Comparison of Pathological Outcome and Recurrence Rate between En Bloc Transurethral Resection of Bladder Tumor and Conventional Transurethral Resection: A Meta-Analysis
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Studies Selection
3.2. Characteristics of the Studies
3.3. Tumor Complete Resection Outcome
3.4. Recurrence Related Parameters
3.5. Perioperative Outcomes
3.6. Complications
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Lenis, A.T.; Lec, P.M.; Chamie, K.; Mshs, M.D. Bladder Cancer: A Review. JAMA 2020, 324, 1980–1991. [Google Scholar] [CrossRef]
- Babjuk, M.; Burger, M.; Capoun, O.; Cohen, D.; Compérat, E.M.; Escrig, J.L.D.; Gontero, P.; Liedberg, F.; Masson-Lecomte, A.; Mostafid, A.H.; et al. European Association of Urology Guidelines on Non-muscle-invasive Bladder Cancer (Ta, T1, and Carcinoma in Situ). Eur. Urol. 2022, 81, 75–94. [Google Scholar] [CrossRef]
- Ferro, M.; Barone, B.; Crocetto, F.; Lucarelli, G.; Busetto, G.M.; Del Giudice, F.; Maggi, M.; Crocerossa, F.; Cantiello, F.; Damiano, R.; et al. Predictive clinico-pathological factors to identify BCG, unresponsive patients, after re-resection for T1 high grade non-muscle invasive bladder cancer. Urol. Oncol. 2022, 40, 490.e13–490.e20. [Google Scholar] [CrossRef] [PubMed]
- Sterne, J.A.C.; Savović, J.; Page, M.J.; Elbers, R.G.; Blencowe, N.S.; Boutron, I.; Cates, C.J.; Cheng, H.Y.; Corbett, M.S.; Eldridge, S.M.; et al. RoB 2: A revised tool for assessing risk of bias in randomised trials. BMJ 2019, 366, l4898. [Google Scholar] [CrossRef] [PubMed]
- Sterne, J.A.; Hernán, M.A.; Reeves, B.C.; Savović, J.; Berkman, N.D.; Viswanathan, M.; Henry, D.; Altman, D.G.; Ansari, M.T.; Boutron, I.; et al. ROBINS-I: A tool for assessing risk of bias in non-randomised studies of interventions. BMJ 2016, 355, i4919. [Google Scholar] [CrossRef] [PubMed]
- McGuinness, L.A.; Higgins, J.P.T. Risk-of-bias VISualization (robvis): An R package and Shiny web app for visualizing risk-of-bias assessments. Res. Synth. Methods 2021, 12, 55–61. [Google Scholar] [CrossRef] [PubMed]
- Contieri, R.; Hurle, R.; Paciotti, M.; Casale, P.; Saita, A.; Porpiglia, F.; Fiori, C.; Barone, B.; Crocetto, F.; Lucarelli, G.; et al. Accuracy of the European Association of Urology (EAU) NMIBC 2021 scoring model in predicting progression in a large cohort of HG T1 NMIBC patients treated with BCG. Minerva Urol. Nephrol. 2022; ahead of print. [Google Scholar] [CrossRef]
- Zhu, Y.; Jiang, X.; Zhang, J.; Chen, W.; Shi, B.; Xu, Z. Safety and efficacy of holmium laser resection for primary nonmuscle-invasive bladder cancer versus transurethral electroresection: Single-center experience. Urology 2008, 72, 608–612. [Google Scholar] [CrossRef]
- Xishuang, S.; Deyong, Y.; Xiangyu, C.; Tao, J.; Quanlin, L.; Hongwei, G.; Jibin, Y.; Dongjun, W.; Zhongzhou, H.; Jianbo, W.; et al. Comparing the safety and efficiency of conventional monopolar, plasmakinetic, and holmium laser transurethral resection of primary non-muscle invasive bladder cancer. J. Endourol. 2010, 24, 69–73. [Google Scholar] [CrossRef]
- Zhong, C.; Guo, S.; Tang, Y.; Xia, S. Clinical observation on 2 micron laser for non-muscle-invasive bladder tumor treatment: Single-center experience. World J. Urol. 2010, 28, 157–161. [Google Scholar] [CrossRef] [PubMed]
- Upadhyay, R.; Kapoor, R.; Srivastava, A.; Krishnani, N.; Mandhani, A. Does En-bloc transurethral resection of bladder tumor give a better yield in terms of presence of detrusor muscle in the biopsy specimen? Indian J. Urol. 2012, 28, 275–279. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Wu, J.; Xue, S.; Zhang, Q.; Ruan, Y.; Sun, X.; Xia, S. Comparison of the safety and efficacy of conventional monopolar and 2-micron laser transurethral resection in the management of multiple nonmuscle-invasive bladder cancer. J. Int. Med. Res. 2013, 41, 984–992. [Google Scholar] [CrossRef] [PubMed]
- Tao, W.; Yang, D.; Shan, Y.; Xue, B.; Sun, C.; Zang, Y.; Zhang, Y. Safety and efficacy of 120W high performance system greenlight laser vaporization for non-muscle-invasive bladder cancer. J. Xray Sci. Technol. 2013, 21, 309–316. [Google Scholar] [CrossRef]
- Sureka, S.K.; Agarwal, V.; Agnihotri, S.; Kapoor, R.; Srivastava, A.; Mandhani, A. Is en-bloc transurethral resection of bladder tumor for non-muscle invasive bladder carcinoma better than conventional technique in terms of recurrence and progression? A prospective study. Indian J. Urol. 2014, 30, 144–149. [Google Scholar] [CrossRef]
- Yang, D.; Xue, B.; Zang, Y.; Liu, X.; Zhu, J.; Zhou, Y.; Shan, Y. Efficacy and safety of potassium-titanyl- phosphate laser vaporization for clinically non-muscle invasive bladder cancer. Urol. J. 2014, 11, 1258–1263. [Google Scholar]
- Chen, X.; Liao, J.; Chen, L.; Qiu, S.; Mo, C.; Mao, X.; Yang, Y.; Zhou, S.; Chen, J. En bloc transurethral resection with 2-micron continuous-wave laser for primary non-muscle-invasive bladder cancer: A randomized controlled trial. World J. Urol. 2015, 33, 989–995. [Google Scholar] [CrossRef]
- Xu, Y.; Guan, W.; Chen, W.; Xie, C.; Ouyang, Y.; Wu, Y.; Liu, C. Comparing the treatment outcomes of potassium-titanyl-phosphate laser vaporization and transurethral electroresection for primary nonmuscle-invasive bladder cancer: A prospective, randomized study. Lasers Surg. Med. 2015, 47, 306–311. [Google Scholar] [CrossRef]
- Zhang, X.R.; Feng, C.; Zhu, W.D.; Si, J.-M.; Gu, B.-J.; Guo, H.; Song, L.-J.; Li, C. Two Micrometer Continuous-Wave Thulium Laser Treating Primary Non-Muscle-Invasive Bladder Cancer: Is It Feasible? A Randomized Prospective Study. Photomed. Laser Surg. 2015, 33, 517–523. [Google Scholar] [CrossRef]
- Chen, J.; Zhao, Y.; Wang, S.; Jin, X.; Sun, P.; Zhang, L.; Wang, M. Green-light laser en bloc resection for primary non-muscle-invasive bladder tumor versus transurethral electroresection: A prospective, nonrandomized two-center trial with 36-month follow-up. Lasers Surg. Med. 2016, 48, 859–865. [Google Scholar] [CrossRef]
- D’souza, N.; Verma, A. Holmium laser transurethral resection of bladder tumor: Our experience. Urol. Ann. 2016, 8, 439–443. [Google Scholar] [CrossRef]
- Huang, J.H.; Hu, Y.Y.; Liu, M.; Wang, G.C. Comparative study of 2 um laser versus Holmium laser for the resection of non-muscle invasive bladder cancer. Int. J. Clin. Exp. Med. 2016, 9, 23618–23623. [Google Scholar]
- Cheng, B.; Qiu, X.; Li, H.; Yang, G. The safety and efficacy of front-firing green-light laser endoscopic en bloc photoselective vapo-enucleation of non-muscle-invasive bladder cancer. Ther. Clin. Risk Manag. 2017, 13, 983–988. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.Y.; Xing, J.C.; Li, W.; Wu, Z.; Chen, B.; Bai, D.Y. A novel transurethral resection technique for superficial bladder tumor: Retrograde en bloc resection. World J. Surg. Oncol. 2017, 15, 125. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Ma, J.; Chen, Z.; Yang, J.; Yuan, H.; Wang, T.; Liu, J.; Yang, W.; Ye, Z. Safety and Efficacy of En Bloc Transurethral Resection With 1.9 µm Vela Laser for Treatment of Non-Muscle-invasive Bladder Cancer. Urology 2018, 113, 246–250. [Google Scholar] [CrossRef] [PubMed]
- Bălan, G.X.; Geavlete, P.A.; Georgescu, D.A.; Ene, C.V.; Bulai, C.A.; Păunescu, M.A.; Niculae, A.; Peride, I.; Lascăr, I.; Neagu, T.P.; et al. Bipolar en bloc tumor resection versus standard monopolar TURBT—Which is the best way to go in non-invasive bladder cancer? Rom. J. Morphol. Embryol. 2018, 59, 773–780. [Google Scholar]
- Cheng, Y.Y.; Sun, Y.; Li, J.; Liang, L.; Zou, T.-J.; Qu, W.-X.; Jiang, Y.-Z.; Ren, W.; Du, C.; Du, S.-K.; et al. Transurethral endoscopic submucosal en bloc dissection for nonmuscle invasive bladder cancer: A comparison study of HybridKnife-assisted versus conventional dissection technique. J. Cancer Res. Ther. 2018, 14, 1606–1612. [Google Scholar] [CrossRef]
- Li, K.; Xu, Y.; Tan, M.; Xia, S.; Xu, Z.; Xu, D. A retrospective comparison of thulium laser en bloc resection of bladder tumor and plasmakinetic transurethral resection of bladder tumor in primary non-muscle invasive bladder cancer. Lasers Med. Sci. 2019, 34, 85–92. [Google Scholar] [CrossRef]
- Liang, H.; Yang, T.; Wu, K.; He, D.; Fan, J. En bloc resection improves the identification of muscularis mucosae in non-muscle invasive bladder cancer. World J. Urol. 2019, 37, 2677–2682. [Google Scholar] [CrossRef]
- Bangash, M.; Ather, M.H.; Khan, N.; Mohammad, S.; Uddin, Z. Comparison of Recurrence Rate Between “EN BLOC” Resection of Bladder Tumour and Conventional Technique for Non-Muscle Invasive Bladder Cancer. J. Ayub Med. Coll. Abbottabad 2020, 32, 435–440. [Google Scholar]
- Gakis, G.; Karl, A.; Bertz, S.; Burger, M.; Fritsche, H.; Hartmann, A.; Jokisch, F.; Kempkensteffen, C.; Miller, K.; Mundhenk, J.; et al. Transurethral en bloc submucosal hydrodissection vs conventional resection for resection of non-muscle-invasive bladder cancer (HYBRIDBLUE): A randomised, multicentre trial. BJU Int. 2020, 126, 509–519. [Google Scholar] [CrossRef] [PubMed]
- Hashem, A.; Mosbah, A.; El-Tabey, N.A.; Laymon, M.; Ibrahiem, E.-H.; Elhamid, M.A.; Elshal, A.M. Holmium Laser En-bloc Resection Versus Conventional Transurethral Resection of Bladder Tumors for Treatment of Non-muscle-invasive Bladder Cancer: A Randomized Clinical Trial. Eur. Urol. Focus 2021, 7, 1035–1043. [Google Scholar] [CrossRef]
- Vladanov, I.; Plesacov, A.; Colta, A.; Ceban, E.; Ghicavii, V.; Scutelnic, G. Transurethral “En Bloc” Resection Technique in Non-Muscle Invasive Bladder Cancer. Arch. Balk. Med. Union 2020, 55, 257–263. [Google Scholar] [CrossRef]
- Yang, Y.; Liu, C.; Yang, X.; Wang, D. Transurethral en bloc resection with monopolar current for non-muscle invasive bladder cancer based on TNM system. Transl. Cancer Res. TCR 2020, 9, 2210–2219. [Google Scholar] [CrossRef] [PubMed]
- Poletajew, S.; Krajewski, W.; Stelmach, P.; Adamowicz, J.; Nowak, Ł.; Moschini, M.; Zapała, P.; Drewa, T.; Paradysz, A.; Radziszewski, P.; et al. En-bloc resection of urinary bladder tumour—A prospective controlled multicentre observational study. Wideochir. Inne Tech. Maloinwazyjne 2021, 16, 145–150. [Google Scholar] [CrossRef]
- Tripathi, M.C.; Faisal Masood, P.; Sood, R.; Singla, A.; Khattar, N.; Manasa, T.; Singh, R. A prospective study comparing side-firing KTP laser enucleation vs bipolar transurethral resection of bladder tumor for small bladder tumors in an outpatient setting. Cent. Eur. J. Urol. 2021, 74, 215–221. [Google Scholar] [CrossRef]
- Wu, Y.P.; Lin, T.T.; Chen, S.H.; Xu, N.; Wei, Y.; Huang, J.-B.; Sun, X.-L.; Zheng, Q.-S.; Xue, X.-Y.; Li, X.-D. Comparison of the efficacy and feasibility of en bloc transurethral resection of bladder tumor versus conventional transurethral resection of bladder tumor: A meta-analysis. Medicine 2016, 95, e5372. [Google Scholar] [CrossRef]
- Yang, H.; Lin, J.; Gao, P.; He, Z.; Kuang, X.; Li, X.; Fu, H.; Du, D. Is the En Bloc Transurethral Resection More Effective than Conventional Transurethral Resection for Non-Muscle-Invasive Bladder Cancer? A Systematic Review and Meta-Analysis. Urol. Int. 2020, 104, 402–409. [Google Scholar] [CrossRef]
- Lonati, C.; Esperto, F.; Scarpa, R.M.; Papalia, R.; Rivas, J.G.; Alvarez-Maestro, M.; Afferi, L.; Fankhauser, C.D.; Mattei, A.; Colombo, R.; et al. Bladder perforation during transurethral resection of the bladder: A comprehensive algorithm for diagnosis, management and follow-up. Minerva Urol. Nephrol. 2022, 74, 570–580. [Google Scholar] [CrossRef]
- Herr, H.W.; Donat, S.M. Quality control in transurethral resection of bladder tumours. BJU Int. 2008, 102 Pt B, 1242–1246. [Google Scholar] [CrossRef]
- Cao, M.; Yang, G.; Pan, J.; Sun, J.; Chen, Q.; Chen, Y.; Chen, H.; Xue, W. Repeated transurethral resection for non-muscle invasive bladder cancer. Int. J. Clin. Exp. Med. 2015, 8, 1416–1419. [Google Scholar] [PubMed]
- Maheshwari, P.N.; Arora, A.M.; Sane, M.S.; Jadhao, V.G. Safety, feasibility, and quality of holmium laser en-bloc resection of nonmuscle invasive bladder tumors—A single-center experience. Indian J. Urol. 2020, 36, 106–111. [Google Scholar] [CrossRef] [PubMed]
First Author | Year | Study Design | Surgical Method | Number of Patients | Male/Female | Mean Age | Adjuvant Therapy | |||
---|---|---|---|---|---|---|---|---|---|---|
ERBT | ERBT | CTURBT | ERBT | CTURBT | ERBT | CTURBT | ||||
Zhu et al. [9] | 2008 | Retrospective | Holmium laser | 101 | 111 | 79/22 | 92/19 | N/A | N/A | Mitomycin |
Song1 et al. [10] | 2010 | Retrospective | Holmium laser | 64 | 51 | 52/12 | 40/11 | 72.50 | 74.50 | Mitomycin |
Song2 et al. [10] | 2010 | Retrospective | Holmium laser | 64 | 58 | 52/12 | 47/11 | 72.50 | 73.00 | Mitomycin |
Zhong1 et al. [11] | 2010 | Retrospective | Thulium laser | 30 | 42 | N/A | N/A | 68.30 | 66.26 | Epirubicin |
Zhong2 et al. [11] | 2010 | Retrospective | Holmium laser | 25 | 42 | N/A | N/A | 65.76 | 66.26 | Epirubicin |
Upadhyay [12] | 2012 | Prospective | Monopolar | 21 | 25 | N/A | N/A | N/A | N/A | N/A |
Liu et al. [13] | 2013 | RCT | Thulium laser | 64 | 56 | 46/18 | 40/16 | 67.10 | 66.30 | Epirubicin |
Tao et al. [14] | 2013 | Retrospective | KTP laser | 74 | 84 | 60/14 | 66/18 | 66.4 | 65.3 | Epirubicin |
Sureka [15] | 2014 | Prospective | Monopolar | 21 | 24 | N/A | N/A | 52.6 | 55 | BCG |
Yang et al. [16] | 2014 | Retrospective | KTP laser | 28 | 32 | 22/6 | 25/7 | 45.3 | 42.5 | Epirubicin |
Chen et al. [17] | 2015 | RCT | Thulium laser | 71 | 71 | 54/17 | 51/20 | 63 | 62 | Epirubicin |
Xu et al. [18] | 2015 | RCT | KTP laser | 99 | 94 | 80/19 | 76/18 | 63.06 | 62.82 | Pirarubicin |
Zhang et al. [19] | 2015 | RCT | Thulium laser | 149 | 143 | 70/79 | 79/64 | N/A | N/A | Epirubicin |
Chen et al. [20] | 2016 | Prospective | KTP laser | 83 | 75 | 60/23 | 51/24 | 63.43 | 65.31 | Mitomycin |
D’souza [21] | 2016 | Prospective | Holmium laser | 23 | 27 | 15/8 | 18/9 | 66.3 | 67.1 | Mitomycin |
Huang1 [22] | 2016 | Retrospective | Thulium laser | 70 | 70 | 50/20 | 48/22 | 58.31 | 57.87 | Epirubicin |
Huang2 et al. [22] | 2016 | Retrospective | Holmium laser | 70 | 70 | 45/25 | 48/22 | 59.97 | 57.87 | Epirubicin |
Cheng et al. [23] | 2017 | Retrospective | KTP laser | 34 | 30 | 28/6 | 27/3 | 59.41 | 63.13 | Mitomycin |
Zhang et al. [24] | 2017 | Retrospective | Monopolar | 40 | 50 | 35/5 | 38/12 | 60.65 | 60.8 | Pirarubicin |
Xu et al. [25] | 2018 | Retrospective | Thulium laser | 26 | 44 | 24/2 | 35/9 | 55.9 | 59.7 | Pirarubicin |
Bălan et al. [26] | 2018 | Prospective | Bipolar | 45 | 45 | N/A | N/A | 64.7 | 66.1 | BCG + Epirubicin |
Cheng et al. [27] | 2018 | Retrospective | Hybrid knife | 95 | 98 | 67/28 | 70/28 | 62.4 | 64.4 | Pirarubicin |
Li et al. [28] | 2018 | Retrospective | Thulium laser | 136 | 120 | 110/26 | 98/22 | N/A | N/A | Pirarubicin |
Liang et al. [29] | 2019 | Retrospective | KTP laser | 88 | 70 | 78/10 | 51/19 | N/A | N/A | Pirarubicin |
Bangash [30] | 2020 | Prospective | Monopolar | 41 | 41 | 34/7 | 36/5 | 58.46 | 58.59 | Mitomycin |
Gakis et al. [31] | 2020 | RCT | Hybrid knife | 56 | 59 | 45/11 | 47/12 | 66.8 | 70.2 | N/A |
Hashem [32] | 2020 | RCT | Holmium laser | 50 | 50 | 37/13 | 39/11 | 60.4 | 61.1 | Epirubicin |
Vladanov [33] | 2020 | Retrospective | Monopolar | 67 | 85 | 57/10 | 66/19 | 58.43 | 61.5 | Mitomycin |
Yang et al. [34] | 2020 | Prospective | Monopolar | 96 | 87 | 70/26 | 62/25 | 54.63 | 55.43 | Pirarubicin |
Poletajew et al. [35] | 2021 | Prospective | Monopolar | 153 | 274 | 117/36 | 201/63 | 68 | 69.5 | N/A |
Tripathi et al. [36] | 2021 | Prospective | KTP laser | 40 | 43 | 32/8 | 30/13 | 55.62 | 56.12 | Mitomycin |
First Author | Year | Mean Tumor Size | Mean Tumor Numbers | Tumor Location | T Stage | Tumor Grade * | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ERBT | CTURBT | ERBT | CTURBT | ERBT | CTURBT | ||||||||||||
ERBT | CTURBT | ERBT | CTURBT | Lateral | Other | Lateral | Other | Ta | T1 | CIS | Ta | T1 | CIS | High Grade | High Grade | ||
Zhu et al. [9] | 2008 | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | 67 | 34 | N/A | 34 | 41 | N/A | 9(9.09%) | 10 (9.01%) |
Song1 et al. [10] | 2010 | 1.85 | 1.74 | 2 | 1.9 | 25 | 39 | 20 | 31 | 36 | 23 | 5 | 30 | 17 | 4 | 20 (31.25%) | 14 (27.45%) |
Song2 et al. [10] | 2010 | 1.85 | 1.52 | 2 | 2.2 | 25 | 39 | 26 | 32 | 36 | 23 | 5 | 35 | 19 | 4 | 20 (31.25%) | 20 (35.09%) |
Zhong1 et al. [11] | 2010 | 2.23 | 1.54 | 1.53 | 1.45 | N/A | N/A | N/A | N/A | 23 | 5 | 2 | 30 | 8 | 4 | 5 (16.67%) | 9 (21.43%) |
Zhong2 et al. [11] | 2010 | 1.38 | 1.54 | 1.4 | 1.45 | N/A | N/A | N/A | N/A | 19 | 5 | 1 | 30 | 8 | 4 | 4 (16%) | 9 (21.43%) |
Upadhyay et al. [12] | 2012 | N/A | N/A | N/A | N/A | 12 | 9 | 12 | 13 | 12 | 6 | N/A | 12 | 8 | N/A | 7 (10.94%) | 5 (8.93%) |
Liu et al. [13] | 2013 | 1.31 | 1.28 | 2.8 | 2.7 | 24 | 40 | 21 | 35 | 37 | 27 | N/A | 34 | 22 | N/A | NA | NA |
Tao et al. [14] | 2013 | N/A | N/A | 1.52 | 1.49 | 62 | 12 | 69 | 15 | 50 | 23 | 1 | 61 | 21 | 2 | 23 (32.39%) | 17 (23.94%) |
Sureka [15] | 2014 | 2.8 | 3.3 | Single | Single | 13 | 8 | 12 | 12 | 12 | 9 | N/A | 13 | 11 | N/A | 10 (12.05%) | 12 (16%) |
Yang et al. [16] | 2014 | N/A | N/A | N/A | N/A | 22 | 6 | 17 | 15 | 8 | 20 | N/A | 7 | 25 | N/A | 3 (13.04%) | 2 (7.41%) |
Chen et al. [17] | 2015 | 2.6 | 2.3 | 1.8 | 1.7 | 73 | 55 | 63 | 58 | 43 | 25 | 3 | 55 | 15 | 1 | 10 (14.29%) | 6 (8.57%) |
Xu et al. [18] | 2015 | N/A | N/A | 2.16 | 1.91 | 114 | 100 | 101 | 79 | 91 | 8 | N/A | 82 | 12 | N/A | 7 (10%) | 6 (8.57%) |
Zhang et al. [19] | 2015 | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | 106 | 43 | N/A | 107 | 36 | N/A | 25 (43.86%) | 0 (0%) |
Chen et al. [20] | 2016 | 1.85 | 1.71 | 1.76 | 1.85 | 83 | 63 | 69 | 70 | 70 | 13 | N/A | 64 | 11 | N/A | 9 (22.5%) | 15 (30%) |
D’souza et al. [21] | 2016 | N/A | N/A | N/A | N/A | 10 | 13 | 11 | 16 | 16 | 11 | N/A | 10 | 13 | N/A | 8 (30.77%) | 13 (29.55%) |
Huang1 et al. [22] | 2016 | 1.63 | 1.53 | 2.74 | 2.53 | 28 | 42 | 25 | 45 | 40 | 23 | 7 | 35 | 27 | 8 | NA | NA |
Huang2 et al. [22] | 2016 | 1.58 | 1.53 | 2.43 | 2.53 | 23 | 47 | 25 | 45 | 37 | 28 | 5 | 35 | 27 | 8 | 40 (42.11%) | 48 (48.98%) |
Cheng et al. [23] | 2017 | 1.65 | 1.5 | N/A | N/A | 18 | 16 | 22 | 8 | 14 | 16 | N/A | 13 | 15 | N/A | NA | NA |
Zhang et al. [24] | 2017 | N/A | N/A | N/A | N/A | 22 | 18 | 22 | 28 | 15 | 25 | N/A | 27 | 23 | N/A | 14 (34.15%) | 15 (36.59%) |
Xu et al. [25] | 2018 | N/A | N/A | N/A | N/A | 21 | 5 | 30 | 14 | 10 | 12 | N/A | 25 | 16 | N/A | 9 (16.07%) | 17 (28.81%) |
Bălan et al. [26] | 2018 | 1.82 | 1.69 | N/A | N/A | N/A | N/A | N/A | N/A | 24 | 21 | N/A | 23 | 22 | N/A | 16 (36.36%) | 22 (44.9%) |
Cheng et al. [27] | 2018 | 2.5 | 2.8 | N/A | N/A | N/A | N/A | N/A | N/A | 52 | 43 | N/A | 54 | 44 | N/A | NA | NA |
Li et al. [28] | 2018 | 2.39 | 2.15 | N/A | N/A | 90 | 68 | 86 | 58 | N/A | N/A | N/A | N/A | N/A | N/A | 20 (20.83%) | 18 (20.69%) |
Liang et al. [29] | 2019 | 2.1 | 1.9 | N/A | N/A | N/A | N/A | N/A | N/A | 29 | 59 | N/A | 33 | 37 | N/A | 41 (29.71%) | 82 (37.96%) |
Bangash et al. [30] | 2020 | 2.5 | 2.5 | Single | Single | N/A | N/A | N/A | N/A | 20 | 21 | N/A | 19 | 22 | N/A | 5 (12.50%) | 6 (13.95%) |
Gakis et al. [31] | 2020 | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | 50 | 6 | N/A | 42 | 17 | N/A | NA | NA |
Hashem et al. [32] | 2020 | 3.2 | 2.9 | N/A | N/A | 18 | 32 | 13 | 37 | 2 | 42 | N/A | 3 | 46 | N/A | 42 (47.73%) | 26 (37.14%) |
Vladanov et al. [33] | 2020 | N/A | N/A | N/A | N/A | 38 | 29 | 41 | 44 | 35 | 32 | N/A | 49 | 36 | N/A | 5 (6.76%) | 6 (7.14%) |
Yang et al. [34] | 2020 | 1.79 | 1.72 | 1.25 | 1.21 | 56 | 64 | 51 | 55 | 61 | 25 | N/A | 57 | 26 | N/A | 3 (10.71%) | 6 (18.75%) |
Poletajew et al. [35] | 2021 | N/A | N/A | N/A | N/A | N/A | N/A | N/A | N/A | 94 | 38 | 21 | 126 | 58 | 19 | 10 (10.10%) | 5 (5.32%) |
Tripathi et al. [36] | 2021 | 1.71 | 1.74 | N/A | N/A | 24 | 22 | 30 | 22 | N/A | N/A | N/A | N/A | N/A | N/A | 8 (5.37%) | 8 (5.59%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, C.-W.; Lee, P.-J.; Wu, C.-W.; Ho, C.-H. Comparison of Pathological Outcome and Recurrence Rate between En Bloc Transurethral Resection of Bladder Tumor and Conventional Transurethral Resection: A Meta-Analysis. Cancers 2023, 15, 2055. https://doi.org/10.3390/cancers15072055
Wang C-W, Lee P-J, Wu C-W, Ho C-H. Comparison of Pathological Outcome and Recurrence Rate between En Bloc Transurethral Resection of Bladder Tumor and Conventional Transurethral Resection: A Meta-Analysis. Cancers. 2023; 15(7):2055. https://doi.org/10.3390/cancers15072055
Chicago/Turabian StyleWang, Chi-Wei, Ping-Jui Lee, Chih-Wei Wu, and Chen-Hsun Ho. 2023. "Comparison of Pathological Outcome and Recurrence Rate between En Bloc Transurethral Resection of Bladder Tumor and Conventional Transurethral Resection: A Meta-Analysis" Cancers 15, no. 7: 2055. https://doi.org/10.3390/cancers15072055
APA StyleWang, C. -W., Lee, P. -J., Wu, C. -W., & Ho, C. -H. (2023). Comparison of Pathological Outcome and Recurrence Rate between En Bloc Transurethral Resection of Bladder Tumor and Conventional Transurethral Resection: A Meta-Analysis. Cancers, 15(7), 2055. https://doi.org/10.3390/cancers15072055