Evaluation of ERBB2 mRNA Expression in HER2-Equivocal (2+) Immunohistochemistry Cases
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Case Selection
2.2. Immunohistochemistry
2.3. mRNA Expression with Xpert® Breast Cancer STRAT4
2.4. Statistical Analysis
3. Results
3.1. Clinicopathological Features
3.2. STRAT4 Analysis
3.3. Diagnostic Accuracy Analysis
3.4. HER2 Results
3.5. Estrogen Receptor Results
3.6. Progesterone Receptor Results
3.7. Ki67 Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Allison, K.H.; Hammond, M.E.H.; Dowsett, M.; McKernin, S.E.; Carey, L.A.; Fitzgibbons, P.L.; Hayes, D.F.; Lakhani, S.R.; Chavez-MacGregor, M.; Perlmutter, J.; et al. Estrogen and Progesterone Receptor Testing in Breast Cancer: ASCO/CAP Guideline Update. J. Clin. Oncol. 2020, 38, 1346–1366. [Google Scholar] [CrossRef] [PubMed]
- Yerushalmi, R.; Woods, R.; Ravdin, P.M.; Hayes, M.M.; Gelmon, K.A. Ki67 in Breast Cancer: Prognostic and Predictive Potential. Lancet Oncol. 2010, 11, 174–183. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, T.O.; Leung, S.C.Y.; Rimm, D.L.; Dodson, A.; Acs, B.; Badve, S.; Denkert, C.; Ellis, M.J.; Fineberg, S.; Flowers, M.; et al. Assessment of Ki67 in Breast Cancer: Updated Recommendations from the International Ki67 in Breast Cancer Working Group. J. Natl. Cancer Inst. 2021, 113, 808–819. [Google Scholar] [CrossRef] [PubMed]
- Wolff, A.C.; Hammond, M.E.H.; Allison, K.H.; Harvey, B.E.; Mangu, P.B.; Bartlett, J.M.S.; Bilous, M.; Ellis, I.O.; Fitzgibbons, P.; Hanna, W.; et al. Human Epidermal Growth Factor Receptor 2 Testing in Breast Cancer: American Society of Clinical Oncology/College of American Pathologists Clinical Practice Guideline Focused Update. Arch. Pathol. Lab. Med. 2018, 142, 1364–1382. [Google Scholar] [CrossRef]
- Grassini, D.; Cascardi, E.; Sarotto, I.; Annaratone, L.; Sapino, A.; Berrino, E.; Marchiò, C. Unusual Patterns of HER2 Expression in Breast Cancer: Insights and Perspectives. Pathobiology 2022, 89, 278–296. [Google Scholar] [CrossRef]
- Egervari, K.; Szollosi, Z.; Nemes, Z. Immunohistochemical Antibodies in Breast Cancer HER2 Diagnostics. Tumor Biol. 2008, 29, 18–27. [Google Scholar] [CrossRef] [PubMed]
- Hwang, H.W.; Hong, S.A.; Nam, S.J.; Kim, S.W.; Lee, J.E.; Yu, J.-H.; Lee, S.K.; Cho, S.Y.; Cho, E.Y. Histologic Analysis According to HER2 Gene Status in HER2 2 + Invasive Breast Cancer: A Study of 280 Cases Comparing ASCO/CAP 2013 and 2018 Guideline Recommendations. Virchows Arch. 2022, 480, 749–758. [Google Scholar] [CrossRef] [PubMed]
- Hoda, R.S.; Brogi, E.; Xu, J.; Ventura, K.; Ross, D.S.; Dang, C.; Robson, M.; Norton, L.; Morrow, M.; Wen, H.Y. Impact of the 2018 American Society of Clinical Oncology/College of American Pathologists HER2 Guideline Updates on HER2 Assessment in Breast Cancer With Equivocal HER2 Immunohistochemistry Results With Focus on Cases With HER2/CEP17 Ratio <2.0 and Average HER2 Copy Number ≥4.0 and <6.0. Arch. Pathol. Lab. Med. 2019, 144, 597–601. [Google Scholar] [CrossRef]
- Park, S.; Park, H.S.; Koo, J.S.; Yang, W.I.; Kim, S.I.; Park, B.-W. Breast Cancers Presenting Luminal B Subtype Features Show Higher Discordant Human Epidermal Growth Factor Receptor 2 Results between Immunohistochemistry and Fluorescence in Situ Hybridization. Cancer 2012, 118, 914–923. [Google Scholar] [CrossRef]
- Fehrenbacher, L.; Cecchini, R.S.; Geyer Jr, C.E.; Rastogi, P.; Costantino, J.P.; Atkins, J.N.; Crown, J.P.; Polikoff, J.; Boileau, J.-F.; Provencher, L.; et al. NSABP B-47/NRG Oncology Phase III Randomized Trial Comparing Adjuvant Chemotherapy With or Without Trastuzumab in High-Risk Invasive Breast Cancer Negative for HER2 by FISH and With IHC 1+ or 2+. J. Clin. Oncol. 2020, 38, 444–453. [Google Scholar] [CrossRef] [PubMed]
- Modi, S.; Jacot, W.; Yamashita, T.; Sohn, J.; Vidal, M.; Tokunaga, E.; Tsurutani, J.; Ueno, N.T.; Prat, A.; Chae, Y.S.; et al. Trastuzumab Deruxtecan in Previously Treated HER2-Low Advanced Breast Cancer. N. Engl. J. Med. 2022, 387, 9–20. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Katerji, H.; Turner, B.M.; Hicks, D.G. HER2-Low Breast Cancers. Am. J. Clin. Pathol. 2022, 157, 328–336. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.C.; Wong, W.; Ho, K.E.; Chu, V.C.; Rizo, A.; Davenport, S.; Kelly, D.; Makar, R.; Jassem, J.; Duchnowska, R.; et al. Comparison of Central Laboratory Assessments of ER, PR, HER2, and Ki67 by IHC/FISH and the Corresponding MRNAs (ESR1, PGR, ERBB2, and MKi67) by RT-QPCR on an Automated, Broadly Deployed Diagnostic Platform. Breast Cancer Res. Treat. 2018, 172, 327–338. [Google Scholar] [CrossRef] [PubMed]
- Erber, R.; Hartmann, A.; Fasching, P.A.; Ruebner, M.; Stöhr, R.; Beckmann, M.W.; Zentgraf, M.; Popp, V.; Weidler, J.; Simon, I.; et al. Reproducibility of MRNA-Based Testing of ESR1, PGR, ERBB2, and MKI67 Expression in Invasive Breast Cancer-A Europe-Wide External Quality Assessment. Cancers 2021, 13, 4718. [Google Scholar] [CrossRef] [PubMed]
- Janeva, S.; Parris, T.Z.; Nasic, S.; De Lara, S.; Larsson, K.; Audisio, R.A.; Olofsson Bagge, R.; Kovács, A. Comparison of Breast Cancer Surrogate Subtyping Using a Closed-System RT-QPCR Breast Cancer Assay and Immunohistochemistry on 100 Core Needle Biopsies with Matching Surgical Specimens. BMC Cancer 2021, 21, 439. [Google Scholar] [CrossRef]
- Mugabe, M.; Ho, K.E.; Ruhangaza, D.; Milner, D.; Rugwizangoga, B.; Chu, V.C.; Wu, N.C.; Rizo, A.; Weidler, J.M.; Wong, W.; et al. Use of the Xpert Breast Cancer STRAT4 for Biomarker Evaluation in Tissue Processed in a Developing Country. Am. J. Clin. Pathol. 2021, 156, 766–776. [Google Scholar] [CrossRef]
- Filipits, M.; Rudas, M.; Singer, C.F.; Fitzal, F.; Bago-Horvath, Z.; Greil, R.; Balic, M.; Lax, S.F.; Halper, S.; Hulla, W.; et al. ESR1, PGR, ERBB2, and MKi67 MRNA Expression in Postmenopausal Women with Hormone Receptor-Positive Early Breast Cancer: Results from ABCSG Trial 6. ESMO Open 2021, 6, 100228. [Google Scholar] [CrossRef]
- Gupta, S.; Mani, N.R.; Carvajal-Hausdorf, D.E.; Bossuyt, V.; Ho, K.; Weidler, J.; Wong, W.; Rhees, B.; Bates, M.; Rimm, D.L. Macrodissection Prior to Closed System RT-QPCR Is Not Necessary for Estrogen Receptor and HER2 Concordance with IHC/FISH in Breast Cancer. Lab. Investig. 2018, 98, 1076–1083. [Google Scholar] [CrossRef]
- Wasserman, B.E.; Carvajal-Hausdorf, D.E.; Ho, K.; Wong, W.; Wu, N.; Chu, V.C.; Lai, E.W.; Weidler, J.M.; Bates, M.; Neumeister, V.; et al. High Concordance of a Closed-System, RT-QPCR Breast Cancer Assay for HER2 MRNA, Compared to Clinically Determined Immunohistochemistry, Fluorescence in Situ Hybridization, and Quantitative Immunofluorescence. Lab. Investig. 2017, 97, 1521–1526. [Google Scholar] [CrossRef]
- R Core Team. R: A Language and Environment for Statistical Computing. Available online: https://www.R-project.org/ (accessed on 22 August 2022).
- Wolff, A.C.; Hammond, M.E.H.; Hicks, D.G.; Dowsett, M.; McShane, L.M.; Allison, K.H.; Allred, D.C.; Bartlett, J.M.S.; Bilous, M.; Fitzgibbons, P.; et al. Recommendations for Human Epidermal Growth Factor Receptor 2 Testing in Breast Cancer: American Society of Clinical Oncology/College of American Pathologists Clinical Practice Guideline Update. J. Clin. Oncol. 2013, 31, 3997–4013. [Google Scholar] [CrossRef]
- Hanna, W.M.; Rüschoff, J.; Bilous, M.; Coudry, R.A.; Dowsett, M.; Osamura, R.Y.; Penault-Llorca, F.; van de Vijver, M.; Viale, G. HER2 in Situ Hybridization in Breast Cancer: Clinical Implications of Polysomy 17 and Genetic Heterogeneity. Mod. Pathol. 2014, 27, 4–18. [Google Scholar] [CrossRef]
- Downs-Kelly, E.; Yoder, B.J.; Stoler, M.; Tubbs, R.R.; Skacel, M.; Grogan, T.; Roche, P.; Hicks, D.G. The Influence of Polysomy 17 on HER2 Gene and Protein Expression in Adenocarcinoma of the Breast: A Fluorescent In Situ Hybridization, Immunohistochemical, and Isotopic MRNA In Situ Hybridization Study. Am. J. Surg. Pathol. 2005, 29, 1221–1227. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Ma, L.; Liu, D.; Yang, Z.; Yang, C.; Hu, Z.; Chen, W.; Yang, Z.; Chen, S.; Zhang, Z. Impact of Polysomy 17 on HER2 Testing of Invasive Breast Cancer Patients. Int. J. Clin. Exp. Pathol. 2013, 7, 163–173. [Google Scholar]
- Gordian-Arroyo, A.M.; Zynger, D.L.; Tozbikian, G.H. Impact of the 2018 ASCO/CAP HER2 Guideline Focused Update. Am. J. Clin. Pathol. 2019, 152, 17–26. [Google Scholar] [CrossRef]
- McLemore, L.E.; Albarracin, C.T.; Gruschkus, S.K.; Bassett, R.L.; Wu, Y.; Dhamne, S.; Yim, I.; Lin, K.; Bedrosian, I.; Sneige, N.; et al. HER2 Testing in Breast Cancers: Comparison of Assays and Interpretation Using ASCO/CAP 2013 and 2018 Guidelines. Breast Cancer Res. Treat. 2021, 187, 95–104. [Google Scholar] [CrossRef]
- Atallah, N.M.; Toss, M.S.; Green, A.R.; Mongan, N.P.; Ball, G.; Rakha, E.A. Refining the Definition of HER2-Low Class in Invasive Breast Cancer. Histopathology 2022, 81, 770–785. [Google Scholar] [CrossRef]
- Kornaga, E.N.; Klimowicz, A.C.; Guggisberg, N.; Ogilvie, T.; Morris, D.G.; Webster, M.; Magliocco, A.M. A Systematic Comparison of Three Commercial Estrogen Receptor Assays in a Single Clinical Outcome Breast Cancer Cohort. Mod. Pathol. 2016, 29, 799–809. [Google Scholar] [CrossRef] [PubMed]
- Najjar, S.; Allison, K.H. Updates on Breast Biomarkers. Virchows Arch. 2022, 480, 163–176. [Google Scholar] [CrossRef]
- Raghav, K.P.S.; Hernandez-Aya, L.F.; Lei, X.; Chavez-Macgregor, M.; Meric-Bernstam, F.; Buchholz, T.A.; Sahin, A.; Do, K.-A.; Hortobagyi, G.N.; Gonzalez-Angulo, A.M. Impact of Low Estrogen/Progesterone Receptor Expression on Survival Outcomes in Breast Cancers Previously Classified as Triple Negative Breast Cancers. Cancer 2012, 118, 1498–1506. [Google Scholar] [CrossRef] [PubMed]
- Robin, X.; Turck, N.; Hainard, A.; Tiberti, N.; Lisacek, F.; Sanchez, J.-C.; Müller, M. PROC: An Open-Source Package for R and S+ to Analyze and Compare ROC Curves. BMC Bioinform. 2011, 12, 77. [Google Scholar] [CrossRef]
Biomarker | Antibody | Company | Concentration |
---|---|---|---|
ER | EP1 clone | Agilent | Ready to use |
PR | PgR clone | Agilent | 1:50 |
HER2 | HercepTest | Agilent | Ready to use |
Ki67 | Mib-1 | Agilent | Ready to use |
Total | Percentage | ||
---|---|---|---|
260 | 100 | ||
Age, median (IQR) | 58.9 (15.9) | 256 | |
Histological grade | 1 | 48 | 18.5 |
2 | 144 | 55.4 | |
3 | 68 | 26.2 | |
Histological type | IBC, no special type | 211 | 81.2 |
Lobular carcinoma | 32 | 12.3 | |
Other | 17 | 6.5 | |
ER | Positive | 210 | 80.8 |
Low | 5 | 1.9 | |
Negative | 45 | 17.3 | |
PR | Positive | 166 | 63.8 |
Negative | 94 | 36.2 | |
HER2 | Positive (3+) | 31 | 11.9 |
Equivocal 2+ (amplified) | 30 | 11.5 | |
Equivocal 2+ (no amplified) | 82 | 31.5 | |
Negative (1+) | 46 | 17.7 | |
Negative (0+) | 71 | 27.3 | |
Ki67 1 | High-proliferative | 86 | 33.1 |
Low-proliferative | 173 | 66.9 |
Total | Percentage | ||
---|---|---|---|
ER | Positive | 209 | 80.4 |
Negative | 43 | 16.5 | |
Fail | 8 | 3.1 | |
PR | Positive | 191 | 73.5 |
Negative | 61 | 73.5 | |
Fail | 8 | 3.1 | |
HER2 | Positive | 61 | 23.5 |
Negative | 191 | 73.5 | |
Fail | 8 | 3.1 | |
Ki67 | Positive | 181 | 69.6 |
Negative | 71 | 27.3 | |
Fail | 8 | 3.1 |
Biomarker | Group | Concordat | Discordant | Total | ||
---|---|---|---|---|---|---|
Positive | Negative | IHC Positive | IHC Negative | |||
HER2 | Globally | 50 | 180 | 11 | 11 | 252 |
HER2 2+ | 20 | 68 | 10 | 11 | 109 | |
No-HER2 2+ | 30 | 111 | 1 | 0 | 143 | |
HER2 0+ | 0 | 70 | 0 | 0 | 70 | |
HER2 1+ | 0 | 42 | 0 | 0 | 42 | |
HER2 3+ | 30 | 0 | 1 | 0 | 31 | |
ER | 204 | 39 | 4 | 5 | 252 | |
PR | 156 | 56 | 5 | 35 | 252 | |
Ki67 | 78 | 68 | 3 | 102 | 251 |
Biomarker | Group | Accuracy | Sensitivity | Specificity | Positive Predictive Value | Negative Predictive Value |
---|---|---|---|---|---|---|
HER2 | Globally | 91.3 | 82.0 | 94.2 | 82.0 | 94.2 |
HER2 2+ | 80.7 | 66.7 | 86.1 | 64.5 | 87.2 | |
No-HER2 2+ | 99.3 | 96.8 | 100 | 100 | 99.1 | |
HER2 0+ | - | - | 100 | - | 100 | |
HER2 1+ | - | - | 100 | - | 100 | |
HER2 3+ | - | 96.8 | - | 100 | - | |
ER | 96.4 | 98.1 | 88.6 | 97.6 | 90.7 | |
PR | 84.1 | 96.9 | 61.5 | 81.7 | 91.8 | |
Ki67 | 58.2 | 96.3 | 40.0 | 43.3 | 95.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Carretero-Barrio, I.; Caniego-Casas, T.; Rosas, M.; Sánchez, M.C.; Martínez-Jáñez, N.; Chiva, M.; Sarrió, D.; Moreno-Bueno, G.; Palacios, J.; Pérez-Mies, B. Evaluation of ERBB2 mRNA Expression in HER2-Equivocal (2+) Immunohistochemistry Cases. Cancers 2023, 15, 1688. https://doi.org/10.3390/cancers15061688
Carretero-Barrio I, Caniego-Casas T, Rosas M, Sánchez MC, Martínez-Jáñez N, Chiva M, Sarrió D, Moreno-Bueno G, Palacios J, Pérez-Mies B. Evaluation of ERBB2 mRNA Expression in HER2-Equivocal (2+) Immunohistochemistry Cases. Cancers. 2023; 15(6):1688. https://doi.org/10.3390/cancers15061688
Chicago/Turabian StyleCarretero-Barrio, Irene, Tamara Caniego-Casas, Marta Rosas, María Concepción Sánchez, Noelia Martínez-Jáñez, Miguel Chiva, David Sarrió, Gema Moreno-Bueno, José Palacios, and Belén Pérez-Mies. 2023. "Evaluation of ERBB2 mRNA Expression in HER2-Equivocal (2+) Immunohistochemistry Cases" Cancers 15, no. 6: 1688. https://doi.org/10.3390/cancers15061688
APA StyleCarretero-Barrio, I., Caniego-Casas, T., Rosas, M., Sánchez, M. C., Martínez-Jáñez, N., Chiva, M., Sarrió, D., Moreno-Bueno, G., Palacios, J., & Pérez-Mies, B. (2023). Evaluation of ERBB2 mRNA Expression in HER2-Equivocal (2+) Immunohistochemistry Cases. Cancers, 15(6), 1688. https://doi.org/10.3390/cancers15061688