Prognostic Value of Measurable Residual Disease in Patients with AML Undergoing HSCT: A Multicenter Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Patients
2.2. Detection of Measurable Residual Disease by Second Generation Flow Cytometry
2.3. Statistical Analysis
3. Results
3.1. Patient Characteristics
3.2. Transplant Toxicities and GvHD
3.3. Impact of MRD Prior to Transplantation on Outcomes after HSCT
3.4. Impact of MRD before Transplantation on OS and LFS among the Different ELN2011 Subgroups and Conditioning Regimens
3.5. Impact of MRD on 100 Days after HSCT
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Döhner, H.; Estey, E.; Grimwade, D.; Amadori, S.; Appelbaum, F.R.; Büchner, T.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Larson, R.A.; et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 2017, 129, 424–447. [Google Scholar] [CrossRef] [Green Version]
- Grimm, J.; Jentzsch, M.; Bill, M.; Goldmann, K.; Schulz, J.; Niederwieser, D.; Platzbecker, U.; Schwind, S. Prognostic impact of the ELN2017 risk classification in patients with AML receiving allogeneic transplantation. Blood Adv. 2020, 4, 3864–3874. [Google Scholar] [CrossRef] [PubMed]
- Riva, G.; Nasillo, V.; Ottomano, A.M.; Bergonzini, G.; Paolini, A.; Forghieri, F.; Lusenti, B.; Barozzi, P.; Lagreca, I.; Fiorcari, S.; et al. Multiparametric Flow Cytometry for MRD Monitoring in Hematologic Malignancies: Clinical Applications and New Challenges. Cancers 2021, 13, 4582. [Google Scholar] [CrossRef] [PubMed]
- Flores-Montero, J.; Sanoja-Flores, L.; Paiva, B.; Puig, N.; García-Sánchez, O.; Böttcher, S.; van der Velden, V.H.J.; Pérez-Morán, J.J.; Vidriales, M.B.; García-Sanz, R.; et al. Next Generation Flow for highly sensitive and standardized detection of minimal residual disease in multiple myeloma. Leukemia 2017, 31, 2094–2103. [Google Scholar] [CrossRef] [Green Version]
- Theunissen, P.; Mejstrikova, E.; Sedek, L.; van der Sluijs-Gelling, A.J.; Gaipa, G.; Bartels, M.; Sobral da Costa, E.; Kotrová, M.; Novakova, M.; Sonneveld, E.; et al. EuroFlow Consortium. Standardized flow cytometry for highly sensitive MRD measurements in B-cell acute lymphoblastic leukemia. Blood 2017, 129, 347–357. [Google Scholar] [CrossRef]
- Heuser, M.; Freeman, S.D.; Ossenkoppele, G.J.; Buccisano, F.; Hourigan, C.S.; Ngai, L.L.; Tettero, J.M.; Bachas, C.; Baer, C.; Béné, M.C.; et al. 2021 Update on MRD in acute myeloid leukemia: A consensus document from the European LeukemiaNet MRD Working Party. Blood 2021, 138, 2753–2767. [Google Scholar] [CrossRef]
- Kalina, T.; Flores-Montero, J.; van der Velden, V.H.; Martin-Ayuso, M.; Böttcher, S.; Ritgen, M.; Almeida, J.; Lhermitte, L.; Asnafi, V.; Mendonça, A.; et al. EuroFlow Consortium (EU-FP6, LSHB-CT-2006-018708). EuroFlow standardization of flow cytometer instrument settings and immunophenotyping protocols. Leukemia 2012, 26, 1986–2010. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van Dongen, J.J.; Lhermitte, L.; Böttcher, S.; Almeida, J.; van der Velden, V.H.; Flores-Montero, J.; Rawstron, A.; Asnafi, V.; Lécrevisse, Q.; Lucio, P.; et al. EuroFlow Consortium (EU-FP6, LSHB-CT-2006-018708). EuroFlow antibody panels for standardized n-dimensional flow cytometric immunophenotyping of normal, reactive and malignant leukocytes. Leukemia 2012, 26, 1908–1975. [Google Scholar] [CrossRef] [Green Version]
- Döhner, H.; Wei, A.H.; Appelbaum, F.R.; Craddock, C.; DiNardo, C.D.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Godley, L.A.; Hasserjian, R.P.; et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood 2022, 140, 1345–1377. [Google Scholar] [CrossRef] [PubMed]
- Walter, R.B.; Gooley, T.A.; Wood, B.L.; Milano, F.; Fang, M.; Sorror, M.L.; Estey, E.H.; Salter, A.I.; Lansverk, E.; Chien, J.W.; et al. Impact of pretransplantation minimal residual disease, as detected by multiparametric flow cytometry, on outcome of myeloablative hematopoietic cell transplantation for acute myeloid leukemia. J. Clin. Oncol. 2011, 29, 1190–1197. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morsink, L.M.; Sandmaier, B.M.; Othus, M.; Palmieri, R.; Granot, N.; Bezerra, E.D.; Wood, B.L.; Mielcarek, M.; Schoch, G.; Davis, C.; et al. Conditioning Intensity, Pre-Transplant Flow Cytometric Measurable Residual Disease, and Outcome in Adults with Acute Myeloid Leukemia Undergoing Allogeneic Hematopoietic Cell Transplantation. Cancers 2020, 12, 2339. [Google Scholar] [CrossRef] [PubMed]
- Morsink, L.M.; Othus, M.; Bezerra, E.D.; Wood, B.L.; Fang, M.; Sandmaier, B.M.; Mielcarek, M.; Schoch, G.; Storb, R.; Deeg, H.J.; et al. Impact of pretransplant measurable residual disease on the outcome of allogeneic hematopoietic cell transplantation in adult monosomal karyotype AML. Leukemia 2020, 34, 1577–1587. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Othus, M.; Araki, D.; Wood, B.L.; Radich, J.P.; Halpern, A.B.; Mielcarek, M.; Estey, E.H.; Appelbaum, F.R.; Walter, R.B. Pre- and post-transplant quantification of measurable (‘minimal’) residual disease via multiparameter flow cytometry in adult acute myeloid leukemia. Leukemia 2016, 30, 1456–1464. [Google Scholar] [CrossRef]
- Araki, D.; Wood, B.L.; Othus, M.; Radich, J.P.; Halpern, A.B.; Zhou, Y.; Mielcarek, M.; Estey, E.H.; Appelbaum, F.R.; Walter, R.B. Allogeneic Hematopoietic Cell Transplantation for Acute Myeloid Leukemia: Time to Move Toward a Minimal Residual Disease-Based Definition of Complete Remission? J. Clin. Oncol. 2016, 34, 329–336. [Google Scholar] [CrossRef] [Green Version]
- Walter, R.B.; Gyurkocza, B.; Storer, B.E.; Godwin, C.D.; Pagel, J.M.; Buckley, S.A.; Sorror, M.L.; Wood, B.L.; Storb, R.; Appelbaum, F.R.; et al. Comparison of minimal residual disease as outcome predictor for AML patients in first complete remission undergoing myeloablative or nonmyeloablative allogeneic hematopoietic cell transplantation. Leukemia 2015, 29, 137–144. [Google Scholar] [CrossRef] [Green Version]
- Walter, R.B.; Buckley, S.A.; Pagel, J.M.; Wood, B.L.; Storer, B.E.; Sandmaier, B.M.; Fang, M.; Gyurkocza, B.; Delaney, C.; Radich, J.P.; et al. Significance of minimal residual disease before myeloablative allogeneic hematopoietic cell transplantation for AML in first and second complete remission. Blood 2013, 122, 1813–1821. [Google Scholar] [CrossRef]
- Ustun, C.; Courville, E.L.; DeFor, T.; Dolan, M.; Randall, N.; Yohe, S.; Bejanyan, N.; Warlick, E.; Brunstein, C.; Weisdorf, D.J.; et al. Myeloablative, but not Reduced-Intensity, Conditioning Overcomes the Negative Effect of Flow-Cytometric Evidence of Leukemia in Acute Myeloid Leukemia. Biol. Blood Marrow Transplant. 2016, 22, 669–675. [Google Scholar] [CrossRef] [Green Version]
- Döhner, H.; Estey, E.H.; Amadori, S.; Appelbaum, F.R.; Büchner, T.; Burnett, A.K.; Dombret, H.; Fenaux, P.; Grimwade, D.; Larson, R.A.; et al. European LeukemiaNet. Diagnosis and management of acute myeloid leukemia in adults: Recommendations from an international expert panel, on behalf of the European LeukemiaNet. Blood 2010, 115, 453–474. [Google Scholar] [CrossRef] [Green Version]
- San Miguel, J.F.; Vidriales, M.B.; López-Berges, C.; Díaz-Mediavilla, J.; Gutiérrez, N.; Cañizo, C.; Ramos, F.; Calmuntia, M.J.; Pérez, J.J.; González, M.; et al. Early immunophenotypical evaluation of minimal residual disease in acute myeloid leukemia identifies different patient risk groups and may contribute to postinduction treatment stratification. Blood 2001, 98, 1746–1751. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vidriales, M.B.; Pérez-López, E.; Pegenaute, C.; Castellanos, M.; Pérez, J.J.; Chandía, M.; Díaz-Mediavilla, J.; Rayón, C.; de Las Heras, N.; Fernández-Abellán, P.; et al. PETHEMA Programa para el Estudio de la Terapéutica en Hemopatías Malignas Cooperative Study Group. Minimal residual disease evaluation by flow cytometry is a complementary tool to cytogenetics for treatment decisions in acute myeloid leukaemia. Leuk. Res. 2016, 40, 1–9. [Google Scholar] [CrossRef]
- Venditti, A.; Piciocchi, A.; Candoni, A.; Melillo, L.; Calafiore, V.; Cairoli, R.; de Fabritiis, P.; Storti, G.; Salutari, P.; Lanza, F.; et al. GIMEMA AML1310 trial of risk-adapted, MRD-directed therapy for young adults with newly diagnosed acute myeloid leukemia. Blood 2019, 134, 935–945. [Google Scholar] [CrossRef] [PubMed]
- Terwijn, M.; van Putten, W.L.; Kelder, A.; van der Velden, V.H.; Brooimans, R.A.; Pabst, T.; Maertens, J.; Boeckx, N.; de Greef, G.E.; Valk, P.J.; et al. High prognostic impact of flow cytometric minimal residual disease detection in acute myeloid leukemia: Data from the HOVON/SAKK AML 42A study. J. Clin. Oncol. 2013, 31, 3889–3897. [Google Scholar] [CrossRef] [PubMed]
- Freeman, S.D.; Virgo, P.; Couzens, S.; Grimwade, D.; Russell, N.; Hills, R.K.; Burnett, A.K. Prognostic relevance of treatment response measured by flow cytometric residual disease detection in older patients with acute myeloid leukemia. J. Clin. Oncol. 2013, 31, 4123–4131. [Google Scholar] [CrossRef]
- Balsat, M.; Renneville, A.; Thomas, X.; de Botton, S.; Caillot, D.; Marceau, A.; Lemasle, E.; Marolleau, J.P.; Nibourel, O.; Berthon, C.; et al. Postinduction Minimal Residual Disease Predicts Outcome and Benefit From Allogeneic Stem Cell Transplantation in Acute Myeloid Leukemia With NPM1 Mutation: A Study by the Acute Leukemia French Association Group. J. Clin. Oncol. 2017, 35, 185–193. [Google Scholar] [CrossRef] [PubMed]
- Rücker, F.G.; Agrawal, M.; Corbacioglu, A.; Weber, D.; Kapp-Schwoerer, S.; Gaidzik, V.I.; Jahn, N.; Schroeder, T.; Wattad, M.; Lübbert, M.; et al. Measurable residual disease monitoring in acute myeloid leukemia with t(8;21)(q22;q22.1): Results from the AML Study Group. Blood 2019, 134, 1608–1618. [Google Scholar] [CrossRef] [PubMed]
- Jongen-Lavrencic, M.; Grob, T.; Hanekamp, D.; Kavelaars, F.G.; Al Hinai, A.; Zeilemaker, A.; Erpelinck-Verschueren, C.A.J.; Gradowska, P.L.; Meijer, R.; Cloos, J.; et al. Molecular Minimal Residual Disease in Acute Myeloid Leukemia. N. Engl. J. Med. 2018, 378, 1189–1199. [Google Scholar] [CrossRef]
- Cornelissen, J.J.; Gratwohl, A.; Schlenk, R.F.; Sierra, J.; Bornhäuser, M.; Juliusson, G.; Råcil, Z.; Rowe, J.M.; Russell, N.; Mohty, M.; et al. The European LeukemiaNet AML Working Party consensus statement on allogeneic HSCT for patients with AML in remission: An integrated-risk adapted approach. Nat. Rev. Clin. Oncol. 2012, 9, 579–590. [Google Scholar] [CrossRef] [Green Version]
- Norkin, M.; Katragadda, L.; Zou, F.; Xiong, S.; Chang, M.; Dai, Y.; Hsu, J.W.; Moreb, J.S.; Leather, H.; Murthy, H.S.; et al. Minimal residual disease by either flow cytometry or cytogenetics prior to an allogeneic hematopoietic stem cell transplant is associated with poor outcome in acute myeloid leukemia. Blood Cancer J. 2017, 7, 634. [Google Scholar] [CrossRef] [Green Version]
- Maurillo, L.; Buccisano, F.; Del Principe, M.I.; Del Poeta, G.; Spagnoli, A.; Panetta, P.; Ammatuna, E.; Neri, B.; Ottaviani, L.; Sarlo, C.; et al. Toward optimization of postremission therapy for residual disease-positive patients with acute myeloid leukemia. J. Clin. Oncol. 2008, 26, 4944–4951. [Google Scholar] [CrossRef] [Green Version]
- Baer, M.R.; Stewart, C.C.; Dodge, R.K.; Leget, G.; Sulé, N.; Mrózek, K.; Schiffer, C.A.; Powell, B.L.; Kolitz, J.E.; Moore, J.O.; et al. High frequency of immunophenotype changes in acute myeloid leukemia at relapse: Implications for residual disease detection (Cancer and Leukemia Group B Study 8361). Blood 2001, 97, 3574–3580. [Google Scholar] [CrossRef] [Green Version]
- Langebrake, C.; Brinkmann, I.; Teigler-Schlegel, A.; Creutzig, U.; Griesinger, F.; Puhlmann, U.; Reinhardt, D. Immunophenotypic differences between diagnosis and relapse in childhood AML: Implications for MRD monitoring. Cytom. B Clin. Cytom. 2005, 63, 1–9. [Google Scholar] [CrossRef]
- Al-Mawali, A.; Gillis, D.; Hissaria, P.; Lewis, I. Incidence, sensitivity, and specificity of leukemia-associated phenotypes in acute myeloid leukemia using specific five-color multiparameter flow cytometry. Am. J. Clin. Pathol. 2008, 129, 934–945. [Google Scholar] [CrossRef]
- Hourigan, C.S.; Dillon, L.W.; Gui, G.; Logan, B.R.; Fei, M.; Ghannam, J.; Li, Y.; Licon, A.; Alyea, E.P.; Bashey, A.; et al. Impact of Conditioning Intensity of Allogeneic Transplantation for Acute Myeloid Leukemia With Genomic Evidence of Residual Disease. J. Clin. Oncol. 2020, 38, 1273–1283. [Google Scholar] [CrossRef] [PubMed]
- Gilleece, M.H.; Labopin, M.; Yakoub-Agha, I.; Volin, L.; Socié, G.; Ljungman, P.; Huynh, A.; Deconinck, E.; Wu, D.; Bourhis, J.H.; et al. Measurable residual disease, conditioning regimen intensity, and age predict outcome of allogeneic hematopoietic cell transplantation for acute myeloid leukemia in first remission: A registry analysis of 2292 patients by the Acute Leukemia Working Party European Society of Blood and Marrow Transplantation. Am. J. Hematol. 2018, 93, 1142–1152. [Google Scholar] [PubMed] [Green Version]
- Dillon, R.; Hills, R.; Freeman, S.; Potter, N.; Jovanovic, J.; Ivey, A.; Kanda, A.S.; Runglall, M.; Foot, N.; Valganon, M.; et al. Molecular MRD status and outcome after transplantation in NPM1-mutated AML. Blood 2020, 135, 680–688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paras, G.; Morsink, L.M.; Othus, M.; Milano, F.; Sandmaier, B.M.; Zarling, L.C.; Palmieri, R.; Schoch, G.; Davis, C.; Bleakley, M.; et al. Conditioning intensity and peritransplant flow cytometric MRD dynamics in adult AML. Blood 2022, 139, 1694–1706. [Google Scholar] [CrossRef]
- Platzbecker, U.; Middeke, J.M.; Sockel, K.; Herbst, R.; Wolf, D.; Baldus, C.D.; Oelschlägel, U.; Mütherig, A.; Fransecky, L.; Noppeney, R.; et al. Measurable residual disease-guided treatment with azacitidine to prevent haematological relapse in patients with myelodysplastic syndrome and acute myeloid leukaemia (RELAZA2): An open-label, multicentre, phase 2 trial. Lancet Oncol. 2018, 19, 1668–1679. [Google Scholar] [CrossRef]
- Schmid, C.; Labopin, M.; Nagler, A.; Bornhäuser, M.; Finke, J.; Fassas, A.; Volin, L.; Gürman, G.; Maertens, J.; Bordigoni, P.; et al. EBMT Acute Leukemia Working Party. Donor lymphocyte infusion in the treatment of first hematological relapse after allogeneic stem-cell transplantation in adults with acute myeloid leukemia: A retrospective risk factors analysis and comparison with other strategies by the EBMT Acute Leukemia Working Party. J. Clin. Oncol. 2007, 25, 4938–4945. [Google Scholar] [PubMed]
- Todisco, E.; Gigli, F.; Sammassimo, S.; Camisaschi, C.; Mancuso, P.; Ronchini, C.; Ramadan, S.; Bertolini, F.; Pastano, R.; Tarella, C. Efficacy of venetoclax based salvage chemotherapy followed by “Minimal Residual Disease driven”-venetoclax maintenance therapy post-allotransplant in a young patient with high-risk primary refractory acute myeloid leukemia. Leuk. Lymphoma 2020, 61, 2277–2279. [Google Scholar] [CrossRef]
- Yu, S.; Huang, F.; Wang, Y.; Xu, Y.; Yang, T.; Fan, Z.; Lin, R.; Xu, N.; Xuan, L.; Ye, J.; et al. Haploidentical transplantation might have superior graft-versus-leukemia effect than HLA-matched sibling transplantation for high-risk acute myeloid leukemia in first complete remission: A prospective multicentre cohort study. Leukemia 2020, 34, 1433–1443. [Google Scholar] [CrossRef]
- Zeijlemaker, W.; Grob, T.; Meijer, R.; Hanekamp, D.; Kelder, A.; Carbaat-Ham, J.C.; Oussoren-Brockhoff, Y.J.M.; Snel, A.N.; Veldhuizen, D.; Scholten, W.J.; et al. CD34+CD38- leukemic stem cell frequency to predict outcome in acute myeloid leukemia. Leukemia 2019, 33, 1102–1112. [Google Scholar] [CrossRef]
- Plesa, A.; Dumontet, C.; Mattei, E.; Tagoug, I.; Hayette, S.; Sujobert, P.; Tigaud, I.; Pages, M.P.; Chelghoum, Y.; Baracco, F.; et al. High frequency of CD34+CD38-/low immature leukemia cells is correlated with unfavorable prognosis in acute myeloid leukemia. World J. Stem Cells 2017, 9, 227–234. [Google Scholar] [CrossRef]
- Kandeel, E.Z.; El Sharkawy, N.; Hanafi, M.; Samra, M.; Kamel, A. Tracing Leukemia Stem Cells and Their Influence on Clinical Course of Adult Acute Myeloid Leukemia. Clin. Lymphoma Myeloma Leuk. 2020, 20, 383–393. [Google Scholar] [CrossRef]
- Zeijlemaker, W.; Kelder, A.; Oussoren-Brockhoff, Y.J.; Scholten, W.J.; Snel, A.N.; Veldhuizen, D.; Cloos, J.; Ossenkoppele, G.J.; Schuurhuis, G.J. A simple one-tube assay for immunophenotypical quantification of leukemic stem cells in acute myeloid leukemia. Leukemia 2016, 30, 439–446. [Google Scholar] [CrossRef]
All Group (n = 295) | MRD Negative (n = 207) | MRD Positive (n = 78) | p-Value | |
---|---|---|---|---|
AGE mean (range) | 51 (2–71) | 51 (2–71) | 54.5 (18–69) | 0.02 |
Recipient Gender, n (%) Male | 148(50.2) | 102(49.3) | 40(51.3) | 0.63 |
ELN2011, n (%) favorable intermediate I intermediate II adverse | 47 (15.9) 57 (19.3) 111 (37.6) 70 (23.7) | 31 (15) 48 (23.2) 79 (38.2) 44 (21.3) | 15 (19.2) 8 (10.3) 30 (38.5) 21 (28.2) | 0.217 |
Disease Status at transplant, n (%) 1st CR 2nd CR Others CR Active disease Aplasia | 235 (79.7) 28 (9.5) 19 (6.4) 10 (3.4) 3 (1) | 176 (85) 17 (8.2) 13 (6.3) 1 (0.5) 0 | 59 (77.6) 11 (14.5) 6 (7.9) 0 2 | 0.271 |
Donor, n (%) Matched sibling Unrelated donor Haplo-identical donor | 139 (47.1) 117 (39.7) 38 (12.9) | 103 (49.8) 82 (39.6) 22 (10.6) | 31 (39.7) 30 (38.5) 16 (20.5) | 0.092 |
Conditioning, n (%) Myeloablative No myeloablative | 176 (59.7) 117 (40.4) | 119 (57.5) 88 (42.5) | 50 (64.1) 28 (35.9) | 0.781 |
Conditioning Therapy, n (%) BUCy BUCy + Thiothepa FLUBU FLUBU + Cy FLUBU + THIOTHEPA FLUBU + THIOTHEPA + ATG FLUBU + ATG Cy TBI ± ATG FLUMEL ± Thiothepa Others | 56 (19) 3 (1) 162 (54.9%) 8 (2.7%) 42 (14.2) 2 (0.7) 2 (0.7) 5 (1.3) 7 (2.3) 8 (2.7) | 44 (21.3) 1 (0.5) 113 (54.6) 5 (2.4) 33 (15.9) 2 (1) 1 (0.5) 2 (1) 2 (1) 4 (1.9) | 10 (12.8) 0 (0) 44 (56.4) 3 (3.8) 9 (11.5) 0 (0) 1 (1.3) 2 (2.6) 5 (6.4) 4 (5.2) | 0.385 |
Donor gender, n (%) Male | 192 (65.1) | 135 (65.2) | 51 (65.4) | 0.945 |
Donor/Recipient gender, n (%) Female/male | 52 (17.6) | 38 (18.4) | 12 (15.4) | 0.807 |
GvHD Prophylaxis, n (%) Tacrolimus/CsA + MTX Tacrolimus + Sirolimus ± MMF Tacrolimus/CsA + MTX + ATG Tacrolimus/CsA + MMF Tacrolimus/CsA + MMF + Cy Sirolimus + MMF + Cy CsA + Pred | 121 (41) 82 (27.8) 28 (9.5) 25 (8.5) 24 (8.1) 10 (3.4) 2 (0.7) | 87 (42) 64 (30.9) 14 (6.7) 18 (8.7) 13 (6.2) 8 (3.9) 2 (1) | 28 (35.9) 16 (21) 13 (16.6) 7 (9) 11 (14.1) 2 (2.6) 0 (0) | 0.001 |
All Group (n = 295) | MRD Negative before Transplantation (n = 207) | MRD Positive before Transplantation (n = 78) | p-Value | |
---|---|---|---|---|
Engraftment (YES/patients) Neutrophil Platelets | 286/289 287/293 | 204/207 205/207 | 78/7 876/78 | |
Engraftment day mean (range) Neutrophil Platelets | 16 (8–385) 13 (3–1096) | 16 (9–181) 12 (3–1096) | 16 (8–385) 15 (5–171) | 0.889 0.317 |
Acute GvHD, n(%) Grade 1 Grade 2 Grade 3 Grade 4 | 184 (62.4) 56 (19) 100 (33.9) 15 (5.1) 12 (4.1) | 137 (55.6) 45 (21.7) 71 (34.3) 12 (5.8) 8 (3.9) | 43 (55.1) 11 (14.1) 28 (36.8) 0 (0) 3 (3.9) | 0.137 |
Chronic GvHD, n (%) Mild Moderate/severe | 121 (59) 60 (20) 61 (20.7) | 92 (44.4) 47 (22.7) 41 (19.8) | 28 (35.9) 13 (16.7) 14 (17.9) | 0.356 |
Variable | CIR HR (95% CI) | NRM HR (95% CI) | OS HR (95% CI) | LFS HR (95% CI) |
---|---|---|---|---|
Sex male | 0.93 (0.59–1.48), p = 0.785 | 1.0 (0.53–1.92), p = 0.980 | 1.05 (0.68–1.60), p = 0.837 | 1.01 (0.7–1.47), p = 0.852 |
Age | 1.01 (0.98–1.04), p = 0.456 | 1.02 (0.99–1.05), p = 0.231 | 1.02 (1.00–1.04), p = 0.077 | 1.02 (0.99–1.04), p = 0.065 |
Conditioning RIC | 1.17 (0.65–2.10), p = 0.595 | 1.32 (0.62–2.84), p = 0.467 | 1.65 (0.95–2.88), p = 0.077 | 1.32 (0.82–2.12), p = 0.248 |
Donor Unrelated Haploidentical | 1.04 (0.64–1.69), p = 0.886 0.27 (0.11–0.67), p = 0.005 | 2.05 (0.94–4.50), p = 0.073 2.63 (1.04–6.65), p = 0.042 | 1.25 (0.79–1.99), p = 0.333 0.86 (0.43–1.69), p = 0.655 | 1.29 (0.87–1.94), p = 0.206 0.69 (0.37–1.29), p = 0.248 |
Depletion T Yes | 1.78 (1.01–3.14), p = 0.045 | 0.56 (0.26–1.21), p = 0.138 | 0.94 (0.56–1.57), p = 0.812 | 1.13(0.73–1.76), p = 0.583 |
ELN_2011 Intermediate Adverse | 2.51 (0.99–6.34), p = 0.052 4.37 (1.67–11.4), p = 0.003 | 1.09 (0.43–2.82), p = 0.851 1.45 (0.53–4.00), p = 0.470 | 1.51 (0.75–3.04), p = 0.243 2.42 (1.18–5.00), p = 0.016 | 1.88 (1.00–3.54), p = 0.05 3.16 (1.64–6.07), p = 0.001 |
MRD ≥ 0.1 before transplantation | 2.47 (1.4–4.33), p = 0.002 | 1.10 (0.47–2.59), p = 0.821 | 2.07 (1.26–3.39), p = 0.004 | 2.1 (1.36–3.29), p = 0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Caballero-Velázquez, T.; Pérez-López, O.; Yeguas Bermejo, A.; Rodríguez Arbolí, E.; Colado Varela, E.; Sempere Talens, A.; Vidriales, M.B.; Solé-Rodríguez, M.; Quirós Caso, C.; Pérez López, E.; et al. Prognostic Value of Measurable Residual Disease in Patients with AML Undergoing HSCT: A Multicenter Study. Cancers 2023, 15, 1609. https://doi.org/10.3390/cancers15051609
Caballero-Velázquez T, Pérez-López O, Yeguas Bermejo A, Rodríguez Arbolí E, Colado Varela E, Sempere Talens A, Vidriales MB, Solé-Rodríguez M, Quirós Caso C, Pérez López E, et al. Prognostic Value of Measurable Residual Disease in Patients with AML Undergoing HSCT: A Multicenter Study. Cancers. 2023; 15(5):1609. https://doi.org/10.3390/cancers15051609
Chicago/Turabian StyleCaballero-Velázquez, Teresa, Olga Pérez-López, Ana Yeguas Bermejo, Eduardo Rodríguez Arbolí, Enrique Colado Varela, Amparo Sempere Talens, María Belén Vidriales, María Solé-Rodríguez, Covadonga Quirós Caso, Estefanía Pérez López, and et al. 2023. "Prognostic Value of Measurable Residual Disease in Patients with AML Undergoing HSCT: A Multicenter Study" Cancers 15, no. 5: 1609. https://doi.org/10.3390/cancers15051609
APA StyleCaballero-Velázquez, T., Pérez-López, O., Yeguas Bermejo, A., Rodríguez Arbolí, E., Colado Varela, E., Sempere Talens, A., Vidriales, M. B., Solé-Rodríguez, M., Quirós Caso, C., Pérez López, E., Reinoso Segura, M., Prats-Martín, C., Montesinos, P., & Pérez-Simón, J. A. (2023). Prognostic Value of Measurable Residual Disease in Patients with AML Undergoing HSCT: A Multicenter Study. Cancers, 15(5), 1609. https://doi.org/10.3390/cancers15051609