Clinical Implications of mTOR Expression in Papillary Thyroid Cancer—A Systematic Review
Abstract
:Simple Summary
Abstract
1. Introduction
2. Role of mTOR Pathway in Cancerogenesis
3. PTC Cancerogenesis
4. Materials and Methods
4.1. Search Strategy
4.2. Inclusion and Exclusion Criteria
4.3. Data Extraction
5. Results
5.1. The Expression of the mTOR Gene in PTC (Table 1)
Study | Country | Clinical Data | Method and Sample | Results |
Maruei-Milan et al. 2020 [44] | Iran | 131 PCT; 144 HC Male/Female: PCT: 24 (18.3)/107 (81.7) HC: 107 (81.7)/118 (81.9) Age: PCT: 34.6 ± 11.9 HC: 35.6 ± 11.4 TNM stage: I 77 (58.8), II 14 (10.7), III 13 (9.9), IV 10 (7.6), Unknown 17 (13) | PCR-RFLP peripheral blood | - MTOR rs2295080 TG and GG genotypes in the control group were higher than those in PTC subjects (41.7 vs. 32.1% and 8.3 vs. 5.3%), (p = 0.06 and p = 0.18). - MTOR rs2295080 was found to be associated with a decreased risk of PTC in dominant and allelic models (OR = 0.6; 95% CI = 0.4–0.97; p = 0.04, and OR = 0.7; 95% CI = 0.5–0.98; p = 0.04). - The haplotype analysis of MTOR rs2295080 and rs2536 polymorphisms revealed that the frequency of the GT haplotype in PTC subjects was significantly lower than in the controls (23.8 vs. 27.8% p = 0.023). - MTOR rs2536 TC genotype and C allele were more frequent in PTC subjects, but no significant association was found between this variant and PTC (p = 0.08 and p = 0.09). - The mTOR rs2295080 TG genotype could reduce the risk of higher tumor stages/TNM stages (III and IV) (OR = 0.3, 95% CI = 0.1–1; p = 0.04). The mTOR rs2295080 polymorphism was associated with a lower risk of a higher tumor stage in the dominant model (OR = 0.3, 95% CI = 0.1–0.9; p = 0.04). |
Spirina et al. 2020 [45] | Russia | 20 PTC Male/Female: no data Age: no data TNM stage: T1-4 N0-2 M0 | RT-PCR tissue | - The mTOR in PTC without BRAF-V600E mutation 0.26 (0.01; 1.00) vs. 42.72 (12.42; 361.00) in PTC with BRAF-V600E mutation (p < 0.05) = significantly higher expression in PCT with BRAF-V600E mutation. - BRAF gene status did not match in the cancers and metastases (Primary tumor and metastasis have the same status BRAF-V600E vs. Primary tumor and metastasis have heterogenous BRAF-V600E) = significantly higher expression of mTOR in heterogenous status mTOR 0.07 (0.01; 0.46) 2.30 (1.00; 653.00). |
Spirina et al. 2020 [46] | Russia | 41 PTC; 30 cPTC; 11 FVPTC Male/Female: no data Age: cPTC: 50.0 (36.0; 59.0); FVPTC: 60.0 (59.0; 61.0) TNM stage: T1-4 N0-2 M0 | RT-PCR tissue | - The mTOR expression in classical variant PCT 2.0 (0.16; 31.0); follicular variant PCT 16.0 (0.0; 19.0) - The mTOR expression in classical variant PCT 2.0 (0.16; 31.0); follicular variant PCT 16.0 (0.0; 19.0) - Significantly higher m-TOR expression in patients with a follicular variant |
Lee et al. 2022 [47] | USA | 369 PTC Male/Female: no data Age: no data TNM stage: no data | PCR, WES tissue | - MTOR mutations were found in 3 PTC (0.81) (MTOR mutations: L1460P, M2387I, L1163V). |
Song et al. 2021 [48] | South Korea | 50 PCT (BRAF V600E); 19 cPCT; 23 TCV PCT; 8 PCT metastases Male/Female: 1 (42)/29 (58) Age: 49.5 (38.0–59.5) TNM stage: I 33 (66.0%), II 12 (24.0%), III 1 (2.0%), IV 4 (8.0%) | qPCR, NGS tissue | - MTOR mutation in 4% of PCT (2/19 cPCT) |
Jin et al. 2021 [49] | South Korea | 36 PTC; 25 TVC PTC; 11 CCV PTC Male/Female: 9 (25)/ 27 (75) Age: 43.5 (34.8–51.0) TNM stage: Stage I 31 (86.1%) Stage II 4 (11.1%) Stage III 1 (2.8%) Stage IV 0 (0.0%) | qPCR, NGS tissue | - MTOR mutation in 0% PCT |
Murugan et al. 2015 [50] | Saudi Arabia | 63 TC: 41 cPCT; 7 FVPCT; 1 TCV PCT; 1 CCV PCT Male/Female: no data Age: no data TNM stage: no data | PCR tissue | - MTOR mutation in 0% PCT - Rare synonymous genetic variant resulting in C > G transversion (C663G) in 1 out 63 samples (1.6%) - Frequent synonymous variant resulting in C > T transition (C5333T) in 14 out of 84 samples (16%) |
5.2. The Expression of mTOR Protein in PTC (Table 2)
Study | Country | Clinical Data | Method and Sample | Results |
---|---|---|---|---|
Faustino et al. 2012 [51] | Portugal | 22 FVPCT; 60 cPCT (23 (38.3%) with BRAF V600E mutation); 21 cPCT metastases; 34 HC Male/Female: no data Age: no data TNM stage: no data | IHC, PCR tissue | - Enhanced expression of mTOR and phosphorylated mTOR (pmTOR) Ser2448 was detected in FVPTC and cPTC, when compared with normal thyroid tissue (p ≤ 0.0001 to 0.0022). - Total mTOR expression was significantly higher in cPTC, relative to the other carcinoma histotypes (p ≤ 0.0001 to 0.0022). - The levels of pmTOR in cPTC were significantly higher than in FVPTC and cPTC metastases (p = 0.0108 and p = 0.0005, respectively). - Raptor and rictor were overexpressed (p ≤ 0.0001 to 0.0007) in TC in comparison to HC. - A significant increase in the expression of mTORC1 downstream targets relative to normal thyroid tissue, was observed only in cPTC samples (p = 0.0180 and p < 0.0001, respectively). - Higher expression of mTOR (p < 0.0001), pmTOR (p = 0.0005), and p4EBP1 Thr37/46 (p = 0.0011) was found in primary cPTC than in cPTC metastases. - Significantly higher expression of mTOR (p < 0.0001), pmTOR Ser2448 (p < 0.0001), raptor (p = 0.0037), rictor (p = 0.0323) in cPTC BRAF V600E was found than in cPTC BRAF V600E WT. |
Ahmed et al. 2014 [53] | Saudi Arabia | 536 PCT; 73 FVPCT; 412 cPCT; 19 TV PCT Male/Female: 141 (28)/363 (72) Age: ≤45 y 294 (58.3); >45 y 210 (41.7) TNM stage: I 304 (61.5), II 25 (5.1), III 44 (8.9), IV 121 (24.5) | tissue microarray, IHC tissue | - Co-expression of mTORC2 and mTORC1 activity was seen in a 32.5% (164/504) of the PTC studied and this association was statistically significant (p = 0.0244). - The p-mTORC1 expression showed a significant association with the early stage (p = 0.0286). - High expression 81.7%; low expression 18.3% |
Tavares et al. 2016 [52] | Portugal | 191 PCT; 119 cPTC; 47 FVPCT; 20 Other Male/Female: 35 (18)/155 (82) Age: < 45 y 99 (53), ≥ 45 y 87 (47) TNM stage: I 66 (62), II 6 (6), III 25 (23), IV 10 (9) | PCR, IHC tissue | - Higher pmTOR expression was associated with absence of a tumor capsule (p = 0.01), presence of distant metastases (p = 0.05), persistence of disease (one-year disease-free status and disease-free status at the end of follow-up) (p = 0.05), and NRAS mutation (p = 0.04). - Positive pmTOR expression showed to be an independent risk factor for distant metastases (odds ratio = 18.2; 95% confidence interval 2.1–157.9; p = 0.01). - Higher pmTOR expression was also correlated with a greater number of 131I therapies (r(102)-0.2, p = 0.02), greater cumulative dose of RAI (r(100)-0.3, p = 0.01), and a lesser expression of sodium iodine symporter (r(44)-0.3, p = 0.03). |
Duman et al. 2014 [54] | Turkey | 101 DTC; 82 (81.2%) PCT Male/Female: PCT: 16 (19.5)/66 (80.5%) Age: 45.32 ± 12.7 TNM stage: I: 56 (68.3%); II: 19 (23.2%); III: 3 (4.9%); IV: 2 (3.7%) | PCR, WES tissue | - No significant association between mTOR and tumor size (p = 0.818) - No statistically significant correlation was found between mTOR expression and lymph vascular invasion, capsular invasion, or multifocality (p = 0.392, p = 0.65 and p = 0.156, respectively). |
6. Treatment of PTCs
Drug Name | Publication | Drug Mechanism | Studied Group | End Points | Results |
---|---|---|---|---|---|
Everolimus Phase II Clinical Trial | Lim et al. 2013 [7] | mTOR inhibitor | 38 patients with various types of thyroid cancer RAI-R or not appropriate for 131I (24 with DTC) | primary: disease control rate: PR + stable response ≥ 12 weeks secondary: response rates; clinical benefit: PD + durable SD; PFS, OS | disease control rate: 81% objective response: 5% of patients SD 76% PD 17% Durable SD (≥ 24 weeks): 45% of patients clinical benefit: 50% patients median PFS: 47 weeks |
Everolimus Phase II Clinical Trial | Schneider et al. 2016 [60] | As above | 28 progressive metastatic or locally advanced RAI-R DTC 7 patients ATC | primary: disease control rate: CR + PR + SD ≥ 24 weeks secondary: PFS; OS | SD-65% of patients, 58% ≥ 24 weeks Median PFS: 9 months Median OS 18 months |
Everolimus Phase II Clinical Trial | Hanna et al. 2018 [61] | As above | 33 patients RAI-R DTC 10 patients MTC 7 patients ATC | primary: PFS | DTC cohort: median PFS 12.9 months 2-year PFS 23.6% 2-year OS 73.5% |
Everolimus and low-dose cisplatin Phase I Clinical Trial | Fury et al. 2012 [62] | As above plus low-dose cytotoxic chemotherapy | 29 patients with various types of advanced solid tumors 7 with unspecified type of thyroid cancer | radiographic response with RECIST | PR: 3 patients Prolonged SD: 5 patients |
Everolimus and pasireotide Phase I Clinical Trial | Bauman et al. 2022 [63] | As above plus somatostatin receptor blockade | 42 patients DTC 32 (76.2%); MTC 10 (23.8%) | radiographic response with RECIST Arms: A-everolimus B-pasireotide LAR C-combination | OR: 0 Median PFS: 18.3 (A), 1.8 (B), 8.1 (C) months 1-year PFS rates 49.9% (A), 36.4% (B), 25.0% (C) |
Sirolimus and cyclophosphamide Retrospective Study | Manohar et al. 2015 [64] | mTOR inhibitor plus cytotoxic agent | 15 patients with DTC on sirolimus plus cyclophosphamide 17 patients with DTC on standard care protocol | PFS | 1-year PFS rates: 0.45 sirolimus + cyclophosphamide vs. 0.30 control group HR for PFS from initiation of treatment: 1.47 |
Temsirolimus and sorafenib Phase II Clinical Trial | Sherman et al. 2017 [65] | mTOR inhibitor plus multitarget tyrosine kinase inhibitors (TKI) | 36 patients with metastatic RAI-TC of follicular origin | radiographic response rate | PR 22% patients SD 58% patients PD 3% patients 1-year PFS rates 30.5% |
Buparlisib Phase II Clinical Trial | Borson-Chazot et al. 2018 [70] | Pan-Class I PI3K Inhibitor | 43 patients with advanced RAI-R: DTC in 25, FTC in 17, Hürthle cell carcinoma in 1 | primary: PFS at 6 months secondary: OR, PFS at 12 months, OS at 6 and 12 months | probability of PFS was 41.7% at 6 months, 20.9% at 12 months At 6 months: 25.6% patients-SD 48.8%-PD 6 months OS: 85.9% 12 months OS: 78.7% |
Drug | Target | Indication |
---|---|---|
sorafenib | RET, c-KIT, VEGFR 1-3, PDGFR, BRAF | RAI-R DTC |
lenvatinib | RET, c-KIT, VEGFR 1-3, PDGFR, FGFR | RAI-R DTC |
selpercatinib | RET | RAI-R DTC with RET fusion |
pralsetinib | RET | RAI-R DTC with RET fusion |
larotrectinib | NTRK | Advanced solid tumors with NTRK gene fusion |
entrectinib | NTRK, ALK, ROS | Advanced solid tumors with NTRK gene fusion |
Drug Name | Publication | Drug Mechanism | Material | Results |
---|---|---|---|---|
Torin-2 | Ahmed et al. (2014) [19] | second-generation mTOR inhibitor | - Tissue samples (536 patients with DTC) In VITRO - PTC cell line: BCPAP and TPC-1 IN VIVO - On mouse TPC-1 tumor xenografts | Immunohistochemistry mTORC1 expression in 81% samples; mTORC2 expression in 39% co-expression 32.5% IN VITRO - prevention of mTORC1 and mTORC2 activity - inhibition of mTOR activity leading to downregulation of cyclin D1 - induction of mitochondrial-mediated apoptosis IN VIVO - decrease in tumor volume and size in mice |
CZ415 | Li et al. (2018) [71] | mTOR kinase inhibitor blocking mTORC1 and mTORC2 activation simultaneously | - tissue samples (4 PTC patients) In VITRO- TPC-1 human thyroid cancer cell line In VIVO - on mouse TPC-1 cells tumor xenografts thyroid cells | IN VITRO - induction of apoptosis activation - disruption of PTC cell cycle progression - blockade of mTORC1 and mTORC2 activation IN VIVO - significant suppression of tumor growth in mice |
paeonol-platinum (II) (PL-Pt[II]) complex | He et al. (2020) [72] | downregulation of mTOR pathway | IN VITRO- ATC cell lines-SW1736 PTC cell lines-BHP7-13 IN VIVO - on mouse SW1736 tumor xenografts | IN VITRO - downregulation of mTOR pathway leading to induction of cytotoxicity - cell apoptosis activation - increase in the sub-G1 cell fraction IN VIVO - reduced tumor volume in mice |
OSU-53 | Plews et al. (2015) [73] | Dual AMPK activator/mTOR inhibitor | IN VITRO thyroid cancer cell lines of DTC and ATC (BCPAP, TPC1 FTC133, SW1736, and C643) | In VITRO - induction of activation of AMPK - direct inhibition of mTOR activity with consequent suppression of mTOR/p70S6K signaling - autophagy stimulation |
NVP-BEZ235 | Lin et al. (2012) [74] | dual PI3K/mTOR inhibitor | IN VITRO PTC-BHP7-13, FTC-WRO82-1, undifferentiated FTC-FRO81-2, ATC-8505C, 8305C, KAT4C, KAT18, and MTC-TT human thyroid cancer cell line IN VIVO - on mouse 8505C tumor xenografts | IN VITRO - inhibition of proliferation of all cancer lines - inactivation of signaling downstream of mTORC1 - induction of cell cycle arrest at G0/G1 phase IN VIVO - inhibition of xenografts |
Ganetespib | Lin et al. (2017) [75] | heat shock protein 90 inhibitor | IN VITRO - PTC-BHP7-13, FTC-WRO82-1 undifferentiated FTC-FRO81-2, ATC-8505C, 8305C, KAT4C, KAT18, and MTC-TT human thyroid cancer cell lines IN VIVO - On mouse anaplastic and medullary thyroid cancer xenografts | IN VITRO - inhibition of cell proliferation in a dose-dependent manner in all cell lines - induction of arrested cell cycle progression in the G2/M phase - inhibition of expression of proteins involved in the RAS/RAF/ERK and PI3K/AKT/mTOR signaling pathways - induction of apoptosis IN VIVO suppression of tumor growth in mice |
(1S,3R)-RSL3 (RSL3) | Sekhar et al. (2022) [76] | small-molecule inhibitor of glutathione peroxidase 4 (GPX4) | In VITRO - PTC cell lines (K1, MDA-T68, MDA-T32, TPC1) | In VITRO - inhibition of mTOR signaling - activation of ferroptosis, which induces cell death and migration - inhibition of DNA response to damage |
Canagliflozin | Wang et.al (2022) [77] | glucose cotransporter 2 inhibitor (SGLT2) | - tissue samples (12 PTC and 12 adjacent healthy tissues) IN VITRO PTC cell lines: TPC-1 and BCPAP Nthy-ori-3-1 IN VIVO A tumor xenograft mouse model | Immunohistochemistry Increase in levels of SGLT2 in thyroid cancer in comparison with adjacent tissue In VITRO - inhibition of glucose uptake and glycolysis levels - inhibition of AKT/mTOR activation - induced AMPK activation - Increased apoptosis due to G1/S phase transition arrest IN VIVO:Suppression of tumor growth in mice |
PXD101 (Belinostat) | Lin et al. (2013) [78] | histone deacetylase inhibitor | In VITRO - PTC-BHP7-13, FTC-WRO82-1, undifferentiated FTC-FRO81-2, ATC-8505C, 8305C, KAT4C, KAT18, and MTC TT human thyroid cancer cell line In VIVO A tumor xenograft mouse model | IN VITRO - inhibition of cell proliferation accordingly to the dose manner - induction of ROS accumulation - inhibition of the RAS/RAF/ERK and PI3K/mTOR pathways - induction of double-stranded DNA damage and apoptosis IN VIVO - Retardation of tumor growth in mice |
7. Discussion
7.1. Implications of Gene Mutations and Polymorphisms on the Course of PTC
7.2. Higher Expression of mTOR Pathway Proteins Might Play a Significant Role in PTC Aggressiveness
7.3. The mTOR Mutations and Pathway Activation in Other Types of Cancers
7.4. Novel Therapeutic Strategies
7.5. Limitations and Further Perspectives
8. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Seib, C.D.; Sosa, J.A. Evolving Understanding of the Epidemiology of Thyroid Cancer. Endocrinol. Metab. Clin. N. Am. 2019, 48, 23–35. [Google Scholar] [CrossRef]
- Roman, B.R.; Morris, L.G.; Davies, L. The Thyroid Cancer Epidemic, 2017 Perspective. Curr. Opin. Endocrinol. Diabetes Obes. 2017, 24, 332–336. [Google Scholar] [CrossRef]
- Abdullah, M.I.; Junit, S.M.; Ng, K.L.; Jayapalan, J.J.; Karikalan, B.; Hashim, O.H. Papillary Thyroid Cancer: Genetic Alterations and Molecular Biomarker Investigations. Int. J. Med. Sci. 2019, 16, 450–460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pópulo, H.; Lopes, J.M.; Soares, P. The MTOR Signalling Pathway in Human Cancer. Int. J. Mol. Sci. 2012, 13, 1886–1918. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sabers, C.J.; Martin, M.M.; Brunn, G.J.; Williams, J.M.; Dumont, F.J.; Wiederrecht, G.; Abraham, R.T. Isolation of a Protein Target of the FKBP12-Rapamycin Complex in Mammalian Cells (∗). J. Biol. Chem. 1995, 270, 815–822. [Google Scholar] [CrossRef] [Green Version]
- Brown, E.J.; Albers, M.W.; Bum Shin, T.; Ichikawa, K.; Keith, C.T.; Lane, W.S.; Schreiber, S.L. A Mammalian Protein Targeted by G1-Arresting Rapamycin–Receptor Complex. Nature 1994, 369, 756–758. [Google Scholar] [CrossRef]
- Zining, J.; Lu, X.; Caiyun, H.; Yuan, Y. Genetic Polymorphisms of MTOR and Cancer Risk: A Systematic Review and Updated Meta-Analysis. Oncotarget 2016, 7, 57464–57480. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alayev, A.; Holz, M.K. MTOR Signaling for Biological Control and Cancer. J. Cell. Physiol. 2013, 228, 1658–1664. [Google Scholar] [CrossRef] [Green Version]
- Hay, N.; Sonenberg, N. Upstream and Downstream of MTOR. Genes Dev. 2004, 18, 1926–1945. [Google Scholar] [CrossRef] [Green Version]
- Huang, S. MTOR Signaling in Metabolism and Cancer. Cells 2020, 9, 2278. [Google Scholar] [CrossRef] [PubMed]
- Mossmann, D.; Park, S.; Hall, M.N. MTOR Signalling and Cellular Metabolism Are Mutual Determinants in Cancer. Nat. Rev. Cancer 2018, 18, 744–757. [Google Scholar] [CrossRef] [PubMed]
- Kim, L.C.; Cook, R.S.; Chen, J. MTORC1 and MTORC2 in Cancer and the Tumor Microenvironment. Oncogene 2017, 36, 2191–2201. [Google Scholar] [CrossRef] [Green Version]
- Hsieh, A.C.; Liu, Y.; Edlind, M.P.; Ingolia, N.T.; Janes, M.R.; Sher, A.; Shi, E.Y.; Stumpf, C.R.; Christensen, C.; Bonham, M.J.; et al. The Translational Landscape of MTOR Signalling Steers Cancer Initiation and Metastasis. Nature 2012, 485, 55–61. [Google Scholar] [CrossRef] [Green Version]
- Sancak, Y.; Thoreen, C.C.; Peterson, T.R.; Lindquist, R.A.; Kang, S.A.; Spooner, E.; Carr, S.A.; Sabatini, D.M. PRAS40 Is an Insulin-Regulated Inhibitor of the MTORC1 Protein Kinase. Mol. Cell 2007, 25, 903–915. [Google Scholar] [CrossRef] [PubMed]
- Hara, K.; Maruki, Y.; Long, X.; Yoshino, K.; Oshiro, N.; Hidayat, S.; Tokunaga, C.; Avruch, J.; Yonezawa, K. Raptor, a Binding Partner of Target of Rapamycin (TOR), Mediates TOR Action. Cell 2002, 110, 177–189. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nojima, H.; Tokunaga, C.; Eguchi, S.; Oshiro, N.; Hidayat, S.; Yoshino, K.; Hara, K.; Tanaka, N.; Avruch, J.; Yonezawa, K. The Mammalian Target of Rapamycin (MTOR) Partner, Raptor, Binds the MTOR Substrates P70 S6 Kinase and 4E-BP1 through Their TOR Signaling (TOS) Motif. J. Biol. Chem. 2003, 278, 15461–15464. [Google Scholar] [CrossRef] [Green Version]
- Peterson, T.R.; Laplante, M.; Thoreen, C.C.; Sancak, Y.; Kang, S.A.; Kuehl, W.M.; Gray, N.S.; Sabatini, D.M. DEPTOR is an mTOR inhibitor frequently overexpressed in multiple myeloma cells and required for their survival. Cell 2009, 137, 873–886. [Google Scholar] [CrossRef] [Green Version]
- McMahon, L.P.; Yue, W.; Santen, R.J.; Lawrence, J.C. Farnesylthiosalicylic Acid Inhibits Mammalian Target of Rapamycin (MTOR) Activity Both in Cells and in Vitro by Promoting Dissociation of the MTOR-Raptor Complex. Mol. Endocrinol. Baltim. Md 2005, 19, 175–183. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.H.; Sarbassov, D.D.; Ali, S.M.; King, J.E.; Latek, R.R.; Erdjument-Bromage, H.; Tempst, P.; Sabatini, D.M. MTOR Interacts with Raptor to Form a Nutrient-Sensitive Complex That Signals to the Cell Growth Machinery. Cell 2002, 110, 163–175. [Google Scholar] [CrossRef] [Green Version]
- Holz, M.K.; Blenis, J. Identification of S6 Kinase 1 as a Novel Mammalian Target of Rapamycin (MTOR)-Phosphorylating Kinase. J. Biol. Chem. 2005, 280, 26089–26093. [Google Scholar] [CrossRef] [Green Version]
- Pullen, N.; Thomas, G. The Modular Phosphorylation and Activation of P70s6k. FEBS Lett. 1997, 410, 78–82. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarbassov, D.D.; Ali, S.M.; Kim, D.H.; Guertin, D.A.; Latek, R.R.; Erdjument-Bromage, H.; Tempst, P.; Sabatini, D.M. Rictor, a Novel Binding Partner of MTOR, Defines a Rapamycin-Insensitive and Raptor-Independent Pathway That Regulates the Cytoskeleton. Curr. Biol. CB 2004, 14, 1296–1302. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Frias, M.A.; Thoreen, C.C.; Jaffe, J.D.; Schroder, W.; Sculley, T.; Carr, S.A.; Sabatini, D.M. MSin1 Is Necessary for Akt/PKB Phosphorylation, and Its Isoforms Define Three Distinct MTORC2s. Curr. Biol. CB 2006, 16, 1865–1870. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oh, W.J.; Jacinto, E. MTOR Complex 2 Signaling and Functions. Cell Cycle Georget. Tex 2011, 10, 2305–2316. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mirabilii, S.; Ricciardi, M.R.; Piedimonte, M.; Gianfelici, V.; Bianchi, M.P.; Tafuri, A. Biological Aspects of MTOR in Leukemia. Int. J. Mol. Sci. 2018, 19, 2396. [Google Scholar] [CrossRef] [Green Version]
- Marquard, F.E.; Jücker, M. PI3K/AKT/MTOR Signaling as a Molecular Target in Head and Neck Cancer. Biochem. Pharmacol. 2020, 172, 113729. [Google Scholar] [CrossRef]
- Miricescu, D.; Totan, A.; Stanescu-Spinu, I.I.; Badoiu, S.C.; Stefani, C.; Greabu, M. PI3K/AKT/MTOR Signaling Pathway in Breast Cancer: From Molecular Landscape to Clinical Aspects. Int. J. Mol. Sci. 2020, 22, 173. [Google Scholar] [CrossRef]
- Karagianni, F.; Pavlidis, A.; Malakou, L.S.; Piperi, C.; Papadavid, E. Predominant Role of MTOR Signaling in Skin Diseases with Therapeutic Potential. Int. J. Mol. Sci. 2022, 23, 1693. [Google Scholar] [CrossRef]
- Simioni, C.; Martelli, A.M.; Zauli, G.; Melloni, E.; Neri, L.M. Targeting MTOR in Acute Lymphoblastic Leukemia. Cells 2019, 8, 190. [Google Scholar] [CrossRef] [Green Version]
- Ediriweera, M.K.; Tennekoon, K.H.; Samarakoon, S.R. Role of the PI3K/AKT/MTOR Signaling Pathway in Ovarian Cancer: Biological and Therapeutic Significance. Semin. Cancer Biol. 2019, 59, 147–160. [Google Scholar] [CrossRef]
- Shorning, B.Y.; Dass, M.S.; Smalley, M.J.; Pearson, H.B. The PI3K-AKT-MTOR Pathway and Prostate Cancer: At the Crossroads of AR, MAPK, and WNT Signaling. Int. J. Mol. Sci. 2020, 21, 4507. [Google Scholar] [CrossRef]
- Mirabilii, S.; Ricciardi, M.R.; Tafuri, A. MTOR Regulation of Metabolism in Hematologic Malignancies. Cells 2020, 9, 404. [Google Scholar] [CrossRef] [Green Version]
- Chamcheu, J.C.; Roy, T.; Uddin, M.B.; Banang-Mbeumi, S.; Chamcheu, R.C.N.; Walker, A.L.; Liu, Y.Y.; Huang, S. Role and Therapeutic Targeting of the PI3K/Akt/MTOR Signaling Pathway in Skin Cancer: A Review of Current Status and Future Trends on Natural and Synthetic Agents Therapy. Cells 2019, 8, 803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- IARC Publications Website–WHO Classification of Tumours. Available online: https://publications.iarc.fr/Book-And-Report-Series/Who-Classification-Of-Tumours (accessed on 30 January 2023).
- Yoo, S.K.; Lee, S.; Kim, S.J.; Jee, H.G.; Kim, B.A.; Cho, H.; Song, Y.S.; Cho, S.W.; Won, J.K.; Shin, J.Y.; et al. Comprehensive Analysis of the Transcriptional and Mutational Landscape of Follicular and Papillary Thyroid Cancers. PLoS Genet. 2016, 12, e1006239. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- The Cancer Genome Atlas Research Network. Integrated Genomic Characterization of Papillary Thyroid Carcinoma. Cell 2014, 159, 676–690. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Haroon Al Rasheed, M.R.; Xu, B. Molecular Alterations in Thyroid Carcinoma. Surg. Pathol. Clin. 2019, 12, 921–930. [Google Scholar] [CrossRef]
- Younis, E. Oncogenesis of Thyroid Cancer. Asian Pac. J. Cancer Prev. APJCP 2017, 18, 1191–1199. [Google Scholar] [CrossRef]
- De Groot, J.W.B.; Links, T.P.; Plukker, J.T.M.; Lips, C.J.M.; Hofstra, R.M.W. RET as a Diagnostic and Therapeutic Target in Sporadic and Hereditary Endocrine Tumors. Endocr. Rev. 2006, 27, 535–560. [Google Scholar] [CrossRef] [Green Version]
- Leeman-Neill, R.J.; Kelly, L.M.; Liu, P.; Brenner, A.V.; Little, M.P.; Bogdanova, T.I.; Evdokimova, V.N.; Hatch, M.; Zurnadzy, L.Y.; Nikiforova, M.N.; et al. ETV6-NTRK3 Is a Common Chromosomal Rearrangement in Radiation-Associated Thyroid Cancer. Cancer 2014, 120, 799–807. [Google Scholar] [CrossRef] [Green Version]
- Xu, K.; Liu, P.; Wei, W. MTOR Signaling in Tumorigenesis. Biochim. Biophys. Acta 2014, 1846, 638–654. [Google Scholar] [CrossRef] [Green Version]
- Kouvaraki, M.A.; Liakou, C.; Paraschi, A.; Dimas, K.; Patsouris, E.; Tseleni-Balafouta, S.; Rassidakis, G.Z.; Moraitis, D. Activation of MTOR Signaling in Medullary and Aggressive Papillary Thyroid Carcinomas. Surgery 2011, 150, 1258–1265. [Google Scholar] [CrossRef] [PubMed]
- The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews | The BMJ. Available online: https://www.bmj.com/content/372/bmj.n71 (accessed on 27 January 2023).
- Maruei-Milan, R.; Saravani, M.; Heidari, Z.; Asadi-Tarani, M.; Salimi, S. Effects of the MTOR and AKT1 Genes Polymorphisms on Papillary Thyroid Cancer Development. IUBMB Life 2020, 72, 2601–2610. [Google Scholar] [CrossRef] [PubMed]
- Spirina, L.V.; Chizhevskaya, S.Y.; Kovaleva, I.V.; Kondakova, I.V. The Association of the BRAF-V600E Mutation with the Expression of the Molecular Markers in the Primary Tumor and Metastatic Tissue in Papillary Thyroid Cancer. Asian Pac. J. Cancer Prev. APJCP 2021, 22, 2017–2024. [Google Scholar] [CrossRef] [PubMed]
- Spirina, L.V.; Chizhevskaya, S.Y.; Kondakova, I.V. Molecular Profiling of Follicular Variant of Papillary Thyroid Cancer. Bull. Exp. Biol. Med. 2020, 169, 85–88. [Google Scholar] [CrossRef]
- Lee, M.; Untch, B.R.; Xu, B.; Ghossein, R.; Han, C.; Kuo, F.; Valero, C.; Nadeem, Z.; Patel, N.; Makarov, V.; et al. Genomic and Transcriptomic Correlates of Thyroid Carcinoma Evolution after BRAF Inhibitor Therapy. Mol. Cancer Res. 2022, 20, 45–55. [Google Scholar] [CrossRef]
- Song, E.; Jin, M.; Jang, A.; Jeon, M.J.; Song, D.E.; Yoo, H.J.; Kim, W.B.; Shong, Y.K.; Kim, W.G. Mutation in Genes Encoding Key Functional Groups Additively Increase Mortality in Patients with Brafv600e-Mutant Advanced Papillary Thyroid Carcinoma. Cancers 2021, 13, 5846. [Google Scholar] [CrossRef]
- Jin, M.; Song, D.E.; Ahn, J.; Song, E.; Lee, Y.M.; Sung, T.Y.; Kim, T.Y.; Kim, W.B.; Shong, Y.K.; Jeon, M.J.; et al. Genetic Profiles of Aggressive Variants of Papillary Thyroid Carcinomas. Cancers 2021, 13, 892. [Google Scholar] [CrossRef]
- Murugan, A.K.; Humudh, E.A.; Qasem, E.; Al-Hindi, H.; Almohanna, M.; Hassan, Z.K.; Alzahrani, A.S. Absence of Somatic Mutations of the MTOR Gene in Differentiated Thyroid Cancer. Meta Gene 2015, 6, 69–71. [Google Scholar] [CrossRef]
- Faustino, A.; Couto, J.P.; Pópulo, H.; Rocha, A.S.; Pardal, F.; Cameselle-Teijeiro, J.M.; Lopes, J.M.; Sobrinho-Simões, M.; Soares, P. MTOR Pathway Overactivation in BRAF Mutated Papillary Thyroid Carcinoma. J. Clin. Endocrinol. Metab. 2012, 97, E1139–E1149. [Google Scholar] [CrossRef]
- Tavares, C.; Coelho, M.J.; Melo, M.; da Rocha, A.G.; Pestana, A.; Batista, R.; Salgado, C.; Eloy, C.; Ferreira, L.; Rios, E.; et al. PmTOR Is a Marker of Aggressiveness in Papillary Thyroid Carcinomas. Surgery 2016, 160, 1582–1590. [Google Scholar] [CrossRef]
- Ahmed, M.; Hussain, A.R.; Bavi, P.; Ahmed, S.O.; Al Sobhi, S.S.; Al-Dayel, F.; Uddin, S.; Al-Kuraya, K.S. High Prevalence of MTOR Complex Activity Can Be Targeted Using Torin2 in Papillary Thyroid Carcinoma. Carcinogenesis 2014, 35, 1564–1572. [Google Scholar] [CrossRef] [PubMed]
- Duman, B.B.; Kara, O.I.; Uʇuz, A.; Ates, B.T. Evaluation of PTEN, PI3K MTOR, and KRAS Expression and Their Clinical and Prognostic Relevance to Differentiated Thyroid Carcinoma. Wspolczesna Onkol. 2014, 18, 234–240. [Google Scholar] [CrossRef]
- Jarząb, B.; Dedecjus, M.; Lewiński, A.; Adamczewski, Z.; Bakuła-Zalewska, E.; Bałdys-Waligórska, A.; Barczyński, M.; Biskup-Frużyńska, M.; Bobek-Billewicz, B.; Bossowski, A.; et al. Diagnosis and Treatment of Thyroid Cancer in Adult Patients—Recommendations of Polish Scientific Societies and the National Oncological Strategy. 2022 Update [Diagnostyka i Leczenie Raka Tarczycy u Chorych Dorosłych—Rekomendacje Polskich Towarzystw Naukowych Oraz Narodowej Strategii Onkologicznej. Aktualizacja Na Rok 2022]. Endokrynol. Pol. 2022, 73, 173–300. [Google Scholar] [CrossRef] [PubMed]
- Dolidze, D.D.; Shabunin, A.V.; Mumladze, R.B.; Vardanyan, A.V.; Covantsev, S.D.; Shulutko, A.M.; Semikov, V.I.; Isaev, K.M.; Kazaryan, A.M. A Narrative Review of Preventive Central Lymph Node Dissection in Patients with Papillary Thyroid Cancer–A Necessity or an Excess. Front. Oncol. 2022, 12, 906695. [Google Scholar] [CrossRef]
- Filetti, S. Thyroid Cancer: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2019, 30, 28. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tirrò, E.; Martorana, F.; Romano, C.; Vitale, S.R.; Motta, G.; Di Gregorio, S.; Massimino, M.; Pennisi, M.S.; Stella, S.; Puma, A.; et al. Molecular Alterations in Thyroid Cancer: From Bench to Clinical Practice. Genes 2019, 10, 709. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lim, S.M.; Chang, H.; Yoon, M.J.; Hong, Y.K.; Kim, H.; Chung, W.Y.; Park, C.S.; Nam, K.H.; Kang, S.W.; Kim, M.K.; et al. A Multicenter, Phase II Trial of Everolimus in Locally Advanced or Metastatic Thyroid Cancer of All Histologic Subtypes. Ann. Oncol. 2013, 24, 3089–3094. [Google Scholar] [CrossRef] [PubMed]
- Schneider, T.C.; de Wit, D.; Links, T.P.; van Erp, N.P.; van der Hoeven, J.J.M.; Gelderblom, H.; Roozen, I.C.F.M.; Bos, M.; Corver, W.E.; van Wezel, T.; et al. Everolimus in Patients with Advanced Follicular-Derived Thyroid Cancer: Results of a Phase II Clinical Trial. J. Clin. Endocrinol. Metab. 2017, 102, 698–707. [Google Scholar] [CrossRef] [PubMed]
- Hanna, G.J.; Busaidy, N.L.; Chau, N.G.; Wirth, L.J.; Barletta, J.A.; Calles, A.; Haddad, R.I.; Kraft, S.; Cabanillas, M.E.; Rabinowits, G.; et al. Genomic Correlates of Response to Everolimus in Aggressive Radioiodine-Refractory Thyroid Cancer: A Phase II Study. Clin. Cancer Res. 2018, 24, 1546–1553. [Google Scholar] [CrossRef] [Green Version]
- Fury, M.G.; Sherman, E.; Haque, S.; Korte, S.; Lisa, D.; Shen, R.; Wu, N.; Pfister, D. A Phase I Study of Daily Everolimus plus Low-Dose Weekly Cisplatin for Patients with Advanced Solid Tumors. Cancer Chemother. Pharmacol. 2012, 69, 591–598. [Google Scholar] [CrossRef]
- Bauman, J.E.; Chen, Z.; Zhang, C.; Ohr, J.P.; Ferris, R.L.; McGorisk, G.M.; Brandt, S.; Srivatsa, S.; Chen, A.Y.; Steuer, C.E.; et al. A Multicenter Randomized Phase II Study of Single Agent Efficacy and Optimal Combination Sequence of Everolimus and Pasireotide LAR in Advanced Thyroid Cancer. Cancers 2022, 14, 2639. [Google Scholar] [CrossRef] [PubMed]
- Manohar, P.M.; Beesley, L.J.; Taylor, J.M.; Hesseltine, E.; Haymart, M.R.; Esfandiari, N.H.; Hanauer, D.A.; Worden, F.P. Retrospective Study of Sirolimus and Cyclophosphamide in Patients with Advanced Differentiated Thyroid Cancers. J. Thyroid. Disord. Ther. 2015, 4, 188. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sherman, E.J.; Dunn, L.A.; Ho, A.L.; Baxi, S.S.; Ghossein, R.A.; Fury, M.G.; Haque, S.; Sima, C.S.; Cullen, G.; Fagin, J.A.; et al. Phase 2 Study Evaluating the Combination of Sorafenib and Temsirolimus in the Treatment of Radioactive Iodine-Refractory Thyroid Cancer. Cancer 2017, 123, 4114–4121. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Marotta, V.; Sciammarella, C.; Vitale, M.; Colao, A.; Faggiano, A. The Evolving Field of Kinase Inhibitors in Thyroid Cancer. Crit. Rev. Oncol. Hematol. 2015, 93, 60–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Puliafito, I.; Esposito, F.; Prestifilippo, A.; Marchisotta, S.; Sciacca, D.; Vitale, M.P.; Giuffrida, D. Target Therapy in Thyroid Cancer: Current Challenge in Clinical Use of Tyrosine Kinase Inhibitors and Management of Side Effects. Front. Endocrinol. 2022, 13, 860671. [Google Scholar] [CrossRef] [PubMed]
- Brose, M.S.; Nutting, C.M.; Jarzab, B.; Elisei, R.; Siena, S.; Bastholt, L.; de la Fouchardiere, C.; Pacini, F.; Paschke, R.; Shong, Y.K.; et al. Sorafenib in Radioactive Iodine-Refractory, Locally Advanced or Metastatic Differentiated Thyroid Cancer: A Randomised, Double-Blind, Phase 3 Trial. Lancet Lond. Engl. 2014, 384, 319–328. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schlumberger, M.; Tahara, M.; Wirth, L.J.; Robinson, B.; Brose, M.S.; Elisei, R.; Habra, M.A.; Newbold, K.; Shah, M.H.; Hoff, A.O.; et al. Lenvatinib versus Placebo in Radioiodine-Refractory Thyroid Cancer. N. Engl. J. Med. 2015, 372, 621–630. [Google Scholar] [CrossRef] [Green Version]
- Borson-Chazot, F.; Dantony, E.; Illouz, F.; Lopez, J.; Niccoli, P.; Wassermann, J.; Do Cao, C.; Leboulleux, S.; Klein, M.; Tabarin, A.; et al. Effect of Buparlisib, a Pan-Class I PI3K Inhibitor, in Refractory Follicular and Poorly Differentiated Thyroid Cancer. Thyroid Off. J. Am. Thyroid Assoc. 2018, 28, 1174–1179. [Google Scholar] [CrossRef]
- Li, X.; Li, Z.; Song, Y.; Liu, W.; Liu, Z. The MTOR Kinase Inhibitor CZ415 Inhibits Human Papillary Thyroid Carcinoma Cell Growth. Cell. Physiol. Biochem. Int. J. Exp. Cell. Physiol. Biochem. Pharmacol. 2018, 46, 579–590. [Google Scholar] [CrossRef]
- He, L.; Guo, S.; Zhu, T.; Chen, C.; Xu, K. Down-Regulation of the Mammalian Target of Rapamycin (MTOR) Pathway Mediates the Effects of the Paeonol-Platinum(II) Complex in Human Thyroid Carcinoma Cells and Mouse SW1736 Tumor Xenografts. Med. Sci. Monit. 2020, 26, e922561-1. [Google Scholar] [CrossRef]
- Plews, R.L.; Mohd Yusof, A.; Wang, C.; Saji, M.; Zhang, X.; Chen, C.-S.; Ringel, M.D.; Phay, J.E. A Novel Dual AMPK Activator/MTOR Inhibitor Inhibits Thyroid Cancer Cell Growth. J. Clin. Endocrinol. Metab. 2015, 100, E748–E756. [Google Scholar] [CrossRef]
- Lin, S.F.; Huang, Y.Y.; Lin, J.D.; Chou, T.C.; Hsueh, C.; Wong, R.J. Utility of a PI3K/MTOR Inhibitor (NVP-BEZ235) for Thyroid Cancer Therapy. PLoS ONE 2012, 7, e46726. [Google Scholar] [CrossRef] [Green Version]
- Lin, S.F.; Lin, J.D.; Hsueh, C.; Chou, T.C.; Yeh, C.N.; Chen, M.H.; Wong, R.J. Efficacy of an HSP90 Inhibitor, Ganetespib, in Preclinical Thyroid Cancer Models. Oncotarget 2017, 8, 41294–41304. [Google Scholar] [CrossRef] [PubMed]
- Sekhar, K.R.; Hanna, D.N.; Cyr, S.; Baechle, J.J.; Kuravi, S.; Balusu, R.; Rathmell, K.; Baregamian, N. Glutathione Peroxidase 4 Inhibition Induces Ferroptosis and MTOR Pathway Suppression in Thyroid Cancer. Sci. Rep. 2022, 12, 19396. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Yang, L.; Mao, L.; Zhang, L.; Zhu, Y.; Xu, Y.; Cheng, Y.; Sun, R.; Zhang, Y.; Ke, J.; et al. SGLT2 Inhibition Restrains Thyroid Cancer Growth via G1/S Phase Transition Arrest and Apoptosis Mediated by DNA Damage Response Signaling Pathways. Cancer Cell Int. 2022, 22, 74. [Google Scholar] [CrossRef] [PubMed]
- Lin, S.F.; Lin, J.D.; Chou, T.C.; Huang, Y.Y.; Wong, R.J. Utility of a Histone Deacetylase Inhibitor (PXD101) for Thyroid Cancer Treatment. PLoS ONE 2013, 8, e77684. [Google Scholar] [CrossRef]
- Murugan, A.K.; Alzahrani, A.; Xing, M. Mutations in Critical Domains Confer the Human MTOR Gene Strong Tumorigenicity. J. Biol. Chem. 2013, 288, 6511–6521. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dworakowska, D.; Wlodek, E.; Leontiou, C.A.; Igreja, S.; Cakir, M.; Teng, M.; Prodromou, N.; Góth, M.I.; Grozinsky-Glasberg, S.; Gueorguiev, M.; et al. Activation of RAF/MEK/ERK and PI3K/AKT/MTOR Pathways in Pituitary Adenomas and Their Effects on Downstream Effectors. Endocr. Relat. Cancer 2009, 16, 1329–1338. [Google Scholar] [CrossRef] [Green Version]
- Roof, A.K. Consider the Context: Ras/ERK and PI3K/AKT/MTOR Signaling Outcomes Are Pituitary Cell Type-Specific. Mol. Cell. Endocrinol. 2018, 10, 87–96. [Google Scholar] [CrossRef]
- Alqahtani, A.; Ayesh, H.S.K.; Halawani, H. PIK3CA Gene Mutations in Solid Malignancies: Association with Clinicopathological Parameters and Prognosis. Cancers 2020, 12, 93. [Google Scholar] [CrossRef] [Green Version]
- Samuels, Y.; Wang, Z.; Bardelli, A.; Silliman, N.; Ptak, J.; Szabo, S.; Yan, H.; Gazdar, A.; Powell, S.M.; Riggins, G.J.; et al. High Frequency of Mutations of the PIK3CA Gene in Human Cancers. Science 2004, 304, 554. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pappa, T.; Ahmadi, S.; Marqusee, E.; Johnson, H.L.; Nehs, M.A.; Cho, N.L.; Barletta, J.A.; Lorch, J.H.; Doherty, G.M.; Lindeman, N.I.; et al. Oncogenic Mutations in PI3K/AKT/MTOR Pathway Effectors Associate with Worse Prognosis in BRAFV600E -Driven Papillary Thyroid Cancer Patients. Clin. Cancer Res. 2021, 27, 4256–4264. [Google Scholar] [CrossRef] [PubMed]
- Tavares, C.; Eloy, C.; Melo, M.; Gaspar da Rocha, A.; Pestana, A.; Batista, R.; Bueno Ferreira, L.; Rios, E.; Sobrinho Simões, M.; Soares, P. MTOR Pathway in Papillary Thyroid Carcinoma: Different Contributions of MTORC1 and MTORC2 Complexes for Tumor Behavior and SLC5A5 MRNA Expression. Int. J. Mol. Sci. 2018, 19, 1448. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Manfredi, G.I.; Dicitore, A.; Gaudenzi, G.; Caraglia, M.; Persani, L.; Vitale, G. PI3K/Akt/mTOR signaling in medullary thyroid cancer: A promising molecular target for cancer therapy. Endocrine 2015, 48, 363–370. [Google Scholar] [CrossRef]
- Gild, M.L.; Landa, I.; Ryder, M.; Ghossein, R.A.; Knauf, J.A.; Fagin, J.A. Targeting MTOR in RET Mutant Medullary and Differentiated Thyroid Cancer Cells. Endocr. Relat. Cancer 2013, 20, 659–667. [Google Scholar] [CrossRef] [Green Version]
- Lyra, J.; Vinagre, J.; Batista, R.; Pinto, V.; Prazeres, H.; Rodrigues, F.; Eloy, C.; Sobrinho-Simões, M.; Soares, P. MTOR Activation in Medullary Thyroid Carcinoma with RAS Mutation. Eur. J. Endocrinol. 2014, 171, 633–640. [Google Scholar] [CrossRef] [Green Version]
- Kunstman, J.W.; Juhlin, C.C.; Goh, G.; Brown, T.C.; Stenman, A.; Healy, J.M.; Rubinstein, J.C.; Choi, M.; Kiss, N.; Nelson-Williams, C.; et al. Characterization of the Mutational Landscape of Anaplastic Thyroid Cancer via Whole-Exome Sequencing. Hum. Mol. Genet. 2015, 24, 2318–2329. [Google Scholar] [CrossRef] [Green Version]
- Wagle, N.; Grabiner, B.C.; Van Allen, E.M.; Amin-Mansour, A.; Taylor-Weiner, A.; Rosenberg, M.; Gray, N.; Barletta, J.A.; Guo, Y.; Swanson, S.J.; et al. Response and Acquired Resistance to Everolimus in Anaplastic Thyroid Cancer. N. Engl. J. Med. 2014, 371, 1426–1433. [Google Scholar] [CrossRef] [Green Version]
- Molinaro, E.; Romei, C.; Biagini, A.; Sabini, E.; Agate, L.; Mazzeo, S.; Materazzi, G.; Sellari-Franceschini, S.; Ribechini, A.; Torregrossa, L.; et al. Anaplastic Thyroid Carcinoma: From Clinicopathology to Genetics and Advanced Therapies. Nat. Rev. Endocrinol. 2017, 13, 644–660. [Google Scholar] [CrossRef]
- Ibrahimpasic, T.; Ghossein, R.; Shah, J.P.; Ganly, I. Poorly Differentiated Carcinoma of the Thyroid Gland: Current Status and Future Prospects. Thyroid Off. J. Am. Thyroid Assoc. 2019, 29, 311–321. [Google Scholar] [CrossRef]
- Prete, A.; Borges de Souza, P.; Censi, S.; Muzza, M.; Nucci, N.; Sponziello, M. Update on Fundamental Mechanisms of Thyroid Cancer. Front. Endocrinol. 2020, 11, 102. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions, and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions, or products referred to in the content. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Derwich, A.; Sykutera, M.; Bromińska, B.; Andrusiewicz, M.; Ruchała, M.; Sawicka-Gutaj, N. Clinical Implications of mTOR Expression in Papillary Thyroid Cancer—A Systematic Review. Cancers 2023, 15, 1665. https://doi.org/10.3390/cancers15061665
Derwich A, Sykutera M, Bromińska B, Andrusiewicz M, Ruchała M, Sawicka-Gutaj N. Clinical Implications of mTOR Expression in Papillary Thyroid Cancer—A Systematic Review. Cancers. 2023; 15(6):1665. https://doi.org/10.3390/cancers15061665
Chicago/Turabian StyleDerwich, Aleksandra, Monika Sykutera, Barbara Bromińska, Mirosław Andrusiewicz, Marek Ruchała, and Nadia Sawicka-Gutaj. 2023. "Clinical Implications of mTOR Expression in Papillary Thyroid Cancer—A Systematic Review" Cancers 15, no. 6: 1665. https://doi.org/10.3390/cancers15061665
APA StyleDerwich, A., Sykutera, M., Bromińska, B., Andrusiewicz, M., Ruchała, M., & Sawicka-Gutaj, N. (2023). Clinical Implications of mTOR Expression in Papillary Thyroid Cancer—A Systematic Review. Cancers, 15(6), 1665. https://doi.org/10.3390/cancers15061665