinib | [51] |
TP53 | prognostic predictive | TP53 associated with inferior survival mutational status predicts response to agents in combination with ruxolitinib: novel TP53-MDM2 inhibitors in TP53-wild type disease and farnesyltransferase inhibitors in TP53-mutated disease | [52,133] |
DDX3X | prognostic | mutation associated with inferior prognosis and inferior response to CHOP-based chemotherapy but not asparaginase-based chemotherapy | [63,64] |
survivin | prognostic | overexpression associated with inferior survival | [22,23,54,55,56,57] |
C-MYC | prognostic | presence of C-MYC associated with inferior overall survival | [22,63,67,68] |
PDGFRa | prognostic | high expression associated with inferior PFS | [69,70] |
PD-L1 | prognostic predictive | mixed results: high expression associated with inferior treatment response and survival in early-stage disease but improved survival in advanced-stage disease mutated PD-L1 gene is associated with better responses to pembrolizumab | [63,86,134,135] |
Whole genome sequencing | prognostic predictive | four immune subgroups of ENKTL: an ‘immune tolerance’ group (high numbers of Tregs, early stage, best prognosis); two ‘immune evasion’ groups (high cytotoxic T-cells and high PD-L1); and an ‘immune silenced’ group (exhausted immune response, advanced stage, worst prognosis) ‘immune silenced’ group had the worse response to pembrolizumab; ‘immune tolerance’ group had the best response to pembrolizumab | [136] |
VEGF | prognostic | high serum VEGF levels associated with inferior PFS and OS | [56] |
Serum cytokines | prognostic predictive | high serum IL-18, IL-10, IL-6, IL-2Ra, IL-9, IL-15, MIP-1a all associated with inferior survival high serum IL-10 predicts resistance in gemcitabine | [113,137,138,139,140,141] |
S100A9 | prognostic | high serum and tumor levels associated with advanced stage, poor response to therapy, and early relapse | [115] |
CD38 | prognostic predictive | high expression associated with inferior survival predicts response to daratumumab | [116] |
CD30 | prognostic predictive | mixed results with unclear effect on prognosis predicts response to brentuximab vedotin | [142,143] |
single-nucleotide polymorphisms (SNPs) | prognostic | composite signature of 7 SNPs predicts PFS and OS | [144] |
genome-wide mutation and genomic copy number alterations (gCNAs) analysis | prognostic | seven distinct genetic clusters of ENKTL identified with differences in overall survival between clusters | [145] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Major, A.; Porcu, P.; Haverkos, B.M. Rational Targets of Therapy in Extranodal NK/T-Cell Lymphoma. Cancers 2023, 15, 1366. https://doi.org/10.3390/cancers15051366
Major A, Porcu P, Haverkos BM. Rational Targets of Therapy in Extranodal NK/T-Cell Lymphoma. Cancers. 2023; 15(5):1366. https://doi.org/10.3390/cancers15051366
Chicago/Turabian StyleMajor, Ajay, Pierluigi Porcu, and Bradley M. Haverkos. 2023. "Rational Targets of Therapy in Extranodal NK/T-Cell Lymphoma" Cancers 15, no. 5: 1366. https://doi.org/10.3390/cancers15051366
APA StyleMajor, A., Porcu, P., & Haverkos, B. M. (2023). Rational Targets of Therapy in Extranodal NK/T-Cell Lymphoma. Cancers, 15(5), 1366. https://doi.org/10.3390/cancers15051366