Conversion of Minimally Invasive Liver Resection for HCC in Advanced Cirrhosis: Clinical Impact and Role of Difficulty Scoring Systems
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
- Minimally invasive completed and converted patients in each cohort were compared (Compl-A vs. Conv-A and Compl-B vs. Conv-B) so as to test in our series the loss of advantage of conversion for any severity of chronic liver disease separately.
- Converted patients of each cohort were compared (Conv-A vs. Conv-B) to test for differences in outcomes for converted patients with their severity of chronic liver disease.
- Converted patients of each cohort were compared (Conv-A vs. Conv-B) selectively for low Iwate difficulty level and intermediate/expert/advanced Iwate difficulty level to test for differences in outcomes for converted patients with their severity of chronic liver disease in different settings of MILR complexity.
2.2. Outcome Measures
2.3. Indications, Surgical Technique and Perioperative Management
2.4. Definitions
2.5. Statistics
3. Results
3.1. MILR in Patients with Preserved Liver Function: Completed versus Converted
3.2. MILR in Patients with Advanced Chronic Liver Disease: Completed versus Converted
3.3. Converted MILR: Patients with Preserved Liver Function versus Patients with Advanced Chronic Liver Disease (Whole Cohorts)
3.4. Converted MILR: Patients with Preserved Liver Function versus Patients with Advanced Chronic Liver Disease (Low Iwate Difficulty Level)
3.5. Converted MILR: Patients with Preserved Liver Function versus Patients with Advanced Chronic Liver Disease (Intermediate/Expert/Advanced Iwate Difficulty Level)
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ratti, F.; Cipriani, F.; Ariotti, R.; Giannone, F.; Paganelli, M.; Aldrighetti, L. Laparoscopic major hepatectomies: Current trends and indications. A comparison with the open technique. Updates Surg. 2015, 67, 157–167. [Google Scholar] [CrossRef] [PubMed]
- Ciria, R.; Ocaña, S.; Gomez-Luque, I.; Cipriani, F.; Halls, M.; Fretland, A.; Okuda, Y.; Aroori, S.; Briceño, J.; Aldrighetti, L.; et al. A systematic review and meta-analysis comparing the short- and long-term outcomes for laparoscopic and open liver resections for liver metastases from colorectal cancer. Surg. Endosc. 2020, 34, 349–360. [Google Scholar] [CrossRef] [PubMed]
- Berardi, G.; Van Cleven, S.; Fretland, A.; Barkhatov, L.; Halls, M.; Cipriani, F.; Aldrighetti, L.; Abu Hilal, M.; Edwin, B.; Troisi, R.I. Evolution of Laparoscopic Liver Surgery from Innovation to Implementation to Mastery: Perioperative and Oncologic Outcomes of 2, 238 Patients from 4 European Specialized Centers. J. Am. Coll. Surg. 2017, 225, 639–649. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van der Poel, M.J.; Barkhatov, L.; Fuks, D.; Berardi, G.; Cipriani, F.; Aljaiuossi, A.; Lainas, P.; Dagher, I.; D’Hondt, M.; Rotellar, F.; et al. Multicentre propensity score-matched study of laparoscopic versus open repeat liver resection for colorectal liver metastases. Br. J. Surg. 2019, 106, 783–789. [Google Scholar] [CrossRef]
- Morise, Z.; Aldrighetti, L.; Belli, G.; Ratti, F.; Belli, A.; Cherqui, D.; Tanabe, M.; Wakabayashi, G.; Cheung, T.T.; Lo, C.M.; et al. Laparoscopic repeat liver resection for hepatocellular carcinoma: A multicentre propensity score-based study. Br. J. Surg. 2020, 107, 889–895. [Google Scholar] [CrossRef]
- Aldrighetti, L.; Guzzetti, E.; Pulitanò, C.; Cipriani, F.; Catena, M.; Paganelli, M.; Ferla, G. Case-matched analysis of totally laparoscopic versus open liver resection for HCC: Short and middle term results. J. Surg. Oncol. 2010, 102, 82–86. [Google Scholar] [CrossRef]
- Tranchart, H.; Di Giuro, G.; Lainas, P.; Roudie, J.; Agostini, H.; Franco, D.; Dagher, I. Laparoscopic resection for hepatocellular carcinoma: A matched-pair comparative study. Surg. Endosc. 2010, 24, 1170–1176. [Google Scholar] [CrossRef]
- Troisi, R.; Berardi, G.; Morise, Z.; Cipriani, F.; Ariizumi, S.; Sposito, C.; Panetta, V.; Simonelli, I.; Kim, S.; Goh, B.K.P.; et al. Laparoscopic and open liver resection for hepatocellular carcinoma with Child-Pugh B cirrhosis: Multicentre propensity score-matched study. Br. J. Surg. 2021, 108, 196–204. [Google Scholar] [CrossRef]
- Morise, Z.; Ciria, R.; Cherqui, D.; Chen, K.-H.; Belli, G.; Wakabayashi, G. Can we expand the indications for laparoscopic liver resection? A systematic review and meta-analysis of laparoscopic liver resection for patients with hepatocellular carcinoma and chronic liver disease. J. Hepatobiliary Pancreat. Sci. 2015, 22, 342–352. [Google Scholar] [CrossRef]
- Aldrighetti, L.; Italian Group of Minimally Invasive Liver Surgery (I GO MILS); Belli, G.; Boni, L.; Cillo, U.; Ettorre, G.M.; De Carlis, L.; Pinna, A.; Casciola, L.; Calise, F. Italian Group of Minimally Invasive Liver Surgery (I GO MILS). Italian experience in minimally invasive liver surgery: A national survey. Updates Surg. 2015, 67, 129–140. [Google Scholar] [CrossRef]
- Ciria, R.; Cherqui, D.; Geller, D.A.; Briceno, J.; Wakabayashi, G. Comparative Short-term Benefits of Laparoscopic Liver Resection: 9000 Cases and Climbing. Ann. Surg. 2016, 263, 761–777. [Google Scholar] [CrossRef] [PubMed]
- Cipriani, F.; Fantini, C.; Ratti, F.; Lauro, R.; Tranchart, H.; Halls, M.; Scuderi, V.; Barkhatov, L.; Edwin, B.; Troisi, R.I.; et al. Laparoscopic liver resections for hepatocellular carcinoma. Can we extend the surgical indication in cirrhotic patients? Surg. Endosc. 2018, 32, 617–626. [Google Scholar] [CrossRef] [PubMed]
- Reig, M.; Forner, A.; Rimola, J.; Ferrer-Fàbrega, J.; Burrel, M.; Garcia-Criado, Á.; Kelley, R.K.; Galle, P.R.; Mazzaferro, V.; Salem, R.; et al. BCLC strategy for prognosis prediction and treatment recommendation: The 2022 update. J. Hepatol. 2022, 76, 681–693. [Google Scholar] [CrossRef] [PubMed]
- Cipriani, F.; Ratti, F.; Fiorentini, G.; Catena, M.; Paganelli, M.; Aldrighetti, L. Effect of Previous Abdominal Surgery on Laparoscopic Liver Resection: Analysis of Feasibility and Risk Factors for Conversion. J. Laparosc. Adv. Surg. Tech. A 2018, 28, 785–791. [Google Scholar] [CrossRef]
- Goh, B.K.P.; Chan, C.-Y.; Wong, J.-S.; Lee, S.-Y.; Lee, V.T.W.; Cheow, P.-C.; Chow, P.K.H.; Ooi, L.L.P.J.; Chung, A.Y.F. Factors associated with and outcomes of open conversion after laparoscopic minor hepatectomy: Initial experience at a single institution. Surg. Endosc. 2015, 29, 2636–2642. [Google Scholar] [CrossRef]
- Cipriani, F.; Ratti, F.; Fiorentini, G.; Catena, M.; Paganelli, M.; Aldrighetti, L. Pure laparoscopic right hepatectomy: A risk score for conversion for the paradigm of difficult laparoscopic liver resections. A single centre case series. Int. J. Surg. 2020, 82, 108–115. [Google Scholar] [CrossRef]
- Costi, R.; Scatton, O.; Haddad, L.; Randone, B.; Andraus, W.; Massault, P.-P.; Soubrane, O. Lessons learned from the first 100 laparoscopic liver resections: Not delaying conversion may allow reduced blood loss and operative time. J. Laparosc. Adv. Surg. Tech. A 2012, 22, 425–431. [Google Scholar] [CrossRef]
- Wang, H.P.; Yong, C.C.; Wu, A.G.; Cherqui, D.; Troisi, R.I.; Cipriani, F.; Aghayan, D.; Marino, M.V.; Belli, A.; Chiow, A.K.; et al. Factors associated with and impact of open conversion on the outcomes of minimally invasive left lateral sectionectomies: An international multicenter study. Surgery 2022, 172, 617–624. [Google Scholar] [CrossRef]
- Cauchy, F.; Fuks, D.; Nomi, T.; Schwarz, L.; Barbier, L.; Dokmak, S.; Scatton, O.; Belghiti, J.; Soubrane, O.; Gayet, B. Risk factors and consequences of conversion in laparoscopic major liver resection. Br. J. Surg. 2015, 102, 785–795. [Google Scholar] [CrossRef]
- Stiles, Z.E.; Behrman, S.W.; Glazer, E.S.; Deneve, J.L.; Dong, L.; Wan, J.Y.; Dickson, P.V. Predictors and implications of unplanned conversion during minimally invasive hepatectomy: An analysis of the ACS-NSQIP database. HPB 2017, 19, 957–965. [Google Scholar] [CrossRef] [PubMed]
- Halls, M.C.; Cipriani, F.; Berardi, G.; Barkhatov, L.; Lainas, P.; Alzoubi, M.; D’Hondt, M.; Rotellar, F.; Dagher, I.; Aldrighetti, L.; et al. Conversion for Unfavorable Intraoperative Events Results in Significantly Worst Outcomes During Laparoscopic Liver Resection: Lessons Learned from a Multicenter Review of 2861 Cases. Ann. Surg. 2018, 268, 1051–1057. [Google Scholar] [CrossRef] [PubMed]
- Cipriani, F.; Ratti, F.; Cardella, A.; Catena, M.; Paganelli, M.; Aldrighetti, L. Laparoscopic Versus Open Major Hepatectomy: Analysis of Clinical Outcomes and Cost Effectiveness in a High-Volume Center. J. Gastrointest. Surg. 2019, 23, 2163–2173. [Google Scholar] [CrossRef] [PubMed]
- Stiles, Z.E.; Glazer, E.S.; DeNeve, J.L.; Shibata, D.; Behrman, S.W.; Dickson, P.V. Long-term implications of unplanned conversion during laparoscopic liver resection for hepatocellular carcinoma. Ann. Surg. Oncol. 2019, 26, 282–289. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.; Cho, J.Y.; Han, H.-S.; Yoon, Y.-S.; Lee, H.W.; Lee, J.S.; Lee, B.; Kim, M.; Jo, Y. Risk factors and long-term implications of unplanned conversion during laparoscopic liver resection for hepatocellular carcinoma located in anterolateral liver segments. J. Minim. Invasive Surg. 2021, 24, 191–199. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.Y.; Rho, S.Y.; Han, D.H.; Choi, J.S.; Choi, G.H. Unplanned conversion during minimally invasive liver resection for hepatocellular carcinoma: Risk factors and surgical outcomes. Ann. Surg. Treat Res. 2020, 98, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Wakabayashi, G. What has changed after the Morioka consensus conference 2014 on laparoscopic liver resection? Hepatobiliary Surg. Nutr. 2016, 5, 281–289. [Google Scholar] [CrossRef] [Green Version]
- Li, L.; Xu, L.; Wang, P.; Zhang, M.; Li, B. The risk factors of intraoperative conversion during laparoscopic hepatectomy: A systematic review and meta-analysis. Langenbecks Arch. Surg. 2022, 407, 469–478. [Google Scholar] [CrossRef]
- Lin, H.; Bai, Y.; Yin, M.; Chen, Z.; Yu, S. External validation of different difficulty scoring systems of laparoscopic liver resection for hepatocellular carcinoma. Surg. Endosc. 2022, 36, 3732–3749. [Google Scholar] [CrossRef]
- Pugh, R.N.H.; Murray-Lyon, I.M.; Dawson, J.L.; Pietroni, M.C.; Williams, R. Transection of the oesophagus for bleeding oesophageal varices. Br. J. Surg. 1973, 60, 646–649. [Google Scholar] [CrossRef]
- Llovet, J.M.; Brú, C.; Bruix, J. Prognosis of hepatocellular carcinoma: The BCLC staging classification. Semin. Liver. Dis. 1999, 19, 329–338. [Google Scholar] [CrossRef]
- Ratti, F.; Cipriani, F.; Catena, M.; Paganelli, M.; Aldrighetti, L. Approach to hepatocaval confluence during laparoscopic right hepatectomy: Three variations on a theme. Surg. Endosc. 2017, 31, 949. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cipriani, F.; Ratti, F.; Paganelli, M.; Reineke, R.; Catena, M.; Aldrighetti, L. Laparoscopic or open approaches for posterosuperior and anterolateral liver resections? A propensity score based analysis of the degree of advantage. HPB 2019, 21, 1676–1686. [Google Scholar] [CrossRef] [PubMed]
- Aldrighetti, L.; Pulitanò, C.; Arru, M.; Catena, M.; Guzzetti, E.; Casati, M.; Ferla, G. Ultrasonic-mediated laparoscopic liver transection. Am. J. Surg. 2008, 195, 270–272. [Google Scholar] [CrossRef]
- Aldrighetti, L.; Catena, M.; Ratti, F. Maximizing Performance in Complex Minimally Invasive Surgery of the Liver: The RoboLap Approach. J. Gastrointest. Surg. 2022, 26, 1811–1813. [Google Scholar] [CrossRef] [PubMed]
- Abu Hilal, M.; Aldrighetti, L.; Dagher, I.; Edwin, B.; Troisi, R.I.; Alikhanov, R.; Aroori, S.; Belli, G.; Besselink, M.; Briceno, J.; et al. The Southampton Consensus Guidelines for Laparoscopic Liver Surgery: From Indication to Implementation. Ann. Surg. 2018, 268, 11–18. [Google Scholar] [CrossRef] [Green Version]
- Ratti, F.; Cipriani, F.; Reineke, R.; Catena, M.; Comotti, L.; Beretta, L.; Aldrighetti, L. Impact of ERAS approach and minimally-invasive techniques on outcome of patients undergoing liver surgery for hepatocellular carcinoma. Dig. Liver. Dis. 2016, 48, 1243–1248. [Google Scholar] [CrossRef] [PubMed]
- Ratti, F.; Cipriani, F.; Reineke, R.; Comotti, L.; Paganelli, M.; Catena, M.; Beretta, L.; Aldrighetti, L. The clinical and biological impacts of the implementation of fast track perioperative programs in complex liver resections: A propensity score-based analysis between the open and laparoscopic approaches. Surgery 2018, 164, 395–403. [Google Scholar] [CrossRef]
- Pulitanò, C.; Arru, M.; Bellio, L.; Rossini, S.; Ferla, G.; Aldrighetti, L. A risk score for predicting perioperative blood transfusion in liver Surgery. Br. J. Surg. 2007, 94, 860–865. [Google Scholar] [CrossRef]
- Strasberg, S.M. Nomenclature of hepatic anatomy and resections: A review of the Brisbane 2000 system. J. Hepatobiliary Pancreat. Surg. 2005, 12, 351–355. [Google Scholar] [CrossRef]
- Dindo, D.; Demartines, N.; Clavien, P.-A. Classification of surgical complications: A new proposal with evaluation in a cohort of 6336 patients and results of a survey. Ann. Surg. 2004, 240, 205–213. [Google Scholar] [CrossRef]
- Rahbari, N.N.; Garden, O.J.; Padbury, R.; Brooke-Smith, M.; Crawford, M.; Adam, R.; Koch, M.; Makuuchi, M.; Dematteo, R.P.; Christophi, C.; et al. Posthepatectomy liver failure: A definition and grading by the International Study Group of Liver Surgery (ISGLS). Surgery 2011, 149, 713–724. [Google Scholar] [CrossRef] [PubMed]
- Ishizawa, T.; Hasegawa, K.; Kokudo, N.; Sano, K.; Imamura, H.; Beck, Y.; Sugawara, Y.; Makuuchi, M. Risk factors and management of ascites after liver resection to treat hepatocellular carcinoma. Arch. Surg. 2009, 144, 46–51. [Google Scholar] [CrossRef] [PubMed]
- Koch, M.; Garden, O.J.; Padbury, R.; Rahbari, N.N.; Adam, R.; Capussotti, L.; Fan, S.T.; Yokoyama, Y.; Crawford, M.; Makuuchi, M.; et al. Bile leakage after hepatobiliary and pancreatic surgery: A definition and grading of severity by the International Study Group of Liver Surgery. Surgery 2011, 149, 680–688. [Google Scholar] [CrossRef] [PubMed]
- Cucchetti, A.; Ercolani, G.; Vivarelli, M.; Cescon, M.; Ravaioli, M.; La Barba, G.; Zanello, M.; Grazi, G.L.; Pinna, A.D. Impact of model for end-stage liver disease (MELD) score on prognosis after hepatectomy for hepatocellular carcinoma on cirrhosis. Liver Transpl. 2006, 12, 966–971. [Google Scholar] [CrossRef]
- Watanabe, Y.; Aikawa, M.; Kato, T.; Takase, K.; Okada, K.; Okamoto, K.; Koyama, I. Influence of Child-Pugh B7 and B8/9 cirrhosis on laparoscopic liver resection for hepatocellular carcinoma: A retrospective cohort study. Surg. Endosc. 2022, 37, 1316–1333. [Google Scholar] [CrossRef]
Cohort A n = 474 | Cohort B n = 163 | p Value | |
---|---|---|---|
Age, years | 71 ± 5 | 73 ± 6 | 0.612 |
Gender [M/F], n (%) | 208/266 (43.9/56.1%) | 83/80 (50.9/49.1%) | 0.845 |
MELD score, points | 7 | 8 | 0.324 |
ASA score [1–2/3–4], n (%) | 279/195 (58.8/41.2%) | 79/84 (48.5/51.5%) | 0.292 |
Charlson Comorbidity Index, points | 9 | 12 | 0.478 |
Etiology of chronic liver disease, n (%) Viral Alcoholic Metabolic Other/unknown | 73 (15.4%) 106 (22.4%) 183 (38.6%) 112 (23.6%) | 30 (18.4%) 36 (22.1%) 41 (25.1%) 56 (34.3%) | 0.658 |
Liver parenchyma, n (%) Mild fibrosis (F0-1) Significant fibrosis (F2) Severe fibrosis (F3) Cirrhosis (F4) | 241 (50.8%) 114 (24.0%) 66 (13.9%) 53 (11.2%) | 65 (39.9%) 49 (30.1%) 37 (22.7%) 10 (6.1%) | 0.020 |
Tumor size, mm | 51 ± 29 | 30 ± 11 | 0.031 |
Number of tumors [single/multiple], n (%) | 350/124 (73.8/26.2%) | 127/36 (77.9/22.1%) | 0.541 |
Tumor location [anterolateral/posterosuperior], n (%) | 262/212 (55.3/44.7%) | 102/61 (62.6/37.4%) | 0.040 |
Varices | 0 | 61 (37.4%) | 0.002 |
Ascites | 0 | 22 (13.5%) | 0.001 |
Platelet count < 80 × 109/L | 0 | 67 (41.1%) | 0.002 |
Previous liver resection, n (%) | 75 (15.8%) | 19 (11.6%) | 0.429 |
Operation type Wedge resection Anatomical segmentectomy Left lateral sectionectomy Hemihepatectomy Sectionectomy and other resection | 94 (19.8%) 147 (31.0%) 64 (11.4%) 132 (27.8%) 37 (7.8%) | 84 (51.5%) 32 (19.6%) 12 (7.4%) 27 (16.6%) 8 (4.9%) | 0.037 |
Iwate difficulty level Low Intermediate Advanced/Expert | 152 (32.1%) 165 (34.8%) 104/53 (21.9/11.2%) | 96 (58.9%) 58 (35.6%) 9/0 (5.5/0%) | 0.025 |
Conv-A n = 52 | Conv-B n = 21 | p Value | |
---|---|---|---|
Bleeding or unsatisfactory hemostasis, n (%) | 21 (40.4) | 11 (52.4) | 0.475 |
Difficult adhesiolysis, n (%) | 5 (9.6) | 2 (9.5) | 0.881 |
Concern of oncologic inadequacy, n (%) | 20 (38.5) | 6 (28.6) | 0.639 |
Unsatisfactory Bili stasis, n (%) | 4 (7.7) | 1 (4.8) | 0.129 |
Anesthesiological problems, n (%) | 2 (3.8) | 1 (4.8) | 0.292 |
Compl-A n = 422 | Conv-A n = 52 | p Value | |
---|---|---|---|
Operative time, minutes | 210 (155–260) | 190 (155–245) | 0.488 |
Blood loss, mL | 100 (50–160) | 400 (150–570) | 0.009 |
Red blood cell transfusion, n (%) | 21 (4.9%) | 3 (5.7%) | 0.716 |
Fresh frozen plasma transfusion, n (%) | 14 (3.3%) | 11 (21.1%) | 0.004 |
R0, n (%) | 413 (97.8%) | 50 (96.1%) | 0.542 |
Use of Pringle maneuver, n (%) | 358 (84.8%) | 46 (88.5%) | 0.671 |
Duration of Pringle maneuver, minutes | 30 ± 20 | 40 ± 20 | 0.499 |
Total morbidity, n (%) | 50 (11.8%) | 12 (23.1%) | 0.018 |
Grade 1 | 5 (1.2%) | 2 (3.8%) | 0.409 |
Grade 2 | 27 (6.4%) | 7 (13.4%) | 0.016 |
Grade 3 | 22 (5.2%) | 3 (5.8%) | 0.638 |
Grade 4 | 0 | 0 | NC |
Grade 5 | 0 | 0 | NC |
90-days mortality, n (%) | 0 | 0 | NC |
Bleeding | 8 (1.9%) | 2 (3.8%) | 0.841 |
Bile leak | 17 (4.0%) | 3 (5.7%) | 0.778 |
Ascites | 21 (5.0%) | 9 (17.3%) | 0.004 |
Postoperative liver failure | 10 (2.4%) | 5 (9.6%) | 0.018 |
Collection | 10 (2.4%) | 2 (3.8%) | 0.183 |
Chest infection | 5 (1.2%) | 1 (1.9%) | 0.205 |
Pleural effusion | 12 (2.8%) | 4 (7.7%) | 0.015 |
Length of stay, days | 5 (3–6) | 7 (5–10) | 0.007 |
Readmissions, n (%) | 8 (1.9%) | 4 (7.7%) | 0.036 |
Compl-B n = 142 | Conv-B n = 21 | p Value | |
---|---|---|---|
Operative time, minutes | 200 (160–280) | 230 (180–290) | 0.746 |
Blood loss, mL | 250 (280–360) | 550 (370–700) | 0.007 |
Red blood cell transfusion, n (%) | 5 (3.5%) | 1 (4.7%) | 0.655 |
Fresh frozen plasma transfusion, n (%) | 9 (6.3%) | 6 (28.6%) | 0.003 |
R0, n (%) | 138 (97.2%) | 20 (95.2%) | 0.903 |
Use of Pringle maneuver, n (%) | 108 (76.0%) | 17 (80.9%) | 0.549 |
Duration of Pringle maneuver, minutes | 35 ± 10 | 30 ± 15 | 0.336 |
Total morbidity, n (%) | 18 (12.7%) | 6 (28.6%) | 0.002 |
Grade 1 | 6 (4.2%) | 3 (14.3%) | 0.032 |
Grade 2 | 10 (7.0%) | 3 (14.3%) | 0.021 |
Grade 3 | 2 (1.4%) | 0 | 0199 |
Grade 4 | 0 | 0 | NC |
Grade 5 | 0 | 0 | NC |
90-days mortality, n (%) | 0 | 0 | NC |
Bleeding | 5 (3.5%) | 1 (4.7%) | 0.971 |
Bile leak | 6 (4.2%) | 1 (4.7%) | 0.843 |
Ascites | 7 (4.9%) | 4 (19.0%) | 0.008 |
Postoperative liver failure | 4 (2.8%) | 2 (9.5%) | 0.034 |
Collection | 3 (2.1%) | 1 (4.8%) | 0.437 |
Chest infection | 2 (1.4%) | 0 | 0.588 |
Pleural effusion | 6 (4.2%) | 2 (9.5%) | 0.039 |
Length of stay, days | 5 (3–7) | 8 (4–10) | 0.005 |
Readmissions, n (%) | 5 (3.5%) | 2 (9.5%) | 0.024 |
Conv-A n = 52 | Conv-B n = 21 | p Value | |
---|---|---|---|
Operative time, minutes | 190 (155–245) | 230 (180–290) | 0.574 |
Blood loss, mL | 400 (150–570) | 550 (370–700) | 0.089 |
Red blood cell transfusion, n (%) | 3 (5.7%) | 1 (4.7%) | 0.208 |
Fresh frozen plasma transfusion, n (%) | 11 (21.1%) | 6 (28.6%) | 0.091 |
R0, n (%) | 50 (96.1%) | 20 (95.2%) | 0.998 |
Use of Pringle maneuver, n (%) | 46 (88.5%) | 17 (80.9%) | 0.991 |
Duration of Pringle maneuver, minutes | 40 ± 20 | 30 ± 15 | 0.804 |
Total morbidity, n (%) | 12 (23.1%) | 6 (28.6%) | 0.503 |
Grade 1 | 2 (3.8%) | 3 (14.3%) | 0.030 |
Grade 2 | 7 (13.4%) | 3 (14.3%) | 0.215 |
Grade 3 | 3 (5.8%) | 0 | 0.622 |
Grade 4 | 0 | 0 | NC |
Grade 5 | 0 | 0 | NC |
90-days mortality, n (%) | 0 | 0 | NC |
Bleeding | 2 (3.8%) | 1 (4.7%) | 0.856 |
Bile leak | 3 (5.7%) | 1 (4.7%) | 0.446 |
Ascites | 9 (17.3%) | 4 (19.0%) | 0.101 |
Postoperative liver failure | 5 (9.6%) | 2 (9.5%) | 0.923 |
Collection | 2 (3.8%) | 1 (4.8%) | 0.748 |
Chest infection | 1 (1.9%) | 0 | 0.937 |
Pleural effusion | 4 (7.7%) | 2 (9.5%) | 0.131 |
Length of stay, days | 7 (5–10) | 8 (4–10) | 0.529 |
Readmissions, n (%) | 4 (7.7%) | 2 (9.5%) | 0.785 |
Conv-A n = 15 | Conv-B n = 8 | p Value | |
---|---|---|---|
Operative time, minutes | 150 (130–210) | 190 (150–230) | 0.665 |
Blood loss, mL | 300 (150–450) | 450 (350–550) | 0.183 |
Red blood cell transfusion, n (%) | 1 (6.7%) | 0 | NC |
Fresh frozen plasma transfusion, n (%) | 2 (13.3%) | 1 (12.5%) | 0.912 |
R0, n (%) | 14 (93.3%) | 8 (100%) | 0.832 |
Use of Pringle maneuver, n (%) | 12 (80%) | 6 (75%) | 0.304 |
Duration of Pringle maneuver, minutes | 30 ± 15 | 20 ± 15 | 0.628 |
Total morbidity, n (%) | 3 (20%) | 1 (12.5%) | 0.078 |
Grade 1 | 1 (6.6%) | 1 (12.5%) | 0.024 |
Grade 2 | 2 (13.3%) | 0 | NC |
Grade 3 | 0 | 0 | NC |
Grade 4 | 0 | 0 | NC |
Grade 5 | 0 | 0 | NC |
90-days mortality, n (%) | 0 | 0 | NC |
Bleeding | 1 (6.6%) | 0 | NC |
Bile leak | 0 | 1 (4.7%) | NC |
Ascites | 1 (6.6%) | 0 | NC |
Postoperative liver failure | 0 | 0 | NC |
Collection | 1 (6.6%) | 0 | NC |
Chest infection | 0 | 0 | NC |
Pleural effusion | 0 | 0 | NC |
Length of stay, days | 6 (5–11) | 7 (5–11) | 0.779 |
Readmissions, n (%) | 1 (6.6%) | 1 (4.7%) | 0.625 |
Conv-A
n = 37 |
Conv-B
n = 13 | p Value | |
Operative time, minutes | 210 (170–280) | 250 (190–300) | 0.227 |
Blood loss, mL | 400 (270–520) | 700 (400–900) | 0.029 |
Red blood cell transfusion, n (%) | 2 (5.4%) | 1 (7.7%) | 0.034 |
Fresh frozen plasma transfusion, n (%) | 9 (24.3%) | 5 (38.5%) | 0.007 |
R0, n (%) | 36 (97.3%) | 12 (92.3%) | 0.905 |
Use of Pringle maneuver, n (%) | 34 (91.9%) | 11 (84.6%) | 0.076 |
Duration of Pringle maneuver, minutes | 45 ± 25 | 40 ± 10 | 0.765 |
Total morbidity, n (%) | 9 (24.3%) | 5 (38.5%) | 0.038 |
Grade 1 | 1 (2.7%) | 2 (15.4%) | 0.020 |
Grade 2 | 5 (13.5%) | 3 (23.1%) | 0.031 |
Grade 3 | 3 (8.1%) | 0 | NC |
Grade 4 | 0 | 0 | NC |
Grade 5 | 0 | 0 | NC |
90-days mortality, n (%) | 0 | 0 | NC |
Bleeding | 0 | 1 (7.7%) | NC |
Bile leak | 3 (8.1%) | 0 | NC |
Ascites | 8 (21.6%) | 4 (30.8%) | 0.025 |
Postoperative liver failure | 5 (13.5%) | 2 (15.4%) | 0.535 |
Collection | 1 (2.7%) | 1 (7.7%) | 0.034 |
Chest infection | 1 (2.7%) | 0 | NC |
Pleural effusion | 4 (10.8%) | 2 (15.4%) | 0.037 |
Length of stay, days | 6 (5–10) | 9 (4–10) | 0.022 |
Readmissions, n (%) | 3 (8.1%) | 1 (7.7%) | 0.809 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cipriani, F.; Ratti, F.; Fornoni, G.; Marino, R.; Tudisco, A.; Catena, M.; Aldrighetti, L. Conversion of Minimally Invasive Liver Resection for HCC in Advanced Cirrhosis: Clinical Impact and Role of Difficulty Scoring Systems. Cancers 2023, 15, 1432. https://doi.org/10.3390/cancers15051432
Cipriani F, Ratti F, Fornoni G, Marino R, Tudisco A, Catena M, Aldrighetti L. Conversion of Minimally Invasive Liver Resection for HCC in Advanced Cirrhosis: Clinical Impact and Role of Difficulty Scoring Systems. Cancers. 2023; 15(5):1432. https://doi.org/10.3390/cancers15051432
Chicago/Turabian StyleCipriani, Federica, Francesca Ratti, Gianluca Fornoni, Rebecca Marino, Antonella Tudisco, Marco Catena, and Luca Aldrighetti. 2023. "Conversion of Minimally Invasive Liver Resection for HCC in Advanced Cirrhosis: Clinical Impact and Role of Difficulty Scoring Systems" Cancers 15, no. 5: 1432. https://doi.org/10.3390/cancers15051432
APA StyleCipriani, F., Ratti, F., Fornoni, G., Marino, R., Tudisco, A., Catena, M., & Aldrighetti, L. (2023). Conversion of Minimally Invasive Liver Resection for HCC in Advanced Cirrhosis: Clinical Impact and Role of Difficulty Scoring Systems. Cancers, 15(5), 1432. https://doi.org/10.3390/cancers15051432