Extracellular Nicotinamide Phosphoribosyltransferase as a Surrogate Marker of Prominent Malignant Potential in Colonic Polyps: A 2-Year Prospective Study
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Study Design
2.3. Polypectomy or Surgical Removal of Polyps
2.4. Immunohistochemical (IHC) Studies of Colonic Polyps
2.5. Statistical Analysis
2.6. Informed Consent
3. Results
3.1. Baseline Characteristics of Enrolled Patients
3.2. Baseline Associations of Various Variables
3.3. Genetic Study
3.4. Immunohistochemistry (IHC) of eNAMPT in Colonic Polyps and PB Smears
3.5. Alterations in eNAMPT Levels after Polypectomy
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Ferlay, J.; Shin, H.-R.; Bray, F.; Forman, D.; Mathers, C.; Parkin, D.M. Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int. J. Cancer 2010, 127, 2893–2917. [Google Scholar] [CrossRef] [PubMed]
- Lieberman, D.A.; Rex, D.K.; Winawer, S.J.; Giardiello, F.M.; Johnson, D.A.; Levin, T.R. Guidelines for Colonoscopy Surveillance After Screening and Polypectomy: A Consensus Update by the US Multi-Society Task Force on Colorectal Cancer. Gastroenterology 2012, 143, 844–857. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brenner, H.; Hoffmeister, M.; Stegmaier, C.; Brenner, G.; Altenhofen, L.; Haug, U. Risk of progression of advanced adenomas to colorectal cancer by age and sex: Estimates based on 840 149 screening colonoscopies. Gut 2007, 56, 1585–1589. [Google Scholar] [CrossRef] [Green Version]
- Bond, J.H. Polyp guideline: Diagnosis, treatment, and surveillance for patients with colorectal polyps. Practice Parameters Committee of the American College of Gastroenterology. Am. J. Gastroenterol. 2000, 95, 3053–3063. [Google Scholar] [CrossRef]
- Rex, D.K.; Cutler, C.S.; Lemmel, G.T.; Rahmani, E.Y.; Clark, D.W.; Helper, D.J.; Lehman, G.A.; Mark, D.G. Colonoscopic miss rates of adenomas determined by back-to-back colonoscopies. Gastroenterology 1997, 112, 24–28. [Google Scholar] [CrossRef]
- Robertson, D.J.; Lieberman, D.A.; Winawer, S.J.; Ahnen, D.J.; Baron, J.A.; Schatzkin, A.; Cross, A.J.; Zauber, A.G.; Church, T.R.; Lance, P.; et al. Colorectal cancers soon after colonoscopy: A pooled multicohort analysis. Gut 2013, 63, 949–956. [Google Scholar] [CrossRef] [Green Version]
- Waye, J.D.; Bashkoff, E. Total colonoscopy: Is it always possible? Gastrointest. Endosc. 1991, 37, 152–154. [Google Scholar] [CrossRef]
- Shah, R.; Jones, E.; Vidart, V.; Kuppen, P.J.K.; Conti, J.A.; Francis, N.K. Biomarkers for Early Detection of Colorectal Cancer and Polyps: Systematic Review. Cancer Epidemiol. Biomark. Prev. 2014, 23, 1712–1728. [Google Scholar] [CrossRef] [Green Version]
- Chen, T.-H.; Hsu, C.-M.; Hsu, H.-C.; Chiu, C.-T.; Su, M.-Y.; Chu, Y.-Y.; Chang, M.-L. Plasminogen activator inhibitor-1 is associated with the metabolism and development of advanced colonic polyps. Transl. Res. 2018, 200, 43–53. [Google Scholar] [CrossRef]
- Garten, A.; Schuster, S.; Penke, M.; Gorski, T.; de Giorgis, T.; Kiess, W. Physiological and pathophysiological roles of NAMPT and NAD metabolism. Nat. Rev. Endocrinol. 2015, 11, 535–546. [Google Scholar] [CrossRef]
- Imai, S. “Clocks” in the NAD World: NAD as a metabolic oscillator for the regulation of metabolism and aging. Biochim. Biophys Acta. 2010, 1804, 1584–1590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gallí, M.; Van Gool, F.; Rongvaux, A.; Andris, F.; Leo, O. The Nicotinamide Phosphoribosyltransferase: A Molecular Link between Metabolism, Inflammation, and Cancer. Cancer Res. 2010, 70, 8–11. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ho, C.; van der Veer, E.; Akawi, O.; Pickering, J.G. SIRT1 markedly extends replicative lifespan if the NAD+salvage pathway is enhanced. FEBS Lett. 2009, 583, 3081–3085. [Google Scholar] [CrossRef] [Green Version]
- van der Veer, E.; Ho, C.; O’Neil, C.; Barbosa, N.; Scott, R.; Cregan, S.P.; Pickering, J.G. Extension of human cell lifespan by nicotinamide phosphoribosyltransferase. J. Biol. Chem. 2007, 282, 10841–10845. [Google Scholar] [CrossRef] [Green Version]
- Romacho, T.; Azcutia, V.; Vázquez-Bella, M.; Matesanz, N.; Cercas, E.; Nevado, J.; Carraro, R.; Rodríguez-Mañas, L.; Sánchez-Ferrer, C.F.; Peiró, C. Extracellular PBEF/NAMPT/visfatin activates pro-inflammatory signalling in human vascular smooth muscle cells through nicotinamide phosphoribosyltransferase activity. Diabetologia 2009, 52, 2455–2463. [Google Scholar] [CrossRef] [Green Version]
- Kitani, T.; Okuno, S.; Fujisawa, H. Growth phase-dependent changes in the subcellular localization of pre-B-cell colony-enhancing factor1. FEBS Lett. 2003, 544, 74–78. [Google Scholar] [CrossRef] [Green Version]
- Revollo, J.R.; Körner, A.; Mills, K.F.; Satoh, A.; Wang, T.; Garten, A.; Dasgupta, B.; Sasaki, Y.; Wolberger, C.; Townsend, R.R. Nampt/PBEF/visfatin regulates insulin secretion in β cells as a systemic NAD biosynthetic enzyme. Cell Metab. 2007, 6, 363–375. [Google Scholar] [CrossRef] [Green Version]
- Sun, G.; Bishop, J.; Khalili, S.; Vasdev, S.; Gill, V.; Pace, D.; Fitzpatrick, D.; Randell, E.; Xie, Y.-G.; Zhang, H. Serum visfatin concentrations are positively correlated with serum triacylglycerols and down-regulated by overfeeding in healthy young men. Am. J. Clin. Nutr. 2007, 85, 399–404. [Google Scholar] [CrossRef] [Green Version]
- Rahbar, A.; Nabipour, I. The Relationship Between Dietary Lipids and Serum Visfatin and Adiponectin Levels in Postmenopausal Women. Endocrine, Metab. Immune Disord.—Drug Targets 2014, 14, 84–92. [Google Scholar] [CrossRef]
- Tsouma, I.; Kouskouni, E.; Demeridou, S.; Boutsikou, M.; Hassiakos, D.; Chasiakou, A.; Hassiakou, S.; Baka, S. Correlation of visfatin levels and lipoprotein lipid profiles in women with polycystic ovary syndrome undergoing ovarian stimulation. Gynecol. Endocrinol. 2014, 30, 516–519. [Google Scholar] [CrossRef]
- Chen, L.; Liu, W.; Lai, S.; Li, Y.; Wang, X.; Zhang, H. Insulin resistance, serum visfatin, and adiponectin levels are associated with metabolic disorders in chronic hepatitis C virus-infected patients. Eur. J. Gastroenterol. Hepatol. 2013, 25, 935–941. [Google Scholar] [CrossRef]
- Chang, Y.C.; Chang, T.J.; Lee, W.J.; Chuang, L.-M. The relationship of visfatin/pre-B-cell colony-enhancing factor/nicotinamide phosphoribosyltransferase in adipose tissue with inflammation, insulin resistance, and plasma lipids. Metabolism 2010, 59, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Grolla, A.A.; Travelli, C.; Genazzani, A.A.; Sethi, J.K. Extracellular nicotinamide phosphoribosyltransferase, a new cancer metabokine. Br. J. Pharmacol. 2016, 173, 2182–2194. [Google Scholar] [CrossRef] [Green Version]
- Ocvirk, S.; O’Keefe, S.J. Dietary fat, bile acid metabolism and colorectal cancer. Semin. Cancer Biol. 2021, 73, 347–355. [Google Scholar] [CrossRef] [PubMed]
- Chattopadhyay, I.; Gundamaraju, R.; Jha, N.K.; Gupta, P.K.; Dey, A.; Mandal, C.C.; Ford, B.M. Interplay between Dysbiosis of Gut Microbiome, Lipid Metabolism, and Tumorigenesis: Can Gut Dysbiosis Stand as a Prognostic Marker in Cancer? Dis. Markers 2022, 2022, 2941248. [Google Scholar] [CrossRef]
- Motilva, V.; García-Mauriño, S.; Talero, E.; Illanes, M. New paradigms in chronic intestinal inflammation and colon cancer: Role of melatonin. J. Pineal Res. 2011, 51, 44–60. [Google Scholar] [CrossRef] [PubMed]
- Yang, J.; Zhang, K.; Song, H.; Wu, M.; Li, J.; Yong, Z.; Jiang, S.; Kuang, X.; Zhang, T. Visfatin is involved in promotion of colorectal carcinoma malignancy through an inducing EMT mechanism. Oncotarget 2016, 7, 32306–32317. [Google Scholar] [CrossRef] [Green Version]
- Li, H.; Bai, E.; Zhang, Y.; Jia, Z.; He, S.; Fu, J. Role of Nampt and Visceral Adiposity in Esophagogastric Junction Adenocarcinoma. J. Immunol. Res. 2017, 2017, 3970605. [Google Scholar] [CrossRef] [Green Version]
- Grolla, A.A.; Torretta, S.; Gnemmi, I.; Amoruso, A.; Orsomando, G.; Gatti, M.; Caldarelli, A.; Lim, D.; Penengo, L.; Brunelleschi, S.; et al. Nicotinamide phosphoribosyltransferase (NAMPT/PBEF/visfatin) is a tumoural cytokine released from melanoma. Pigment. Cell Melanoma Res. 2015, 28, 718–729. [Google Scholar] [CrossRef]
- Audrito, V.; Serra, S.; Brusa, D.; Mazzola, F.; Arruga, F.; Vaisitti, T.; Coscia, M.; Maffei, R.; Rossi, D.; Wang, T.; et al. Extracellular nicotinamide phosphoribosyltransferase (NAMPT) promotes M2 macrophage polarization in chronic lymphocytic leukemia. Blood 2015, 125, 111–123. [Google Scholar] [CrossRef] [Green Version]
- Rosti, V.; Campanelli, R.; Massa, M.; Viarengo, G.; Villani, L.; Poletto, V.; Bonetti, E.; Catarsi, P.; Magrini, U.; Grolla, A.A.; et al. Increased plasma nicotinamide phosphoribosyltransferase is associated with a hyperproliferative phenotype and restrains disease progression in MPN-associated myelofibrosis. Am. J. Hematol. 2016, 91, 709–713. [Google Scholar] [CrossRef]
- Vora, M.; Ansari, J.; Shanti, R.M.; Veillon, D.; Cotelingam, J.; Coppola, D.; Shackelford, R.E. Increased Nicotinamide Phosphoribosyltransferase in Rhabdomyosarcomas and Leiomyosarcomas Compared to Skeletal and Smooth Muscle Tissue. Anticancer. Res. 2016, 36, 503–507. [Google Scholar] [PubMed]
- Kumar, A.; Shenoy, V.; Buckley, M.C.; Durbin, L.; Mackey, J.; Mone, A.; Swaminath, A. Endoscopic Disease Activity and Biologic Therapy Are Independent Predictors of Suboptimal Bowel Preparation in Patients with Inflammatory Bowel Disease Undergoing Colonoscopy. Dig. Dis. Sci. 2022, 67, 4851–4865. [Google Scholar] [CrossRef]
- Hung, S.-Y.; Chen, H.-C.; Chen, W.T.-L. A Randomized Trial Comparing the Bowel Cleansing Efficacy of Sodium Picosulfate/Magnesium Citrate and Polyethylene Glycol/Bisacodyl (The Bowklean Study). Sci. Rep. 2020, 10, 5604. [Google Scholar] [CrossRef] [Green Version]
- Ooi, D.S.Q.; Ong, S.G.; Heng, C.K.; Loke, K.Y.; Lee, Y.S. In-vitro function of upstream visfatin polymorphisms that are associated with adverse cardiometabolic parameters in obese children. BMC Genom. 2016, 17, 974. [Google Scholar] [CrossRef] [Green Version]
- Stastny, J.; Bienertova-Vasku, J.; Tomandl, J.; Tomandlova, M.; Zlamal, F.; Forejt, M.; Splichal, Z.; Vasku, A. Association of genetic variability in selected regions in visfatin (NAMPT) gene with anthropometric parameters and dietary composition in obese and non-obese Central-European population. Diabetes Metab. Syndr. Clin. Res. Rev. 2013, 7, 166–171. [Google Scholar] [CrossRef]
- Jian, W.-X.; Luo, T.-H.; Gu, Y.-Y.; Zhang, H.-L.; Zheng, S.; Dai, M.; Han, J.-F.; Zhao, Y.; Li, G.; Luo, M. The visfatin gene is associated with glucose and lipid metabolism in a Chinese population. Diabet. Med. 2006, 23, 967–973. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Zhou, B.; Zhang, P.; Zhang, Z.; Chen, P.; Pu, Y.; Song, Y.; Zhang, L. Genetic variants in NAMPT predict bladder cancer risk and prognosis in individuals from southwest Chinese Han group. Tumor Biol. 2013, 35, 4031–4040. [Google Scholar] [CrossRef] [PubMed]
- Benjamini, Y.; Hochberg, Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. R. Stat. Soc. Ser. B Methodol. 1995, 57, 289–300. [Google Scholar] [CrossRef]
- Guo, S.W.; Thompson, E.A. Performing the Exact Test of Hardy-Weinberg Proportion for Multiple Alleles. Biometrics 1992, 48, 361. [Google Scholar] [CrossRef]
- Chang, M.-L.; Lin, Y.-S.; Hsu, C.-L.; Chien, R.-N.; Fann, C.S. Accelerated cardiovascular risk after viral clearance in hepatitis C patients with the NAMPT-rs61330082 TT genotype: An 8-year prospective cohort study. Virulence 2021, 12, 270–280. [Google Scholar] [CrossRef]
- Sung, J.J.Y.; Lau, J.Y.W.; Young, G.P.; Sano, Y.; Chiu, H.-M.; Byeon, J.-S.; Yeoh, K.-G.; Goh, K.-L.; Sollano, J.; Rerknimitr, R.; et al. Asia Pacific consensus recommendations for colorectal cancer screening. Gut 2008, 57, 1166–1176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Laird-Fick, H.S.; Chahal, G.; Olomu, A.; Gardiner, J.; Richard, J.; Dimitrov, N. Colonic polyp histopathology and location in a community-based sample of older adults. BMC Gastroenterol. 2016, 16, 90. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pommergaard, H.-C.; Burcharth, J.; Rosenberg, J.; Raskov, H. The association between location, age and advanced colorectal adenoma characteristics: A propensity-matched analysis. Scand. J. Gastroenterol. 2016, 52, 1–4. [Google Scholar] [CrossRef]
- Kim, E.C.; Lance, P. Colorectal polyps and their relationship to cancer. Gastroenterol. Clin. N. Am. 1997, 26, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Mouchemore, K.A.; Anderson, R.L.; Hamilton, J.A. Neutrophils, G-CSF and their contribution to breast cancer metastasis. FEBS J. 2017, 285, 665–679. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fazeli, M.S.; Dashti, H.; Akbarzadeh, S.; Assadi, M.; Aminian, A.; Keramati, M.R.; Nabipour, I. Circulating levels of novel adipocytokines in patients with colorectal cancer. Cytokine 2013, 62, 81–85. [Google Scholar] [CrossRef] [Green Version]
- Chung, S.M.; Kim, K.O.; Cho, I.H.; Kim, T.N. Clinicopathological analysis and risk factors of advanced colorectal neoplasms incidentally detected by 18F-FDG PET-CT. Eur. J. Gastroenterol. Hepatol. 2017, 29, 407–413. [Google Scholar] [CrossRef]
- Kim, J.Y.; Jung, Y.S.; Park, J.H.; Kim, H.J.; Cho, Y.K.; Sohn, C.I.; Jeon, W.K.; Kim, B.I.; Choi, K.Y.; Park, N.I. Different risk factors for advanced colorectal neoplasm in young adults. World J. Gastroenterol. 2016, 22, 3611–3620. [Google Scholar] [CrossRef]
- Cappell, M.S. Safety and clinical efficacy of flexible sigmoidoscopy and colonoscopy for gastrointestinal bleeding after myocardial infarction. A six-year study of 18 consecutive lower endoscopies at two university teaching hospitals. Dig. Dis. Sci. 1994, 39, 473–480. [Google Scholar] [CrossRef]
- Chen, J.; Sysol, J.R.; Singla, S.; Zhao, S.; Yamamura, A.; Valdez-Jasso, D.; Abbasi, T.; Shioura, K.M.; Sahni, S.; Reddy, V.; et al. Nicotinamide Phosphoribosyltransferase Promotes Pulmonary Vascular Remodeling and Is a Therapeutic Target in Pulmonary Arterial Hypertension. Circulation 2017, 135, 1532–1546. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jacobson-Brown, P.; Neuman, M.G. Colorectal polyposis and immune-based therapies. Can. J. Gastroenterol. 2004, 18, 239–249. [Google Scholar] [CrossRef] [PubMed]
- Kong, M.Y.; Li, L.Y.; Lou, Y.M.; Chi, H.Y.; Wu, J.J. Chinese herbal medicines for prevention and treatment of colorectal cancer: From molecular mechanisms to potential clinical applica-tions. J. Integr. Med. 2020, 18, 369–384. [Google Scholar] [CrossRef]
- Zhu, L.Q.; Zhang, L.; Zhang, J.; Chang, G.L.; Liu, G.; Yu, D.D.; Yu, X.M.; Zhao, M.S.; Ye, B. Evodiamine inhibits high-fat diet-induced coli-tis-associated cancer in mice through regulating the gut microbiota. J. Integr. Med. 2021, 19, 56–65. [Google Scholar] [CrossRef]
- Zhou, H.; Wang, Y.; Zhang, Z.; Xiong, L.; Liu, Z.; Wen, Y. A novel prognostic gene set for colon adenocarcinoma relative to the tumor microenvironment, chemotherapy, and immune therapy. Front. Genet. 2023, 13, 975404. [Google Scholar] [CrossRef] [PubMed]
- Zweig, M.H.; Campbell, G. Receiver-operating characteristic (ROC) plots: A fundamental evaluation tool in clinical medicine. Clin. Chem. 1993, 39, 561–577. [Google Scholar] [CrossRef]
- Westreich, D. Berkson’s bias, selection bias, and missing data. Epidemiology 2012, 23, 159–164. [Google Scholar] [CrossRef] [Green Version]
Baseline Variables | Total (n = 532) |
---|---|
Male sex, n (%) | 379 (71.2) |
Female sex, n (%) | 153 (28.8) |
Age (yr) | 57.00/55.75 ± 10.53 (24–85) |
BMI | 25.33/25.37 ± 3.55 (15.6–35.1) |
HOMA-IR | 1.19/1.55 ± 1.57 (0.16–13.87) |
TC (mg/dL) | 193.0/194.0 ± 35.14 (104–314) |
TGs (mg/dL) | 116.0/133.2 ± 75.2 (25–630) |
HDL-C (mg/dL) | 45.00/46.58 ± 11.36 (22–85) |
TG/HDL-C | 2.695/3.211 ± 2.279 (0.42–14.00) |
UA (mg/dL) | 6.00/6.010 ± 1.499 (2.8–11.0) |
NLR | 1.81/2.053 ± 1.349 (0.44–18.2) |
HS-CRP (mg/dL) | 1.340/2.925 ± 7.640 (0.2–109.91) |
CEA (ng/mL) | 1.24/1.85 ± 4.49 (1–65) |
Platelet count (103/µL) | 227.0/229.4 ± 59.97 (41.00–498.0) |
eNAMPT (ng/mL) | 3.39/4.14 ± 2.86 (0.35–33.43) |
ALT (U/L) | 27.00/32.37 ± 24.78 (7–196) |
eGFR (mL/min/1.73 m2) | 87.93/94.17 ± 72.81 (13.0–120) |
Polyp size and number | |
Size of the largest polyp (cm) | 1.20/1.53 ± 1.45 (0–18.0) |
Number, n (%) | 2.00/2.02 ± 0.881 (1–3) |
N = 0 | 22 (4.1) |
N = 1 | 199 (37.4) |
N = 2 | 140 (26.3) |
N = 3 | 171 (32.1) |
Polyp pathology, n (%) | |
No polyp | 16 (3.0) |
Inflammation, muscle prolapse, or juvenile polyp | 17 (3.2) |
Hyperplastic polyp | 35 (6.6) |
Sessile serrated adenoma | 26 (4.9) |
Tubular adenoma | 291 (54.7) |
Tubulovillous adenoma | 67 (12.6) |
Villous adenoma | 18 (3.4) |
Adenoma with high-grade dysplasia | 33 (6.2) |
Adenocarcinoma | 29 (5.5) |
Polyp location (largest one), n (%) | |
Right colon (ascending and transverse colons and cecum) | 205 (38.5) |
Left colon (rectum, sigmoid, and descending colon), n (%) | 327 (61.5) |
NAMPT-associated SNP genotype, n (%) | |
NAMPT-rs2302559 (CC/CT/TT) | 451 (84.7)/78 (14.6)/3 (0.6) |
NAMPT-rs61330082 (CC/CT/TT) | 121(22.7)/293 (55.1)/118 (22.2) |
NAMPT-rs10953502 (CC/CT/TT) | 3 (0.6)/101 (19.0)/428 (80.8) |
NAMPT-rs2058539 (CC/CA/AA) | 3 (0.6)/100 (18.8)/429 (80.6) |
eNAMPT (ng/mL) | ||||
---|---|---|---|---|
Univariate Analysis | Multivariate Analysis | |||
Variants | 95% CI of Estimated β (Estimated β) | p Values | 95% CI of Estimated β (Estimated β) | p Values |
Sex (Male) | −0.835–0.674 (−0.147) | 0.674 | ||
Age (yr) | −0.016–0.041 (0.013) | 0.377 | ||
BMI | −0.046–0.145 (0.049) | 0.308 | ||
HOMA-IR | −0.384–0.451 (0.033) | 0.874 | ||
TC (mg/dL) | 0.002–0.02 (0.011) | 0.017 * | 0.002–0.021 (0.011) | 0.019 * |
TGs (mg/dL) | −0.24–0.032(−0.001) | 0.626 | ||
HDL (mg/dL) | −0.024–0.032 (0.004) | 0.781 | ||
TG/HDL-C | −0.175–0.130 (−0.036) | 0.613 | ||
UA (mg/dL) | −0.034–0.389 (0.177) | 0.1 | ||
NLR | 0.076–0.568 (0.322) | 0.01 * | 0.041–0.531 (0.286) | 0.023 * |
HS-CRP (mg/dL) | −0.09–0.077 (0.034) | 0.123 | ||
CEA (ng/mL) | −0.093–0.058 (−0.017) | 0.648 | ||
Platelet count (103/µL) | −0.003–0.008 (0.002) | 0.435 | ||
ALT (U/L) | −0.16–0.011 (−0.002) | 0.726 | ||
eGFR (mL/min/1.73 m2) | −0.006–0.003 (−0.002) | 0.524 | ||
Polyp size (cm) | −0.059–0.383 (0.162) | 0.149 | ||
Polyp number | −0.035–0.681 (0.323) | 0.076 | ||
Polyp pathology | 0.35–0.726 (0.538) | <0.001 * | 0.355–0.788 (0.571) | <0.001 * |
Polyp location | −0.306–0.731 (0.212) | 0.42 | ||
NAMPT-rs2302559 (CC:0/CT:1/TT:2) | −1.111–0.398 (−0.356) | 0.354 | ||
NAMPT-rs61330082 (CC:0/CT:1/TT:2) | −0.457–0.507 (0.025) | 0.918 | ||
NAMPT-rs10953502 (CC:0/CT:1/TT:2) | −0.542–0.984 (0.221) | 0.57 | ||
NAMPT-rs2058539 (CC:0/CA:1/AA:2) | −0.583–0.931 (0.174) | 0.652 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, T.-H.; Hsu, H.-C.; You, J.-F.; Lai, C.-C.; Tsou, Y.-K.; Hsu, C.-L.; Fann, C.S.J.; Chien, R.-N.; Chang, M.-L. Extracellular Nicotinamide Phosphoribosyltransferase as a Surrogate Marker of Prominent Malignant Potential in Colonic Polyps: A 2-Year Prospective Study. Cancers 2023, 15, 1702. https://doi.org/10.3390/cancers15061702
Chen T-H, Hsu H-C, You J-F, Lai C-C, Tsou Y-K, Hsu C-L, Fann CSJ, Chien R-N, Chang M-L. Extracellular Nicotinamide Phosphoribosyltransferase as a Surrogate Marker of Prominent Malignant Potential in Colonic Polyps: A 2-Year Prospective Study. Cancers. 2023; 15(6):1702. https://doi.org/10.3390/cancers15061702
Chicago/Turabian StyleChen, Tsung-Hsing, Hung-Chih Hsu, Jeng-Fu You, Cheng-Chou Lai, Yung-Kuan Tsou, Chia-Lin Hsu, Cathy S. J. Fann, Rong-Nan Chien, and Ming-Ling Chang. 2023. "Extracellular Nicotinamide Phosphoribosyltransferase as a Surrogate Marker of Prominent Malignant Potential in Colonic Polyps: A 2-Year Prospective Study" Cancers 15, no. 6: 1702. https://doi.org/10.3390/cancers15061702
APA StyleChen, T. -H., Hsu, H. -C., You, J. -F., Lai, C. -C., Tsou, Y. -K., Hsu, C. -L., Fann, C. S. J., Chien, R. -N., & Chang, M. -L. (2023). Extracellular Nicotinamide Phosphoribosyltransferase as a Surrogate Marker of Prominent Malignant Potential in Colonic Polyps: A 2-Year Prospective Study. Cancers, 15(6), 1702. https://doi.org/10.3390/cancers15061702