Current Main Topics in Multiple Myeloma
Abstract
:Simple Summary
Abstract
1. Introduction
2. Improvements in Risk Stratification
3. Current and Future Role of Immunotherapy in the Upfront Setting
4. Autologous Stem Cell Transplantation in Light of New Therapies
5. Pros and Cons of Continuous vs. Fixed-Duration Therapy
6. High Risk Multiple Myeloma and Risk-Adapted Therapies
7. Minimal Residual Disease (MRD) in the Era of New Drugs and MRD-Driven Therapies
8. Sequential Therapy in Relapsed/Refractory MM in Light of New Immunotherapeutic Strategies
8.1. Antibody-Drug-Conjugate (ADC)
8.2. Bispecific Antibodies (BsAbs) and Bispecific T Cell Engagers (BiTEs)
8.3. CAR-T Cell Therapy
8.4. Sequencing Novel Immunotherapies in Advanced MM
9. Precision Medicine and Next Generation Therapies
10. Discussion and Expert Opinion
11. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Fazio, F.; Gherardini, M.; Za, T.; Rossi, E.; Di Landro, F.; Morè, S.; Manieri, M.V.; Fioritoni, F.; Bongarzoni, V.; Svitlana Gumenyuk, S.; et al. Long term survival in multiple myeloma patients: A multicenter Italian experience. Blood 2022, 140, 7147–7149. [Google Scholar] [CrossRef]
- Moreau, P.; Attal, M.; Hulin, C.; Arnulf, B.; Belhadj, K.; Benboubker, L.; Béné, M.C.; Broijl, A.; Caillon, H.; Caillot, D.; et al. Bortezomib, thalidomide, and dexamethasone with or without daratumumab before and after autologous stem-cell transplantation for newly diagnosed multiple myeloma (CASSIOPEIA): A randomised, open-label, phase 3 study. Lancet 2019, 394, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Mateos, M.V.; Cavo, M.; Blade, J.; Dimopoulos, M.A.; Suzuki, K.; Jakubowiak, A.; Knop, S.; Doyen, C.; Lucio, P.; Nagy, Z.; et al. Overall survival with daratumumab, bortezomib, melphalan, and prednisone in newly diagnosed multiple myeloma (ALCYONE): A randomised, open-label, phase 3 trial. Lancet 2019, 395, 132–141. [Google Scholar] [CrossRef] [PubMed]
- Acon, T.; Kumar, S.; Plesner, T.; Orlowski, R.Z.; Moreau, P.; Bahlis, N.; Basu, S.; Nahi, H.; Hulin, C.; Quach, H.; et al. Daratumumab plus lenalidomide and dexamethasone for untreated myeloma. N. Engl. J. Med. 2019, 380, 2104–2115. [Google Scholar] [CrossRef]
- Morè, S.; Corvatta, L.; Manieri, M.V.; Olivieri, A.; Offidani, M.A. Real-world assessment of treatment patterns and outcomes in patients with relapsed-refractory multiple myeloma in an Italian haematological tertiary care centre. Br. J. Haematol. 2023, 17, 1–11. [Google Scholar] [CrossRef]
- Schavgoulidze, A.; Lauwers-Cances, V.; Perrot, A.; Cazaubiel, T.; Chretien, M.-L.; Moreau, P.; Facon, T.; Leleu, X.; Karlin, L.; Stoppa, A.-M.; et al. Heterogeneity in long term outcomes for R-ISS stage II in newly diagnosed multiple myeloma patients. Haematologica 2022. Online ahead of print. [Google Scholar] [CrossRef]
- Hagen, P.; Zhang, J.; Barton, K. High-risk disease in newly diagnosed multiple myeloma: Beyond the R-ISS and IMWG definitions. Blood Cancer J. 2022, 12, 83. [Google Scholar] [CrossRef]
- Greipp, P.R.; Miguel, J.S.; Durie, B.G.; Crowley, J.J.; Barlogie, B.; Bladé, J.; Boccadoro, M.; Child, J.A.; Avet-Loiseau, H.; Kyle, R.A.; et al. International staging system for multiple myeloma. J. Clin. Oncol. 2005, 23, 3412–3420. [Google Scholar] [CrossRef] [Green Version]
- Hari, P.N.; Zhang, M.-J.; Roy, V.; Pérez, W.S.; Bashey, A.; To, L.B.; Elfenbein, G.; Freytes, C.O.; Gale, R.P.; Gibson, J.; et al. Is the international staging system superior to the Durie-Salmon staging system? A comparison in multiple myeloma patients undergoing autologous transplant. Leukemia 2009, 23, 1528–1534. [Google Scholar] [CrossRef] [Green Version]
- Palumbo, A.; Avet-Loiseau, H.; Oliva, S.; Lokhorst, H.M.; Goldschmidt, H.; Rosinol, L.; Richardson, P.; Caltagirone, S.; Lahuerta, J.J.; Facon, T.; et al. Revised international staging system for multiple myeloma: A report from international myeloma working group. J. Clin. Oncol. 2015, 33, 2863–2869. [Google Scholar] [CrossRef]
- Gopalakrishnan, S.; D’Souza, A.; Scott, E.; Fraser, R.; Davila, O.; Shah, N.; Gale, R.P.; Kamble, R.; Diaz, M.A.; Lazarus, H.M.; et al. Revised International Staging System Is Predictive and Prognostic for Early Relapse (<24 months) after Autologous Transplantation for Newly Diagnosed Multiple Myeloma. Biol. Blood Marrow Transplant. 2019, 25, 683–688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Agostino, M.; Cairns, D.A.; Lahuerta, J.J.; Wester, R.; Bertsch, U.; Waage, A.; Zamagni, E.; Mateos, M.-V.; Dall’Olio, D.; van de Donk, N.W.; et al. Second revision of the International Staging System (R2-ISS) for overall survival in multiple myeloma: A European Myeloma Network (EMN) Report within the HARMONY Project. J. Clin. Oncol. 2022, 40, 3406–3418. [Google Scholar] [CrossRef] [PubMed]
- Abdallah, N.H.; Binder, M.; Rajkumar, S.V.; Greipp, P.T.; Kapoor, P.; Dispenzieri, A.; Gertz, M.A.; Baughn, L.B.; Lacy, M.Q.; Hayman, S.R.; et al. A simple additive staging system for newly diagnosed multiple myeloma. Blood Cancer J. 2022, 12, 21. [Google Scholar] [CrossRef]
- Shah, V.; Csg, O.B.O.T.N.H.-O.; Sherborne, A.L.; Walker, B.A.; Johnson, D.C.; Boyle, E.M.; Ellis, S.; Begum, D.B.; Proszek, P.Z.; Jones, J.R.; et al. Prediction of outcome in newly diagnosed myeloma: A meta-analysis of the molecular profiles of 1905 trial patients. Leukemia 2018, 32, 102–110. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sonneveld, P.; Avet-Loiseau, H.; Lonial, S.; Usmani, S.; Siegel, D.; Anderson, K.C.; Chng, W.J.; Moreau, P.; Attal, M.; Kyle, R.A.; et al. Treatment of multiple myeloma with high-risk cytogenetics: A consensus of the International Myeloma Working Group. Blood 2016, 127, 2955–2962. [Google Scholar] [CrossRef]
- Mateos, M.V.; Martínez, B.P.; González-Calle, V. High-risk multiple myeloma: How to treat at diagnosis and relapse? Hematol. 2021, 2021, 30–36. [Google Scholar] [CrossRef]
- Marcon, C.; Simeon, V.; Deias, P.; Facchin, G.; Corso, A.; Derudas, D.; Montefusco, V.; Offidani, M.; Petrucci, M.T.; Zambello, R.; et al. Experts’ consensus on the definition and management of high risk multiple myeloma. Front.Oncol. 2023, 12, 7385. [Google Scholar] [CrossRef]
- Goldman-Mazur, S.; Jurczyszyn, A.; Castillo, J.J.; Waszczuk-Gajda, A.; Grząśko, N.; Radocha, J.; Bittrich, M.; Kortüm, K.M.; Gozzetti, A.; Usnarska-Zubkiewicz, L.; et al. A multicenter retrospective study of 223 patients with t(14;16) in multiple myeloma. Am. J. Hematol. 2020, 95, 503–509. [Google Scholar] [CrossRef]
- Mina, R.; Joseph, N.S.; Gay, F.; Kastritis, E.; Petrucci, M.T.; Kaufman, J.L.; Montefusco, V.; Gavriatopoulou, M.; Patriarca, F.; Omedé, P.; et al. Clinical features and survival of multiple myeloma patients harboring t(14;16) in the era of novel agents. Blood Cancer J. 2020, 10, 40. [Google Scholar] [CrossRef] [Green Version]
- Avet-Loiseau, H.; Malard, F.; Campion, L.; Magrangeas, F.; Sebban, C.; Lioure, B.; Decaux, O.; Lamy, T.; Legros, L.; Fuzibet, J.G.; et al. Translocation t(14;16) and multiple myeloma: Is it really an independent prognostic factor? Blood 2011, 117, 2009–2011. [Google Scholar] [CrossRef] [Green Version]
- Kumar, S.K.; Callander, N.S.; Hillengass, J.; Liedtke, M.; Baljevic, M.; Campagnaro, E.; Castillo, J.J.; Chandler, J.C.; Cornell, R.F.; Costello, C.; et al. Multiple myeloma, version 1.2020 featured updates to the NCCN guidelines. J. Natl. Compr. Cancer Netw. 2019, 17, 1154–1165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- You, H.; Jin, S.; Wu, C.; Wang, Q.; Yan, S.; Yao, W.; Shi, X.; Shang, J.; Yan, L.; Yao, Y.; et al. The independent adverse prognostic significance of 1q21 gain/amplification in newly diagnosed multiple myeloma patients. Front. Oncol. 2022, 12, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, T.M.; Fonseca, R.; Usmani, S.Z. Chromosome 1q21 abnormalities in multiple myeloma. Blood Cancer J. 2021, 11, 83. [Google Scholar] [CrossRef] [PubMed]
- Schmidt, T.M.; Barwick, B.G.; Joseph, N.; Heffner, L.T.; Hofmeister, C.C.; Bernal, L.; Dhodapkar, M.V.; Gupta, V.A.; Jaye, D.L.; Wu, J.; et al. Gain of Chromosome 1q is associated with early progression in multiple myeloma patients treated with lenalidomide, bortezomib, and dexamethasone. Blood Cancer J. 2019, 9, 94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- D’Agostino, M.; Belotti, A.; Zamagni, E.; Auclair, D.; Zambello, R.; Arigoni, M.; Spadano, A.; Cea, M.; Pescosta, N.; Ronconi, S.; et al. Gain and amplification of 1q induce transcriptome deregulation and worsen the outcome of newly diagnosed Multiple Myeloma patients. Clin. Lymphoma Myeloma Leuk. 2021, 21, S34. [Google Scholar] [CrossRef]
- Ozga, M.M.P.; Zhao, Q.; Bumma, N.; Rosko, A.E.; Khan, A.; Devarakonda, S.; Umyarova, E.; Benson, D.M.; Cottini, F. The co-occurrence of 1q21+/1q23+ and t(4;14) abnormalities with specific clone size is predictive of shorter response to transplant in patients with multiple myeloma. Blood 2022, 140 (Suppl. S2), 9993–9994. [Google Scholar] [CrossRef]
- Garifullin, A.; Voloshin, S.; Shuvaev, V.; Martynkevich, I.; Kleina, E.; Chechetkin, A.; Bessmeltcev, S.; Kuzyaeva, A.; Schmidt, A.; Kuvshinov, A.; et al. Significance of modified risk stratification Msmart 3.0 and autologous stem cell transplantation for patients with newly diagnosed multiple myeloma. Blood 2019, 134 (Suppl. S1), 5593. [Google Scholar] [CrossRef]
- Baysal, M.; Demirci, U.; Umit, E.; Kirkizlar, H.O.; Atli, E.I.; Gurkan, H.; Gulsaran, S.K.; Bas, V.; Mail, C.; Demir, A.M. Concepts of double hit and triple hit disease in multiple myeloma, entity and prognostic significance. Sci. Rep. 2020, 10, 5991. [Google Scholar] [CrossRef] [Green Version]
- Singh, C.; Panakkal, V.; Sreedharanunni, S.; Jandial, A.; Jain, A.; Lad, D.; Prakash, G.; Khadwal, A.; Malhotra, P. Presentation and impact of double and triple hit cytogenetics in patients with multiple myeloma in the real world. Clin. Lymphoma Myeloma Leuk. 2022, 22, e685–e690. [Google Scholar] [CrossRef]
- Walker, B.A.; Mavrommatis, K.; Wardell, C.P.; Ashby, T.C.; Bauer, M.; Davies, F.; Rosenthal, A.; Wang, H.; Qu, P.; Hoering, A.; et al. A high-risk, Double-Hit, group of newly diagnosed myeloma identified by genomic analysis. Leukemia 2019, 33, 159–170. [Google Scholar] [CrossRef] [Green Version]
- Goldsmith, S.R.; Fiala, M.A.; Dukeman, J.; Ghobadi, A.; Stockerl-Goldstein, K.; Schroeder, M.A.; Tomasson, M.; Wildes, T.M.; Vij, R. Next generation sequencing-based validation of the Revised International Staging System for multiple myeloma: An analysis of the MMRF CoMMpass Study. Clin. Lymphoma Myeloma Leuk. 2019, 19, 285–289. [Google Scholar] [CrossRef] [PubMed]
- Bolli, N.; Biancon, G.; Moarii, M.; Gimondi, S.; Li, Y.; de Philippis, C.; Maura, F.; Sathiaseelan, V.; Tai, Y.-T.; Mudie, L.; et al. Analysis of the genomic landscape of multiple myeloma highlights novel prognostic markers and disease subgroups. Leukemia 2018, 32, 2604–2616. [Google Scholar] [CrossRef] [PubMed]
- D’Agostino, M.; Zaccaria, G.M.; Ziccheddu, B.; Rustad, E.H.; Genuardi, E.; Capra, A.; Oliva, S.; Auclair, D.; Yesil, J.; Colucci, P.; et al. Early relapse risk in patients with newly diagnosed multiple myeloma characterized by next-generation sequencing. Clin. Cancer Res. 2020, 26, 4832–4841. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.; Asmann, Y.; Cattaneo, L.; Braggio, E.; Keats, J.; Auclair, D.; Lonial, S.; MMRF CoMMpass Network; Russell, S.J.; Stewart, A.K. High somatic mutation and neoantigen burden are correlated with decreased progression-free survival in multiple myeloma. Blood Cancer J. 2017, 7, e612. [Google Scholar] [CrossRef] [Green Version]
- Shaughnessy, J.D.; Zhan, F.; Burington, B.E.; Huang, Y.; Colla, S.; Hanamura, I.; Stewart, J.P.; Kordsmeier, B.; Randolph, C.; Williams, D.R.; et al. A validated gene expression model of high-risk multiple myeloma is defined by deregulated expression of genes mapping to chromosome 1. Blood 2007, 109, 2276–2284. [Google Scholar] [CrossRef] [Green Version]
- Kuiper, R.; Broyl, A.; de Knegt, Y.; van Vliet, M.H.; van Beers, E.H.; van der Holt, B.; el Jarari, L.; Mulligan, G.; Gregory, W.; Morgan, G.; et al. A gene expression signature for high-risk multiple myeloma. Leukemia 2012, 26, 2406–2413. [Google Scholar] [CrossRef] [Green Version]
- Van Beers, E.H.; Huigh, D.; Bosman, L.; de Best, L.; Kuiper, R.; Spaan, M.; van Duin, M.; Sonneveld, P.; Dumee, B.; van Vliet, M.H. Analytical validation of SKY92 for the identification of high-risk multiple myeloma. J. Mol. Diagn. 2021, 23, 120–129. [Google Scholar] [CrossRef]
- Orgueira, A.M.; Pérez, M.S.G.; Arias, J.Á.D.; Rodríguez, B.A.; Vence, N.A.; López, B.; Blanco, A.A.; Pérez, L.B.; Raíndo, A.P.; López, M.C.; et al. Survival prediction and treatment optimization of multiple myeloma patients using machine-learning models based on clinical and gene expression data. Leukemia 2021, 35, 2924–2935. [Google Scholar] [CrossRef]
- Mosquera Orgueira, A.; González Pérez, M.S.; Díaz Arias, J.Á.; Antelo Rodríguez, B.; Mateos, M.V. Prognostic Stratification of Multiple Myeloma Using Clinicogenomic Models: Validation and Performance Analysis of the IAC-50 Model. Hemasphere 2022, 6, e760. [Google Scholar] [CrossRef] [PubMed]
- Kuiper, R.; van Duin, M.; van Vliet, M.H.; Broijl, A.; van der Holt, B.; el Jarari, L.; van Beers, E.H.; Mulligan, G.; Avet-Loiseau, H.; Gregory, W.M.; et al. Prediction of high- and low-risk multiple myeloma based on gene expression and the International Staging System. Blood 2015, 126, 1996–2004. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuiper, R.; Zweegman, S.; Van Duin, M.; Van Vliet, M.H.; Van Beers, E.H.; Dumee, B.; Vermeulen, M.; Koenders, J.; Van Der Holt, B.; Visser-Wisselaar, H.; et al. Prognostic and predictive performance of R-ISS with SKY92 in older patients with multiple myeloma: The HOVON-87/NMSG-18 trial. Blood Adv. 2020, 4, 6298–6309. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Hofmann, A.; Vogt, C.; Nerreter, S.; Teufel, E.; Stanojkovska, E.; Truger, M.; Engel, B.; Barcic, A.; Peter, J.; et al. Advanced Risk Stratification in Multiple Myeloma Beyond Traditional FISH: The First Prospective Real-World Evidence for SKY92 Gene Expression Profiling. Blood 2022, 140, 4273–4274. [Google Scholar] [CrossRef]
- Bruinink, D.H.O.; Kuiper, R.; van Duin, M.; Cupedo, T.; van der Velden, V.H.; Hoogenboezem, R.; van der Holt, B.; Beverloo, H.B.; Valent, E.T.; Vermeulen, M.; et al. Identification of High-Risk Multiple Myeloma with a Plasma Cell Leukemia-Like Transcriptomic Profile. J. Clin. Oncol. 2022, 40, 3132–3150. [Google Scholar] [CrossRef] [PubMed]
- Bruinink, D.H.O.; Kuiper, R.; van Duin, M.; Cupedo, T.; van der Velden, V.H.; Hoogenboezem, R.; van der Holt, B.; Beverloo, B.; Valent, E.T.; Vermeulen, M.; et al. Combining Plasma Cell Leukemia-like Status with the Second Revision of the International Staging System Improves Risk Classification. Blood 2022, 140, 1566–1567. [Google Scholar] [CrossRef]
- Perrot, A.; Lauwers-Cances, V.; Tournay, E.; Hulin, C.; Chretien, M.-L.; Royer, B.; Dib, M.; Decaux, O.; Jaccard, A.; Belhadj, K.; et al. Development and Validation of a Cytogenetic Prognostic Index Predicting Survival in Multiple Myeloma. J. Clin. Oncol. 2019, 37, 1657–1665. [Google Scholar] [CrossRef]
- Durie, B.G. The role of anatomic and functional staging in myeloma: Description of Durie/Salmon plus staging system. Eur. J. Cancer 2006, 42, 1539–1543. [Google Scholar] [CrossRef]
- Gonsalves, W.I.; Jevremovic, D.; Nandakumar, B.; Dispenzieri, A.; Buadi, F.K.; Dingli, D.; Lacy, M.Q.; Hayman, S.R.; Kapoor, P.; Leung, N.; et al. Enhancing the R-ISS classification of newly diagnosed multiple myeloma by quantifying circulating clonal plasma cells. Am. J. Hematol. 2019, 95, 310–315. [Google Scholar] [CrossRef] [PubMed]
- Cheng, Q.; Cai, L.; Zhang, Y.; Chen, L.; Hu, Y.; Sun, C. Circulating Plasma Cells as a Biomarker to Predict Newly Diagnosed Multiple Myeloma Prognosis: Developing Nomogram Prognostic Models. Front. Oncol. 2021, 11. [Google Scholar] [CrossRef] [PubMed]
- Chanukuppa, V.; Taware, R.; Taunk, K.; Chatterjee, T.; Sharma, S.; Somasundaram, V.; Rashid, F.; Malakar, D.; Santra, M.K.; Rapole, S. Proteomic alterations in multiple myeloma: A comprehensive study using bone marrow interstitial fluid and serum samples. Front. Oncol. 2021, 10, 566804. [Google Scholar] [CrossRef] [PubMed]
- Mai, E.K.; Huhn, S.; Miah, K.; Poos, A.M.; Scheid, C.; Weisel, K.C.; Bertsch, U.; Munder, M.; Berlanga, O.; Hose, D.; et al. Implications and prognostic impact of Mass Spectrometry in patients with newly-diagnosed Multiple Myeloma. Blood Cancer J. 2023, 13, 1. [Google Scholar] [CrossRef] [PubMed]
- Noori, S.; Wijnands, C.; Langerhorst, P.; Nadal, S.; Bonifay, V.; Stingl, C.; Touzeau, C.; Luider, T.; Dejoie, T.; Jacobs, J.; et al. Minimal residual disease monitoring by targeted Mass Spectrometry allows early relapse detection in multiple myeloma. Blood 2022, 140 (Suppl. S2), 2349–2350. [Google Scholar] [CrossRef]
- Claveau, M.J.S.; Murray, D.L.; Dispenzieri, A.; Kapoor, P.; Binder, M.; Buadi, F.K.; Dingli, D.; Fonder, A.; Gertz, M.A.; Gonsalves, W.I.; et al. Persistance or reappearance of serum monoclonal protein detected by Mass Spectrometry is a major prognostic factor in patients with newly diagnosed multiple myeloma. Blood 2022, 140 (Suppl. S2), 2347–2348. [Google Scholar] [CrossRef]
- He, J.; Yue, X.; He, D.; Zhao, Y.; Yang, Y.; Zheng, G.; Zhang, E.; Han, X.; Wu, W.; Yang, L.; et al. Multiple extramedullary-bone related and/or extramedullary extraosseous are independent poor prognostic factors in patients with newly diagnosed multiple myeloma. Front. Oncol. 2021, 11, 668099. [Google Scholar] [CrossRef]
- Gagelmann, N.; Eikema, D.-J.; Iacobelli, S.; Koster, L.; Nahi, H.; Stoppa, A.-M.; Masszi, T.; Caillot, D.; Lenhoff, S.; Udvardy, M.; et al. Impact of extramedullary disease in patients with newly diagnosed multiple myeloma undergoing autologous stem cell transplantation: A study from the chronic malignancies working party of the EBMT. Haematologica 2018, 103, 890–897. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreau, P.; Attal, M.; Caillot, D.; Macro, M.; Karlin, L.; Garderet, L.; Facon, T.; Benboubker, L.; Escoffre-Barbe, M.; Stoppa, A.-M.; et al. Prospective evaluation of magnetic resonance imaging and [18F]fluorodeoxyglucose positron emission tomography-computed tomography at diagnosis and before maintenance therapy in symptomatic patients with multiple myeloma included in the IFM/DFCI 2009 trial. J. Clin. Oncol. 2017, 35, 2911–2918. [Google Scholar] [CrossRef] [PubMed]
- Sevcikova, S.; Minarik, J.; Stork, M.; Jelinek, T.; Pour, L.; Hajek, R. Extramedullary disease in multiple myeloma—Controversies and future directions. Blood Rev. 2019, 36, 32–39. [Google Scholar] [CrossRef]
- Garcés, P.B.; Cedena, M.T.; Puig, N.; Burgos, L.; Perez, J.J.; Cordon, L.; Flores-Montero, J.; Sanoja-Flores, L.; Calasanz, M.J.; Ortiol, A.; et al. Circulating Tumor Cells for the Staging of Patients With Newly Diagnosed Transplant-Eligible Multiple Myeloma. J. Clin. Oncol. 2022, 40, 315. [Google Scholar] [CrossRef]
- Paiva, B.D.L.; Vidriales, M.-B.; Pérez, J.J.; Mateo, G.; Montalbán, M.A.; Mateos, M.V.; Bladé, J.; Lahuerta, J.J.; Orfao, A.; Miguel, J.F.S. Multiparameter flow cytometry quantification of bone marrow plasma cells at diagnosis provides more prognostic information than morphological assessment in myeloma patients. Haematologica 2009, 94, 1599–1602. [Google Scholar] [CrossRef]
- Vagnoni, D.; Travaglini, F.; Pezzoni, V.; Ruggieri, M.; Bigazzi, C.; Dalsass, A.; Mestichelli, F.; Troiani, E.; Falcioni, S.; Mazzotta, S.; et al. Circulating plasma cells in newly diagnosed symptomatic multiple myeloma as a possible prognostic marker for patients with standard-risk cytogenetics. Br. J. Haematol. 2015, 170, 523–531. [Google Scholar] [CrossRef]
- Chakraborty, R.; Muchtar, E.; Kumar, S.K.; Jevremovic, D.; Buadi, F.K.; Dingli, D.; Dispenzieri, A.; Hayman, S.R.; Hogan, W.J.; Kapoor, P.; et al. Risk stratification in myeloma by detection of circulating plasma cells prior to autologous stem cell transplantation in the novel agent era. Blood Cancer J. 2016, 6, e512–e516. [Google Scholar] [CrossRef] [Green Version]
- Al Saleh, A.S.; Parmar, H.V.; Visram, A.; Muchtar, E.; Buadi, F.K.; Go, R.S.; Dispenzieri, A.; Kapoor, P.; Warsame, R.; Lacy, M.Q.; et al. Increased Bone Marrow Plasma-Cell Percentage Predicts Outcomes in Newly Diagnosed Multiple Myeloma Patients. Clin. Lymphoma Myeloma Leuk. 2020, 20, 596–601. [Google Scholar] [CrossRef]
- Kostopoulos, P.I.V.; Malandrakis, P.; Ntanasis-Stathopoulos, I.; Roussakis, P.; Papaiakovou, E.E.; Panteli, C.; Angelis, N.; Kanellias, N.; Orologas-Stavrou, N.; Theodorakakou, F.; et al. Increased Levels of Circulating Plasma Cells in Patients with Newly Diagnosed Multiple Myeloma Are Independently Associated with Poor Prognosis. Blood 2022, 140 (Suppl. S1), 1564–1565. [Google Scholar] [CrossRef]
- Rasche, L.; Angtuaco, E.J.; Alpe, T.L.; Gershner, G.H.; McDonald, J.E.; Samant, R.S.; Kumar, M.; Van Hemert, R.; Epstein, J.; Deshpande, S.; et al. The presence of large focal lesions is a strong independent prognostic factor in multiple myeloma. Blood 2018, 132, 59–66. [Google Scholar] [CrossRef]
- Rasche, L.; Chavan, S.S.; Stephens, O.W.; Patel, P.H.; Tytarenko, R.; Ashby, C.; Bauer, M.; Stein, C.; Deshpande, S.; Wardell, C.; et al. Spatial genomic heterogeneity in multiple myeloma revealed by multi-region sequencing. Nat. Commun. 2017, 8, 268. [Google Scholar] [CrossRef] [Green Version]
- Sachpekidis, C.; Merz, M.; Raab, M.S.; Bertsch, U.; Weru, V.; Kopp-Schneider, A.; Jauch, A.; Goldschmidt, H.; Dimitrakopoulou-Strauss, A. The prognostic significance of [18F]FDG PET/CT in multiple myeloma according to novel interpretation criteria (IMPeTUs). EJNMMI Res. 2021, 11, 100. [Google Scholar] [CrossRef]
- Intzes, S.; Symeonidou, M.; Zagoridis, K.; Bezirgianidou, Z.; Vrachiolias, G.; Spanoudaki, A.; Spanoudakis, E. Socioeconomic status is globally a prognostic factor for overall survival of multiple myeloma patients: Synthesis of studies and review of the literature. Mediterr. J. Hematol. Infect. Dis. 2021, 13, e2021006. [Google Scholar] [CrossRef]
- Offidani, M.; Corvatta, L.; Gentili, S. Triplet vs. doublet drug regimens for managing multiple myeloma. Expert. Opinion. Pharmacother. 2018, 19, 137–149. [Google Scholar] [CrossRef]
- Dimopoulos, M.A.; Moreau, P.; Terpos, E.; Mateos, M.V.; Zweegman, S.; Cook, G.; Delforge, M.; Hájek, R.; Schjesvold, F.; Cavo, M.; et al. Multiple myeloma: EHA-ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2021, 32, 309–322. [Google Scholar] [CrossRef] [PubMed]
- Rosiñol, L.; Oriol, A.; Rios, R.; Sureda, A.; Blanchard, M.J.; Hernández, M.T.; Martínez-Martínez, R.; Moraleda, J.M.; Jarque, I.; Bargay, J.; et al. Bortezomib, lenalidomide, and dexamethasone as induction therapy prior to autologous transplant in multiple myeloma. Blood 2019, 134, 1337–1345. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paiva, B.; Puig, N.; Cedena, M.T.; Cordon, L.; Vidriales, M.-B.; Burgos, L.; Flores-Montero, J.; Lopez-Anglada, L.; Gutierrez, N.; Calasanz, M.J.; et al. Impact of next-generation flow (NGF) minimal residual disease (MRD) monitoring in multiple myeloma (MM): Results from the Pethema/GEM2012 Trial. Blood 2017, 130 (Suppl. S1), 905. [Google Scholar] [CrossRef]
- Moreau, P.; Sonneveld, P. Daratumumab maintenance or observation after treatment with bortezomib, thalidomide and dexamethasone (VTd) with or without DARA and autologous stem cell transplant in patients with newly diagnosed multiple myeloma: CASSIOPEIA Part 2. J. Clin. Oncol. 2021, 39, 8004. [Google Scholar] [CrossRef]
- Kaufman, J.L.; Laubach, J.P.; Sborov, D.; Reeves, B.; Rodriguez, C.; Chari, A.; Silbermann, R.W.; Costa, L.J.; Anderson, L.D., Jr.; Nathwani, N.; et al. Daratumumab (dara) + lenalidomide, bortezomib, and dexamethasone (RVd) in patients with transplant-eligible newly diagnosed multiple myeloma (NDMM): Final analysis of GRIFFIN. Blood 2022, 136 (Suppl. S1), 45–46. [Google Scholar] [CrossRef]
- Costa, L.J.; Chhabra, S.; Medvedova, E.; Dholaria, B.R.; Schmidt, T.M.; Godby, K.N.; Silbermann, R.; Dhakal, B.; Bal, S.; Giri, S.; et al. Daratumumab, carfilzomib, lenalidomide, and dexamethasone with minimal residual disease response-adapted therapy in newly diagnosed multiple myeloma. J. Clin. Oncol. 2022, 40, 2901–2912. [Google Scholar] [CrossRef] [PubMed]
- Landgren, O.; Hultcrantz, M.; Diamond, B.; Lesokhin, A.M.; Mailankody, S.; Hassoun, H.; Tan, C.; Shah, U.A.; Lu, S.X.; Salcedo, M.; et al. Safety and effectiveness of weekly carfilzomib, lenalidomide, dexamethasone, and daratumumab combination therapy for patients with newly diagnosed multiple myeloma: The MANHATTAN nonrandomized clinical trial. JAMA Oncol. 2021, 7, 862–868. [Google Scholar] [CrossRef]
- Perrot, A.; Lauwers-Cances, V.; Touzeau, C.; Decaux, O.; Hulin, C.; Macro, M.; Stoppa, A.-M.; Chretien, M.L.; Karlin, L.; Mariette, C.; et al. Daratumumab plus ixazomib, lenalidomide, and dexamethasone as extended induction and consolidation followed by lenalidomide maintenance in standard-risk transplant-eligible newly diagnosed multiple myeloma (NDMM) patients (IFM 2018-01): A phase II study of the IFM group. Blood 2021, 138 (Suppl. S1), 464. [Google Scholar]
- Goldschmidt, H.; Mai, E.K.; Bertsch, U.; Fenk, R.; Nievergall, E.; Tichy, D.; Besemer, B.; Dürig, J.; Schroers, R.; von Metzler, I.; et al. Addition of isatuximab to lenalidomide, bortezomib, and dexamethasone as induction therapy for newly diagnosed, transplantation-eligible patients with multiple myeloma (GMMG-HD7): Part 1 of an open-label, multicentre, randomised, active-controlled, phase 3 trial. Lancet Haematol. 2022, 9, e810–e821. [Google Scholar] [CrossRef]
- Goldschmidt, H.; Mai, E.K.; Bertsch, U.; Besemer, B.; Haenel, M.; Miah, K.; Fenk, R.; Schlenzka, J.; Munder, M.; Dürig, J.; et al. Elotuzumab in combination with lenalidomide, bortezomib, dexamethasone and autologous transplantation for newly-diagnosed multiple myeloma: Results from the randomized phase III GMMG-HD6 trial. Blood 2021, 138 (Suppl. S1), 486. [Google Scholar] [CrossRef]
- Moreau, P.; San Miguel, J.; Sonneveld, P.; Mateos, M.V.; Zamagni, E.; Avet-Loiseau, H.; Hajek, R.; Dimopoulos, M.A.; Ludwig, H.; Einsele, H.; et al. Multiple myeloma: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann. Oncol. 2017, 28, iv52–iv61. [Google Scholar] [CrossRef] [PubMed]
- Bringhen, S.; D’Agostino, M.; Giuliani, N.; Attucci, I.; Zambello, R.; Ronconi, S.; Vincelli, I.D.; Allegra, A.; Leonardi, G.; Rossi, G.; et al. Bortezomib-Melphalan-Prednisone (VMP) Vs. Lenalidomide-Dexamethasone (Rd) in transplant-ineligible real-life multiple myeloma patients: Updated results of the randomized phase IV Real MM trial. Blood 2022, 140 (Suppl. S1), 1814–1816. [Google Scholar] [CrossRef]
- Moreau, P.; Facon, T.; Usmani, S.; Bahlis, N.J.; Raje, N.; Plesner, T.; Orlowski, R.Z.; Basu, S.; Nahi, H.; Hulin, C.; et al. Daratumumab plus lenalidomide and dexamethasone (D-Rd) versus lenalidomide and dexamethasone (Rd) in transplant-ineligible patients (Pts) with newly diagnosed multiple myeloma (NDMM): Clinical assessment of key subgroups of the Phase 3 Maia Study. Blood 2022, 140 (Suppl. S1), 7297–7300. [Google Scholar] [CrossRef]
- Mateos, M.V.; San-Miguel, J.; Cavo, M.; Creixenti, J.B.; Suzuki, J.B.; Jakubowiak, A.; Knop, S.; Doyen, C.; Lucio, P.; Nagy, Z.; et al. Daratumumab plus bortezomib, melphalan, and prednisone (D-VMP) versus bortezomib, melphalan, and prednisone (VMP) alone in transplant-ineligible patients with newly diagnosed multiple myeloma (NDMM): Updated analysis of the Phase 3 Alcyone Study. Blood 2022, 140 (Suppl. S1), 10157–10159. [Google Scholar] [CrossRef]
- Manier, S.; Corre, J.; Hulin, C.; Laribi, K.; Araujo, C.; Pica, G.-M.; Touzeau, C.; Godmer, P.; Slama, B.; Karlin, L.; et al. A dexamethasone sparing-regimen with daratumumab and lenalidomide in frail patients with newly-diagnosed multiple myeloma: Efficacy and safety analysis of the Phase 3 IFM2017-03 Trial. Blood 2022, 140 (Suppl. S1), 1369–1370. [Google Scholar] [CrossRef]
- Bobin, A.; Lambert, J.; Perrot, A.; Manier, S.; Montes, L.; Jaccard, A.; Karlin, L.; Godmer, P.; Caillot, D.; Hulin, C.; et al. Multicenter open label phase 3 study of isatuximab plus lenalidomide and dexamethasone with/without bortezomib in the treatment of newly diagnosed non-frail transplant ineligible multiple myeloma elderly patients (≥65; <80 Years). IFM2020-05/Benefit. Blood 2022, 140 (Suppl. S1), 4423–4425. [Google Scholar]
- Perrot, A.; Lauwers-Cances, V.; Cazaubiel, T.; Facon, T.; Caillot, D.; Clement-Filliatre, L.; Macro, M.; Decaux, O.; Belhadj, K.; Mohty, M.; et al. Early versus late autologous stem cell transplant in newly diagnosed multiple myeloma: Long-term follow-up analysis of the IFM 2009 Trial. Blood 2022, 140 (Suppl. S2), 39. [Google Scholar] [CrossRef]
- Richardson, P.G.; Jacobus, S.J.; Weller, E.A.; Hassoun, H.; Lonial, S.; Raje, N.S.; Medvedova, E.; McCarthy, P.L.; Libby, E.N.; Voorhees, P.M.; et al. Triplet therapy, transplantation, and maintenance until progression in myeloma. N. Engl. J. Med. 2022, 387, 132–147. [Google Scholar] [CrossRef] [PubMed]
- Cavo, M.; Gay, F.; Beksac, M.; Pantani, L.; Petrucci, M.T.; Dimopoulos, M.A.; Dozza, L.; van der Holt, B.; Zweegman, S.; Oliva, S.; et al. Autologous haematopoietic stem-cell transplantation versus bortezomib–melphalan–prednisone, with or without bortezomib–lenalidomide–dexamethasone consolidation therapy, and lenalidomide maintenance for newly diagnosed multiple myeloma (EMN02/HO95): A multicentre, randomised, open-label, phase 3 study. Lancet Haematol. 2020, 7, e456–e468. [Google Scholar] [CrossRef] [PubMed]
- Gay, F.; Musto, P.; Rota-Scalabrini, D.; Bertamini, L.; Belotti, A.; Galli, M.; Offidani, M.; Zamagni, E.; Ledda, A.; Grasso, M.; et al. Carfilzomib with cyclophosphamide and dexamethasone or lenalidomide and dexamethasone plus autologous transplantation or carfilzomib plus lenalidomide and dexamethasone, followed by maintenance with carfilzomib plus lenalidomide or lenalidomide alone for patients with newly diagnosed multiple myeloma (FORTE): A randomised, open-label, phase 2 trial. Lancet Oncol. 2021, 22, 1705–1720. [Google Scholar] [CrossRef]
- Yong, K.; Wilson, W.; de Tute, R.M.; Camilleri, M.; Ramasamy, K.; Streetly, M.; Sive, J.; Bygrave, C.A.; Benjamin, R.; Chapman, M.; et al. Upfront autologous haematopoietic stem-cell transplantation versus carfilzomib–cyclophosphamide–dexamethasone consolidation with carfilzomib maintenance in patients with newly diagnosed multiple myeloma in England and Wales (CARDAMON): A randomised, phase 2, non-inferiority trial. Lancet Haematol. 2022, 10, e93–e106. [Google Scholar] [CrossRef] [PubMed]
- Boccadoro, M.; San-Miguel, J.; Suzuki, K.; Van De Donk, N.W.C.J.; Cook, G.; Jakubowiak, A.; Madduri, D.; Afifi, S.; Stevens, A.-S.; Schecter, J.M.; et al. DVRd followed by ciltacabtagene autoleucel versus DVRd followed by ASCT in patients with newly diagnosed multiple myeloma who are transplant eligible: A randomized phase 3 study (EMagine/CARTITUDE-6). Blood 2022, 140 (Suppl. S1), 4630–4632. [Google Scholar] [CrossRef]
- Straka, M.C.; Schaefer-Eckart, K.; Hertenstein, B.; Bassermann, F.; Salwender, H.; Langer, C.; Krönke, J.; Kull, M.; Schilling, G.; Schieferdecker, A.; et al. Long-term outcome of a prospective randomized trial comparing continuous lenalidomide/dexamethasone with lenalidomide/dexamethasone induction, MEL140 with autologous blood stem Cell transplantation and single agent lenalidomide maintenance in patients of age 60-75 years with newly diagnosed multiple myeloma. Blood 2022, 140 (Suppl. S1), 287–288. [Google Scholar]
- Giri, S.; Chhabra, S.; Medvedova, E.; Dholaria, B.; Schmidt, T.M.; Godby, K.N.; Silbermann, R.; Dhakal, B.; Bal, S.; D’Souza, A.; et al. Quadruplet induction, autologous transplantation and minimal residual disease adapted consolidation and treatment cessation in older adults ≥70y with newly diagnosed multiple myeloma: A subgroup analysis of the Master Trial. Blood 2022, 140 (Suppl. S1), 4431–4433. [Google Scholar] [CrossRef]
- Durie, B.G.M.; Hoering, A.; Sexton, R.; Abidi, M.H.; Epstein, J.; Rajkumar, S.V.; Dispenzieri, A.; Kahanic, S.P.; Thakuri, M.C.; Reu, F.J.; et al. Longer term follow-up of the randomized phase III trial SWOG S0777: Bortezomib, lenalidomide and dexamethasone vs. lenalidomide and dexamethasone in patients (Pts) with previously untreated multiple myeloma without an intent for immediate autologous stem cell transplant (ASCT). Blood Cancer J. 2020, 10, 53. [Google Scholar] [CrossRef] [PubMed]
- Sonneveld, P.; Dimopoulos, M.A.; Beksac, M.; van der Holt, B.; Aquino, S.; Ludwig, H.; Zweegman, S.; Zander, T.; Zamagni, E.; Wester, R.; et al. Consolidation and maintenance in newly diagnosed multiple myeloma. J. Clin. Oncol. 2021, 39, 3613–3622. [Google Scholar] [CrossRef]
- Stadtmauer, E.A.; Pasquini, M.C.; Blackwell, B.; Hari, P.; Bashey, A.; Devine, S.; Efebera, Y.; Ganguly, S.; Gasparetto, C.; Geller, N.; et al. Autologous transplantation, consolidation, and maintenance therapy in multiple myeloma: Results of the BMT CTN 0702 trial. J. Clin. Oncol. 2019, 37, 589–597. [Google Scholar] [CrossRef]
- Hari, P.; Pasquini, M.C.; Blackwell, B.; Fraser, R.; Fei, M.; Devine, S.M.; Efebera, Y.A.; Geller, N.; Horowitz, M.M.; Koreth, J.; et al. Long-term follow-up of BMT CTN 0702 (STaMINA) of postautologous hematopoietic cell transplantation (autoHCT) strategies in the upfront treatment of multiple myeloma (MM). J. Clin. Oncol. 2020, 38, 8506. [Google Scholar] [CrossRef]
- Attal, M.; Lauwers-Cances, V.; Marit, G.; Caillot, D.; Moreau, P.; Facon, T.; Stoppa, A.M.; Hulin, C.; Benboubker, L.; Garderet, L.; et al. Lenalidomide maintenance after stem-cell transplantation for multiple myeloma. N. Engl. J. Med. 2021, 366, 1782–1791. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Palumbo, A.; Cavallo, F.; Gay, F.; Di Raimondo, F.; Ben Yehuda, D.; Petrucci, M.T.; Pezzatti, S.; Caravita, T.; Cerrato, C.; Ribakovsky, E.; et al. Autologous transplantation and maintenance therapy in multiple myeloma. N. Engl. J. Med. 2014, 371, 895–905. [Google Scholar] [CrossRef]
- Holstein, S.A.; Jung, S.-H.; Richardson, P.G.; Hofmeister, C.C.; Hurd, D.D.; Hassoun, H.; Giralt, S.; Stadtmauer, E.A.; Weisdorf, D.J.; Vij, R.; et al. Updated analysis of CALGB (Alliance) 100104 assessing lenalidomide versus placebo maintenance after single autologous stem-cell transplantation for multiple myeloma: A randomised, double-blind, phase 3 trial. Lancet Haematol. 2017, 4, e431–e442. [Google Scholar] [CrossRef]
- McCarthy, P.L.; Holstein, S.A.; Petrucci, M.T.; Richardson, P.G.; Hulin, C.; Tosi, P.; Bringhen, S.; Musto, P.; Anderson, K.C.; Caillot, D.; et al. Lenalidomide maintenance after autologous stem-cell transplantation in newly diagnosed multiple myeloma: A meta-analysis. J. Clin. Oncol. 2017, 35, 3279–3289. [Google Scholar] [CrossRef]
- Jackson, G.H.; Davies, F.E.; Pawlyn, C.; Cairns, D.A.; Striha, A.; Collett, C.; Hockaday, A.; Jones, J.R.; Kishore, B.; Garg, M.; et al. Lenalidomide maintenance versus observation for patients with newly diagnosed multiple myeloma (Myeloma XI): A multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2019, 20, 57–73. [Google Scholar] [CrossRef] [Green Version]
- Jones, J.R.; Cairns, D.; Menzies, T.; Pawlyn, C.; Davies, F.E.; Sigsworth, R.; Jenner, M.W.; Kaiser, M.F.; Mottram, R.; Drayson, M.T.; et al. Second primary malignancy incidence in patients receiving lenalidomide at induction and maintenance; long-term follow up of 4358 patients enrolled to the Myeloma XI Trial. Blood 2022, 140 (Suppl. S1), 1823–1825. [Google Scholar] [CrossRef]
- Pawlyn, C.; Menzies, T.; Davies, F.E.; de Tute, R.M.; Henderson, R.; Cook, G.; Jenner, M.W.; Jones, J.R.; Kaiser, M.F.; Drayson, M.T.; et al. Defining the optimal duration of lenalidomide maintenance after autologous stem cell transplant—Data from the Myeloma XI Trial. Blood 2022, 140 (Suppl. S1), 1371–1372. [Google Scholar] [CrossRef]
- Moreau, P.; Hulin, C.; Perrot, A.; Arnulf, B.; Belhadj, K.; Benboubker, L.; Béné, M.C.; Zweegman, S.; Caillon, H.; Caillot, D.; et al. Maintenance with daratumumab or observation following treatment with bortezomib, thalidomide, and dexamethasone with or without daratumumab and autologous stem-cell transplant in patients with newly diagnosed multiple myeloma (CASSIOPEIA): An open-label, randomised, phase 3 trial. Lancet Oncol. 2021, 22, 1378–1390. [Google Scholar] [CrossRef]
- Rosinol, L.; Oriol, A.; Ríos Tamayo, R.; Blanchard, M.J.; Jarque, I.; Bargay, J.; Hernández, M.-T.; Moraleda, J.M.; Carrillo-Cruz, E.; Sureda, A.; et al. Ixazomib plus lenalidomide/dexamethasone (IRd) versus lenalidomide /dexamethasone (Rd) maintenance after autologous stem cell transplant in patients with newly diagnosed multiple myeloma: Results of the Spanish GEM2014MAIN Trial. Blood 2021, 138 (Suppl. S1), 466. [Google Scholar] [CrossRef]
- Dytfeld, D.; Wrobel, T.; Jamroziak, K.; Kubicki, T.; Robak, P.; Walter-Croneck, A.; Czyż, J.; Tyczyńska, A.; Druzd-Sitek, A.; Giannopoulos, K.; et al. Carfilzomib, lenalidomide, and dexamethasone or lenalidomide alone as maintenance therapy after autologous stem-cell transplantation in patients with multiple myeloma (ATLAS): Interim analysis of a randomised, open-label, phase 3 trial. Lancet Oncol. 2023, 24, 139–150. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.K.; Harrison, S.J.; Cavo, M.; de la Rubia, J.; Popat, R.; Gasparetto, C.; Hungria, V.; Salwender, H.; Suzuki, K.; Kim, I.; et al. Venetoclax or placebo in combination with bortezomib and dexamethasone in patients with relapsed or refractory multiple myeloma (BELLINI): A randomised, double-blind, multicentre, phase 3 trial. Lancet Oncol. 2020, 21, 1630–1642. [Google Scholar] [CrossRef]
- Mina, R.; Musto, P.; Rota-Scalabrini, D.; Gamberi, B.; Palmas, A.; Aquino, S.; de Fabritiis, P.; Giuliani, N.; De Rosa, L.; Gozzetti, A.; et al. Carfilzomib induction, consolidation, and maintenance with or without autologous stem-cell transplantation in patients with newly diagnosed multiple myeloma: Pre-planned cytogenetic subgroup analysis of the randomised, phase 2 FORTE trial. Lancet Oncol. 2023, 24, 64–76. [Google Scholar] [CrossRef]
- Gaballa, M.R.; Ma, J.; Rauf, M.; Pasvolsky, O.; Tanner, M.R.; Bashir, Q.; Srour, S.; Saini, N.; Ramdial, J.; Nieto, Y.; et al. KRD vs. VRD as induction before autologous hematopoietic progenitor cell transplantation for high-risk multiple myeloma. Bone Marrow Transplant. 2022, 57, 1142–1149. [Google Scholar] [CrossRef]
- Tan, C.; Nemirovsky, D.; Derkach, A.; Hultcrantz, M.; Hassoun, H.; Mailankody, S.; Shah, U.A.; Patel, D.; Maclachlan, K.H.; Lahoud, O.B.; et al. Carfilzomib, lenalidomide and dexamethasone (KRd) vs bortezomib, lenalidomide, and dexamethasone (VRd) As induction therapy in newly diagnosed high-risk multiple myeloma. Blood 2022, 140 (Suppl. S1), 1817–1819. [Google Scholar] [CrossRef]
- Pasvolsky, O.; Gaballa, M.R.; Milton, D.R.; Masood, A.; Sami, S.S.; Tanner, M.R.; Bashir, Q.; Srour, S.; Saini, N.; Ramdial, J.; et al. Autologous stem cell transplantation for patients with multiple myeloma with translocation (4;14): The MD Anderson Cancer Center Experience: Transplant in t(4;14) MM. Transplant. Cell. Ther. 2023, 29, 260.e1–260.e6. [Google Scholar] [CrossRef]
- Callander, M.N.; Silbermann, R.; Kaufman, J.L.; Godby, K.N.; Laubach, J.P.; Schmidt, T.M.; Sborov, D.W.; Medvedova, E.; Reeves, B.; Dhakal, B.; et al. Analysis of transplant-eligible patients (Pts) who received frontline daratumumab (DARA)-Based quadruplet therapy for the treatment of newly diagnosed multiple myeloma (NDMM) with high-risk cytogenetic abnormalities (HRCA) in the Griffin and Master studies. Blood 2022, 140 (Suppl. S1), 10144–10147. [Google Scholar] [CrossRef]
- Villalba, A.; Gonzalez-Rodriguez, A.P.; Arzuaga-Mendez, J.; Puig, N.; Arnao, M.; Arguiñano, J.M.; Jimenez, M.; Canet, M.; Teruel, A.I.; Sola, M.; et al. Single versus tandem autologous stem-cell transplantation in patients with newly diagnosed multiple myeloma and high-risk cytogenetics. A retrospective, open-label study of the PETHEMA/Spanish Myeloma Group (GEM). Leuk. Lymphoma 2022, 63, 3438–3447. [Google Scholar] [CrossRef] [PubMed]
- Panopoulou, A.; Cairns, D.A.; Holroyd, A.E.; Nichols, I.; Cray, N.; Pawlyn, C.; Cook, G.; Drayson, M.T.; Boyd, K.D.; Davies, F.E.; et al. Optimizing the value of lenalidomide maintenance by genetic profiling—An analysis of 556 Myeloma XI trial patients. Blood 2022. Online ahead of print. [Google Scholar] [CrossRef] [PubMed]
- Touzeau, C.; Perrot, A.; Hulin, C.; Nichols, I.; Cray, N.; Pawlyn, C.; Cook, G.; Drayson, M.; Boyd, K.; Davies, F.E.; et al. Daratumumab carfilzomib lenalidomide and dexamethasone as induction therapy in high-risk, transplant-eligible patients with newly diagnosed myeloma: Results of the phase 2 study IFM 2018-04. J. Clin. Oncol. 2022, 40, 8002. [Google Scholar] [CrossRef]
- Weisel, K.C.; Besemer, B.; Haenel, M.; Lutz, R.; Mann, C.; Munder, M.; Goerner, M.; Reinhardt, H.C.; Nogai, A.; Ko, Y.D.; et al. Isatuximab, carfilzomib, lenalidomide, and dexamethasone (Isa-KRd) in patients with high-risk newly diagnosed multiple myeloma: Planned interim analysis of the GMMG-Concept Trial. Blood 2022, 140 (Suppl. S1), 1836–1838. [Google Scholar] [CrossRef]
- Leypoldt, L.B.; Besemer, B.; Asemissen, A.M.; Hänel, M.; Blau, I.W.; Görner, M.; Ko, Y.D.; Reinhardt, H.C.; Staib, P.; Mann, C.; et al. Isatuximab, carfilzomib, lenalidomide, and dexamethasone (Isa-KRd) in front-line treatment of high-risk multiple myeloma: Interim analysis of the GMMG-CONCEPT trial. Leukemia 2022, 36, 885–888. [Google Scholar] [CrossRef]
- Kaiser, M.F.; Hall, A.; Smith, I.; de Tute, R.M.; Roberts, S.; Ingleson, E.; Bowles, K.M.; Garg, M.; Lokare, A.; Messiou, C.; et al. Extended intensified post-ASCT consolidation with daratumumab, bortezomib, lenalidomide and dexamethasone (Dara-VRd) for ultra-high risk (UHiR) newly diagnosed myeloma (NDMM) and primary plasma cell leukemia (pPCL): The UK Optimum/Muknine Trial. Blood 2022, 140 (Suppl. S1), 1833–1835. [Google Scholar] [CrossRef]
- Du, J.; Fu, W.; Lu, J.; Qiang, W.; He, H.; Liu, J.; Yang, Y.; Feng, Z.; Jin, L.; Fan, X.; et al. Phase I open-label single-arm study of BCMA/CD19 dual-targeting FasTCAR-T Cells (GC012F) as first-line therapy for transplant-eligible newly diagnosed high-risk multiple myeloma. Blood 2022, 140 (Suppl. S1), 889–890. [Google Scholar] [CrossRef]
- Munshi, N.C.; Avet-Loiseau, H.; Anderson, K.C.; Neri, P.; Paiva, B.; Samur, M.; Dimopoulos, M.; Kulakova, M.; Lam, A.; Hashim, M.; et al. A large meta-analysis establishes the role of MRD negativity in long-term survival outcomes in patients with multiple myeloma. Blood Adv. 2020, 4, 5988–5999. [Google Scholar] [CrossRef]
- Kumar, S.; Paiva, B.; Anderson, K.C.; Durie, B.; Landgren, O.; Moreau, P.; Munshi, N.; Lonial, S.; Bladé, J.; Mateos, M.V.; et al. International Myeloma Working Group consensus criteria for response and minimal residual disease assessment in multiple myeloma. Lancet Oncol. 2016, 17, e328–e346. [Google Scholar] [CrossRef]
- Paiva, B.; Puig, N.; Cedena, M.T.; Rosiñol, L.; Cordón, L.; Vidriales, M.B.; Burgos, L.; Flores-Montero, J.; Sanoja-Flores, L.; Lopez-Anglada, L.; et al. Measurable residual disease by next-generation flow cytometry in multiple myeloma. J. Clin. Oncol. 2020, 38, 784–792. [Google Scholar] [CrossRef] [PubMed]
- Perrot, A.; Lauwers-Cances, V.; Corre, J.; Robillard, N.; Hulin, C.; Chretien, M.L.; Dejoie, T.; Maheo, S.; Stoppa, A.M.; Pegourie, B.; et al. Minimal residual disease negativity using deep sequencing is a major prognostic factor in multiple myeloma. Blood 2018, 132, 2456–2464. [Google Scholar] [CrossRef] [Green Version]
- De Tute, R.; Pawlyn, C.; Cairns, D.A.; Davies, F.E.; Menzies, T.; Rawstron, A.; Jones, J.R.; Hockaday, A.; Henderson, R.; Cook, G.; et al. Minimal residual disease following autologous stem cell transplant for patients with myeloma: Prognostic significance and the impact of lenalidomide maintenance and molecular risk. J. Clin. Oncol. 2022, 40, 2889–2900. [Google Scholar] [CrossRef]
- San-Miguel, J.; Avet-Loiseau, H.; Paiva, B.; Kumar, S.; Dimopoulos, M.A.; Facon, T.; Mateos, M.V.; Touzeau, C.; Jakubowiak, A.; Usmani, S.Z.; et al. Sustained minimal residual disease negativity in newly diagnosed multiple myeloma and the impact of daratumumab in MAIA and ALCYONE. Blood 2022, 139, 492–501. [Google Scholar] [CrossRef]
- Diamond, B.; Korde, N.; Lesokhin, A.M.; Smith, E.L.; Shah, U.; Mailankody, S.; Hultcrantz, M.; Hassoun, H.; Lu, S.X.; Tan, C.; et al. Dynamics of minimal residual disease in patients with multiple myeloma on continuous lenalidomide maintenance: A single-arm, single-centre, phase 2 trial. Lancet Haematol. 2021, 8, e422–e432. [Google Scholar] [CrossRef] [PubMed]
- Puig, N.; Agulló, C.; Contreras Sanfeliciano, T.; Paiva, B.; Cedena, M.T.; Rosinol, L.; Garcia-Sanz, R.; Martínez-López, J.; Oriol, A.; Blanchard, M.J.; et al. Clinical impact of next generation flow in bone marrow vs Qip-Mass Spectrometry in peripheral blood to assess minimal residual disease in newly diagnosed multiple myeloma patients receiving maintenance as part of the GEM2014MAIN Trial. Blood 2022, 140 (Suppl. S1), 2098–2100. [Google Scholar] [CrossRef]
- Notarfranchi, L.; Zherniakova, A.; Lasa, M.; Puig, N.; Cedena, M.T.; Martinez-Lopez, J.; Calasanz, M.J.; Alignani, D.; Burgos, L.; Manrique, I.; et al. Ultra-sensitive assessment of measurable residual disease (MRD) in peripheral blood (PB) of multiple myeloma (MM) patients using Bloodflow. Blood 2022, 140 (Suppl. S1), 2095–2097. [Google Scholar] [CrossRef]
- Moreau, P.; Zweegman, S.; Perrot, A.; Hulin, C.; Caillot, D.; Facon, T.; Leleu, X.; Belhadj, K.; Karlin, L.; Benboubker, L.; et al. Prognostic value of positron emission tomography-computed tomography (PRT-CT) at dagnosis and follow-upin transplant-eligible newly diagnosed multiple myeloma (TE NDMM) patients treated in the phase 3 Cassiopeia study: Results of the Cassiopet Companion Study. Blood 2019, 134, 692. [Google Scholar]
- Costa, L.; Chhabra, S.; Medvedova, E.; Schmidt, T.M.; Dholaria, B.; Godby, K.N.; Silbermann, R.; Bal, S.; D’Souza, A.; Giri, S.; et al. Outcomes of MRD-adapted treatment modulation in patients with newly diagnosed multiple myeloma receiving daratumumab, carfilzomib, lenalidomide and dexamethasone (Dara-KRd) and autologous transplantation: Extended follow up of the Master Trial. Blood 2022, 140 (Suppl. S1), 7275–7277. [Google Scholar] [CrossRef]
- Yong, K.; Royle, K.L.; Ramasamy, K.; Parrish, C.; Hockaday, A.; Asher, S.; Drayson, M.T.; de Tute, R.M.; Jenner, M.W.; Kaiser, M.F.; et al. Risk-adapted therapy directed according to response (RADAR, UK-MRA Myeloma XV)—Comparing MRD-guided treatment escalation and de-escalation strategies in patients with newly diagnosed myeloma suitable for stem cell transplantation. Blood 2022, 140 (Suppl. S1), 1844–1846. [Google Scholar] [CrossRef]
- Kastritis, E.; Terpos, E.; Dimopoulos, M.A. How I treat relapsed multiple myeloma. Blood 2022, 139, 2904–2917. [Google Scholar] [CrossRef] [PubMed]
- Moreau, P.; Kumar, S.K.; San Miguel, J.; Davies, F.; Zamagni, E.; Bahlis, N.; Ludwig, H.; Mikhael, J.; Terpos, E.; Schjesvold, F.; et al. Treatment of relapsed and refractory multiple myeloma: Recommendations from International Myeloma Working Group. Lancet Oncol. 2021, 22, E105–E118. [Google Scholar] [CrossRef] [PubMed]
- Dimopoulos, M.A.; Oriol, A.; Nahi, H.; San-Miguel, J.; Bahlis, N.J.; Usmani, S.Z.; Rabin, N.; Orlowski, R.Z.; Suzuki, K.; Plesner, T.; et al. Overall survival with daratumumab, lenalidomide and dexamethasone in previously treated multiple myeloma (POLLUX): A randomized, open-label, phase III trial. J. Clin. Oncol. 2023, 41, 1590–1599. [Google Scholar] [CrossRef]
- Moreau, P.; Dimopoulos, M.A.; Mikhael, J.; Singh, E.; Risse, M.-L.; Martin, T. VP5-2022: Updated progression-free survival (PFS) and depth of response in IKEMA, a randomized phase III trial of isatuximab, carfilzomib and dexamethasone (Isa-Kd) vs Kd in relapsed multiple myeloma (MM). Ann. Oncol. 2022, 33, 664–665. [Google Scholar] [CrossRef]
- Facon, M.T.; Moreau, P.; Baker, R.; Pour, L.; Min, C.-K.; Leleu, X.; Mohty, M.; Karlin, L.; Rawlings, A.; Tekle, C.; et al. Isatuximab Plus Carfilzomib and dexamethasone in patients with early versus late relapsed multiple myeloma: Ikema subgroup analysis. Blood 2022, 140 (Suppl. S1), 1820–1822. [Google Scholar] [CrossRef]
- Capra, P.M.; Martin, T.; Moreau, P.; Martinez, G.; Oriol, A.; Koh, Y.; Quach, H.; Yong, Q.; Rawlings, A.; Tekle, C.; et al. Isatuximab plus carfilzomib and dexamethasone in relapsed multiple myeloma: Ikema subgroup analysis by number of prior lines of treatment. Blood 2022, 140 (Suppl. S1), 7138–7140. [Google Scholar] [CrossRef]
- Usmani, S.Z.; Quach, H.; Mateos, M.V.; Landgren, O.; Leleu, X.; Siegel, D.; Weisel, K.; Gavriatopoulou, M.; Oriol, A.; Rabin, N.; et al. Carfilzomib, dexamethasone, and daratumumab versus carfilzomib and dexamethasone for patients with relapsed or refractory multiple myeloma (CANDOR): Updated outcomes from a randomised, multicentre, open-label, phase 3 study. Lancet Oncol. 2022, 23, 65–76. [Google Scholar] [CrossRef]
- Sonneveld, P.; Chanan-Khan, A.; Weisel, K.; Ahmadi, T.; Qin, X.; Garvin Mayo, W.; Gai, X.; Carey, J.; Carson, R.; Spencer, A.; et al. Overall survival with daratumumab, bortezomib, and dexamethasone in previously treated multiple myeloma (CASTOR): A randomized, open-label, phase-III trial. J. Clin. Oncol. 2023, 41, 1600–1609. [Google Scholar] [CrossRef]
- Dimopoulos, M.A.; Terpos, E.; Boccadoro, M.; Delimpasi, S.; Beksac, M.; Katodritou, E.; Moreau, P.; Baldini, L.; Symeonidis, A.; Bila, J.; et al. Daratumumab plus pomalidomide and dexamethasone versus pomalidomide and dexamethasone alone in previously treated multiple myeloma (APOLLO): An open-label, randomised, phase 3 trial. Lancet Oncol. 2021, 22, 801–812. [Google Scholar] [CrossRef]
- Dimopoulos, M.A.; Terpos, E.; Boccadoro, M.; Delimpasi, S.; Beksac, M.; Katodritou, E.; Moreau, P.; Baldini, L.; Symeonidis, A.; Bila, I.; et al. Subcutaneous daratumumab plus pomalidomide and dexamethasone (D-Pd) versus pomalidomide and dexamethasone (Pd) alone in patients with relapsed or refractory multiple myeloma (RRMM): Overall survival results from the Phase 3 Apollo Study. Blood 2022, 140 (Suppl. S1), 7272–7274. [Google Scholar] [CrossRef]
- Richardson, P.G.; Perrot, A.; San-Miguel, J.; Beksac, M.; Spicka, I.; Leleu, X.; Schjesvold, F.; Moreau, P.; Dimopoulos, M.A.; Huang, J.S.; et al. Isatuximab plus pomalidomide and low-dose dexamethasone versus pomalidomide and low-dose dexamethasone in patients with relapsed and refractory multiple myeloma (ICARIA-MM): Follow-up analysis of a randomised, phase 3 study. Lancet Oncol. 2022, 23, 416–427. [Google Scholar] [CrossRef]
- Richardson, P.G.; Perrot, A.; San-Miguel, J.; Beksac, M.; Spicka, I.; Leleu, X.; Schjesvold, F.; Moreau, P.; Dimopoulos, M.A.; Huang, J.S.Y.; et al. Isatuximab plus pomalidomide/low-dose dexamethasone versus pomalidomide/low-dose dexamethasone in patients with relapsed/refractory multiple myeloma (ICARIA-MM): Characterization of subsequent antimyeloma therapies. Blood 2022, 140 (Suppl. S1), 608–610. [Google Scholar] [CrossRef]
- Dimopoulos, M.A.; Dytfeld, D.; Grosicki, S.; Moreau, P.; Takezako, N.; Hori, M.; Leleu, X.; LeBlanc, R.; Suzuki, K.; Raab, M.S.; et al. Elotuzumab plus pomalidomide and dexamethasone for multiple myeloma. N. Engl. J. Med. 2018, 379, 1811–1822. [Google Scholar] [CrossRef] [PubMed]
- Dimopoulos, M.A.; Dytfeld, D.; Grosicki, S.; Moreau, P.; Takezako, N.; Hori, M.; Leleu, X.; LeBlanc, R.; Suzuki, K.; Raab, M.S.; et al. Elotuzumab plus pomalidomide and dexamethasone for relapsed/refractory multiple myeloma: Final overall survival analysis from the randomized phase II ELOQUENT-3 Trial. J. Clin. Oncol. 2023, 41, 568–578. [Google Scholar] [CrossRef]
- Ailawadhi, M.S.; Parrondo, R.D.; Laplan, B.; Alegria, V.R.; Elliott, J.B.; Sher, T.; Paulus, A.; Chapin, D.; Heslop, K.; Chanan-Khan, A.; et al. Phase II trial of elotuzumab with pomalidomide and dexamethasone for relapsed/refractory multiple myeloma (RRMM) in the post-daratumumab progression setting. Blood 2022, 140 (Suppl. S1), 4450–4451. [Google Scholar] [CrossRef]
- Mikhael, J.; Belhadj-Merzoug, K.; Hulin, C.; Vincent, L.; Moreau, P.; Gasparetto, C.; Pour, L.; Spicka, I.; Vij, R.; Zonder, J.; et al. A phase 2 study of isatuximab monotherapy in patients with multiple myeloma who are refractory to daratumumab. Blood Cancer J. 2021, 11, 4–8. [Google Scholar] [CrossRef]
- Hulin, C.; Perrot, A.; Macro, M.; Vekhoff, A.; Leleu, X.; Karlin, L.; Manier, S.; Vincent, L.; El Yamani, A.; Abarah, W.; et al. Retreatment of patients with anti CD38-based combinations in multiple myeloma in real-life: Results from the Emmy Cohort Study. Blood 2022, 140 (Suppl. S1), 7133–7135. [Google Scholar] [CrossRef]
- Mateos, M.V.; Weisel, K.; De Stefano, V.; Goldschmidt, H.; Delforge, M.; Mohty, M.; Cavo, M.; Vij, R.; Lindsey-Hill, J.; Dytfeld, D.; et al. LocoMMotion: A prospective, non-interventional, multinational study of real-life current standards of care in patients with relapsed and/or refractory multiple myeloma. Leukemia 2022, 36, 1371–1376. [Google Scholar] [CrossRef]
- Gandhi, U.H.; Cornell, R.F.; Lakshman, A.; Gahvari, Z.J.; McGehee, E.; Jagosky, M.H.; Gupta, R.; Varnado, W.; Fiala, M.A.; Chhabra, S.; et al. Outcomes of patients with multiple myeloma refractory to CD38-targeted monoclonal antibody therapy. Leukemia 2019, 33, 2266–2275. [Google Scholar] [CrossRef]
- Nooka, M.A.K.; Cohen, A.; Lee, H.C.; Badros, A.Z.; Suvannasankha, A.; Callander, N.; Abdallah, A.-O.; Trudel, S.; Chari, A.; Libby, E.; et al. Single-agent belantamab mafodotin in patients with relapsed or refractory multiple myeloma: Final analysis of the DREAMM-2 Trial. Blood 2022, 140 (Suppl. S1), 7301–7303. [Google Scholar] [CrossRef]
- Lonial, S.; Lee, H.C.; Badros, A.; Trudel, S.; Nooka, A.K.; Chari, A.; Abdallah, A.O.; Callander, N.; Lendvai, N.; Sborov, D.; et al. Belantamab mafodotin for relapsed or refractory multiple myeloma (DREAMM-2): A two-arm, randomised, open-label, phase 2 study. Lancet Oncol. 2020, 21, 207–221. [Google Scholar] [CrossRef] [PubMed]
- Shragai, T.; Magen, H.; Lavi, N.; Gatt, M.; Trestman, S.; Zektser, M.; Ganzel, C.; Jarchowsky, O.; Berger, T.; Tadmor, T.; et al. Real-world experience with belantamab mafodotin therapy for relapsed/refractory multiple myeloma: A multicentre retrospective study. Br. J. Haematol. 2023, 200, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Roussel, M.; Texier, N.; Germain, R.; Sapra, S.; Paka, P.; Kerbouche, N.; Colin, X.; Leleu, X. Effectiveness and safety of belantamab mafodotin in patients with relapsed or refractory multiple myeloma in real-life setting: The ALFA Study. Blood 2022, 140 (Suppl. S1), 4261–4263. [Google Scholar] [CrossRef]
- De La Rubia, J.; Alonso, R.; Clavero Sanchez, M.E.; Askari, E.; de Coca, G.; Maldonado, A.; Fernandez De La Mata, M.; Escalante, F.; Garcia-Feria, A.; Rios, R.; et al. Belantamab mafodotin in patients with relapsed/refractory multiple myeloma included in the compassionate use or the expanded access program. Experience with a Spanish Cohort. Blood 2022, 140 (Suppl. S1), 4315–4317. [Google Scholar] [CrossRef]
- Hultcrantz, M.M.; Derkach, A.; Hassoun, H.; Korde, N.; Maclachlan, K.H.; Mailankody, S.; Patel, D.; Shah, U.A.; Tan, C.; Akhlaghi, T.; et al. Belantamab mafodotin in patients with relapsed/refractory multiple myeloma, a real-world single center experience. Blood 2022, 140 (Suppl. S1), 7246–7248. [Google Scholar] [CrossRef]
- Offidani, M.; Cavo, M.; Derudas, D.; Di Raimondo, F.; Cuneo, A.; Baldini, L.; Della Pepa, R.; Musso, M.; Boccadoro, M.; Musto, P.; et al. Belantamab mafodotin in patients with relapsed and refractory multiple myeloma who have received at least one proteasome inhibitor, one immunomodulatory agent and one anti-CD38 monoclonal antibody: A retro-prospective Italian observational study. Blood 2022, 140 (Suppl. S1), 7222–7223. [Google Scholar] [CrossRef]
- Trudel, S.; McCurdy, A.; Sutherland, H.J.; Louzada, M.L.; Venner, C.P.; Mian, H.S.; Kotb, R.; Othman, I.; Camacho, F.; Gul, E.; et al. Part 1 results of a dose-finding study of belantamab mafodotin in combination with pomalidomide and dexamethasone for the treatment of relapsed/efractory multiple myeloma (RRMM). Blood 2021, 138 (Suppl. S1), 1653. [Google Scholar] [CrossRef]
- Trudel, S.; McCurdy, A.; Fu, M.; Sutherland, H.J.; Louzada, M.L.; Chu, M.P.; White, D.J.; Mian, H.S.; Kotb, R.; Othman, I.; et al. Belantamab mafodotin in combination with pomalidomide and dexamethasone demonstrates durable responses in triple class exposed/refractory multiple myeloma. Blood 2022, 140 (Suppl. S1), 7306–7307. [Google Scholar] [CrossRef]
- Rifkin, R.M.; Boyd, K.; Grosicki, S.; Kim, K.; Di Raimondo, F.; Dimopoulos, M.A.; Weisel, K.; Arnulf, B.; Hajek, R.; Hungria, V.T.M.; et al. DREAMM-7: A phase III study of the efficacy and safety of belantamab mafodotin (Belamaf) with bortezomib, and dexamethasone (B-Vd) in patients with relapsed/refractory multiple myeloma (RRMM). Blood 2020, 136 (Suppl. S1), 53–54. [Google Scholar] [CrossRef]
- Trudel, S.; Davis, R.; Lewis, N.M.; Bakshi, K.K.; Chopra, B.; Montes de Oca, R.; Ferron-Brady, G.; Eliason, L.; Kremer, B.E.; Gupta, I.; et al. DREAMM-8: A phase III study of the efficacy and safety of belantamab mafodotin with pomalidomide and dexamethasone (B-Pd) vs pomalidomide plus bortezomib and dexamethasone (PVd) in patients with relapsed/refractory Multiple Myeloma (RRMM). Blood 2020, 136 (Suppl. S1), 4. [Google Scholar] [CrossRef]
- Weisel, K.; Krishnan, A.; Schecter, J.M.; Vogel, M.; Jacksonm, C.C.; Deraedt, W.; Yeh, T.M.; Banerjee, A.; Yalniz, F.; Nesheiwat, T.; et al. Matching-adjusted indirect treatment comparison to assess the comparative efficacy of ciltacabtagene autoleucel in CARTITUDE-1 versus belantamab mafodotin in DREAMM-2, Selinexor-Dexamethasone in STORM Part 2, and Melphalan Flufenamide-Dexamethasone in HOR. Clin. Lymphoma Myeloma Leuk. 2022, 22, 690–701. [Google Scholar] [CrossRef]
- Suvannasankha, A.; Bahlis, N.J.; Trudel, S.; Weisel, K.; Kenecke, C.; Oriol, A.; Voorhees, P.M.; Alonso, A.; Callander, N.; Mateos, M.V.; et al. Safety and clinical activity of belantamab mafodotin with pembrolizumab in patients with relapsed/refractory multiple myeloma (RRMM): DREAMM-4 Study. J. Clin. Oncol. 2022, 16, 8018. [Google Scholar] [CrossRef]
- Callander, N.S.; Ribrag, V.; Richardson, P.G.; Nooka, A.K.; Song, K.; Uttervall, K.; Minnema, M.C.; Weisel, K.; Quach, H.; Min, C.-K.; et al. DREAMM-5 Study: Investigating the synergetic effects of belantamab mafodotin plus inducible T-Cell co-stimulator agonist (aICOS) combination therapy in patients with relapsed/refractory multiple myeloma. Blood 2021, 138 (Suppl. S1), 897. [Google Scholar] [CrossRef]
- Popat, R.; Nooka, A.; Stockerl-Goldstein, K.; Abonour, R.; Ramaekers, R.; Khot, A.; Forbes, A.; Lee, C.; Augustson, B.; Spencer, A.; et al. DREAMM-6: Safety, tolerability and clinical activity of belantamab mafodotin (Belamaf) in combination with bortezomib/dexamethasone (BorDex) in relapsed/refractory multiple myeloma (RRMM). Blood 2020, 136 (Suppl. S1), 19–20. [Google Scholar] [CrossRef]
- Usmani, S.Z.; Alonso, A.; Quach, H.; Koh, Y.; Guenther, A.; Min, C.-K.; Zhou, X.L.; Kaisermann, M.; Mis, L.M.; Williams, D.; et al. DREAMM-9: Phase I study of belantamab mafodotin plus standard of care in patients with transplant-ineligible newly diagnosed multiple myeloma. Blood 2021, 138 (Suppl. S1), 2738. [Google Scholar] [CrossRef]
- Terpos, M.E.; Gavriatopoulou, M.; Ntanasis-Stathopoulos, I.; Malandrakis, P.; Fotiou, D.; Kanellias, N.; Migkou, M.; Theodorakakou, F.; Spiliopoulou, V.; Syrigou, R.; et al. A phase 1/2, dose and schedule evaluation study to investigate the safety and clinical activity of belantamab mafodotin administered in combination with lenalidomide and dexamethasone in transplant-ineligible patients with newly diagnosed multiple myeloma. Blood 2022, 140 (Suppl. S1), 2736. [Google Scholar]
- Gonzalez-Calle, M.V.; Rodriguez Otero, P.; Rey-Bua, B.; De La Rubia, J.; De Arriba, F.; Cabañas, V.; González Garcia, E.; Ocio, E.M.; Encinas, C.; Suarez Cabrera, A.; et al. Belantamab mafodotin in combination with Vrd for the treatment of newly diagnosed transplant eligible multiple myeloma patients: Results from the Phase II, open label, multicenter, GEM-BELA-Vrd Trial. Blood 2022, 140 (Suppl. S1), 7286–7288. [Google Scholar] [CrossRef]
- Terpos, E.; Gavriatopoulou, M.; Ntanasis-Stathopoulos, I.; Malandrakis, P.; Fotiou, D.; Kanellias, N.; Gkolfinopoulos, S.; Manousou, K.; Kastritis, E.; Dimopoulos, M.A. S178: Safety and efficacy of belantamab mafodotin in combination with Rd in newly diagnosed, transplant ineligible multiple myeloma patients: A Phase 1/2 study by the hellenic society of Hematology. HemaSphere 2022, 6, 79–80. [Google Scholar] [CrossRef]
- Hultcrantz, M.; Kleinman, D.; Ghataorhe, P.; McKeown, A.; He, W.; Ling, T.; Jewell, R.C.; Brunner, J.; Byrne, J.; Eliason, L.; et al. Exploring alternative dosing regimens of single-agent belantamab mafodotin on safety and efficacy in patients with relapsed or refractory multiple myeloma: DREAMM-14. Blood 2021, 138 (Suppl. S1), 1645. [Google Scholar] [CrossRef]
- Lee, H.C.; Raje, N.S.; Landgren, O.; Upreti, V.V.; Wang, J.; Avilion, A.A.; Hu, X.; Rasmussen, E.; Ngarmchamnanrith, G.; Fujii, H.; et al. Phase 1 study of the anti-BCMA antibody-drug conjugate AMG 224 in patients with relapsed/refractory multiple myeloma. Leukemia 2021, 35, 255–258. [Google Scholar] [CrossRef]
- Kumar, S.K.; Migkou, M.; Bhutani, M.; Spencer, A.; Ailawadhi, S.; Kalff, A.; Walcott, F.; Pore, N.; Gibson, D.; Wang, F.; et al. Phase 1, First-in-Human Study of MEDI2228, a BCMA-Targeted ADC in Patients with Relapsed/Refractory Multiple Myeloma. Blood 2020, 136, 26–27. [Google Scholar] [CrossRef]
- Jagannath, S.; Heffner, L.T., Jr.; Ailawadhi, S.; Munshi, N.C.; Zimmerman, T.M.; Rosenblatt, J.; Lonial, S.; Chanan-Khan, A.; Ruehle, M.; Rharbaoui, F.; et al. Indatuximab Ravtansine (BT062) Monotherapy in Patients with Relapsed and/or Refractory Multiple Myeloma. Clin. Lymphoma Myeloma Leuk. 2019, 19, 372–380. [Google Scholar] [CrossRef] [PubMed]
- Ailawadhi, S.; Kelly, K.R.; Vescio, R.A.; Jagannath, S.; Wolf, J.; Gharibo, M.; Sher, T.; Bojanini, L.; Kirby, M.; Chanan-Khan, A. A Phase I Study to Assess the Safety and Pharmacokinetics of Single-agent Lorvotuzumab Mertansine (IMGN901) in Patients with Relapsed and/or Refractory CD–56-positive Multiple Myeloma. Clin. Lymphoma Myeloma Leuk. 2019, 19, 29–34. [Google Scholar] [CrossRef]
- Abrahams, C.L.; Li, X.; Embry, M.; Yu, A.; Krimm, S.; Krueger, S.; Greenland, N.Y.; Wen, K.W.; Jones, C.; DeAlmeida, V.; et al. Targeting CD74 in multiple myeloma with the novel, site-specific antibody-drug conjugate STRO-001. Oncotarget 2018, 9, 37700–37714. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cho, S.F.; Yeh, T.J.; Anderson, K.C. Bispecific antibodies in multiple myeloma treatment: A journey in progress. Front. Oncol. 2022, 12, 1032775. [Google Scholar] [CrossRef]
- Hipp, S.; Tai, Y.T.; Blanset, D.; Wahl, J.; Thomas, O.; Rattel, B.; Adam, P.J.; Anderson, K.C.; Friedrich, M. A novel BCMA/CD3 bispecific T-cell engager for the treatment of multiple myeloma induces selective lysis in vitro and in vivo. Leukemia 2017, 31, 1743–1751. [Google Scholar] [CrossRef] [Green Version]
- Topp, M.S.; Duell, J.; Zugmaier, G.; Moreau, P.; Langer, C.; Krönke, J.; Facon, T.; Salnikov, A.V.; Lesley, R.; Beutner, K.; et al. Anti–B-cell maturation antigen bite molecule AMG 420 induces responses in multiple myeloma. J. Clin. Oncol. 2020, 38, 775–783. [Google Scholar] [CrossRef]
- Harrison, S.J.; Minnema, M.C.; Lee, H.C.; Spencer, A.; Kapoor, P.; Madduri, D.; Larsen, J.; Ailawadhi, S.; Kaufman, J.L.; Raab, M.S.; et al. A phase 1 first in human (FIH) study of AMG 701, an anti-B-Cell Maturation Antigen (BCMA) half-life extended (HLE) BiTE® (bispecific T-cell engager) molecule, in relapsed/refractory (RR) multiple myeloma (MM). Blood 2020, 136 (Suppl. S1), 28–29. [Google Scholar] [CrossRef]
- Moreau, P.; Garfall, A.L.; van de Donk, N.W.C.J.; Nahi, H.; San-Miguel, J.F.; Oriol, A.; Nooka, A.K.; Martin, T.; Rosinol, L.; Chari, A.; et al. Teclistamab in relapsed or refractory multiple myeloma. N. Engl. J. Med. 2022, 387, 495–505. [Google Scholar] [CrossRef]
- Cortes-Selva, D.; Casneuf, T.; Vishwamitra, D.; Stein, S.; Perova, T.; Skerget, S.; Ramos, E.; van Steenbergen, L.; De Maeyer, D.; Boominathan, R.; et al. Teclistamab, a B-Cell Maturation Antigen (BCMA) x CD3 bispecific antibody, in patients with relapsed/refractory multiple myeloma (RRMM): Correlative analyses from MajesTEC-1. Blood 2022, 140 (Suppl. S1), 241–243. [Google Scholar] [CrossRef]
- Searle, E.; Quach, H.; Wong, S.W.; Costa, L.J.M.; Hulin, C.; Janowski, W.; Berdeja, J.; Anguille, S.; Matous, J.V.; Touzeau, C.; et al. Teclistamab in combination with subcutaneous daratumumab and lenalidomide in patients with multiple myeloma: Results from one cohort of MajesTEC-2, a phase 1b, multicohort study. Blood 2022, 140 (Suppl. S1), 394–396. [Google Scholar] [CrossRef]
- Jakubowiak, A.J.; Bahlis, N.J.; Raje, N.S.; Costello, C.; Dholaria, B.R.; Solh, M.M.; Levy, M.Y.; Tomasson, M.H.; Dube, H.; Damore, M.A.; et al. Elranatamab, a BCMA-targeted T-cell redirecting immunotherapy, for patients with relapsed or refractory multiple myeloma: Updated results from MagnetisMM-1. J. Clin. Oncol. 2022, 40 (Suppl. S16), 8014. [Google Scholar] [CrossRef]
- Bahlis, N.J.; Tomasson, M.H.; Mohty, M.; Niesvizky, R.; Nooka, A.K.; Manier, S.; Maisel, C.; Jethava, Y.; Martinez-Lopez, J.; Miles Prince, H.; et al. Efficacy and safety of Elranatamab in patients with relapsed/refractory multiple myeloma naïve to B-Cell Maturation Antigen (BCMA)-directed therapies: Results from cohort a of the Magnetismm-3 Study. Blood 2022, 140 (Suppl. S1), 391–393. [Google Scholar] [CrossRef]
- Landgren, M.O.; Kazandjian, D.; O’Connell, A.; Finn, G.; Raje, N. Magnetismm-4: An open label, phase 1B/2 Umbrella Study of Elranatamab in combination with other anti-cancer treatments for patients with multiple myeloma. Blood 2022, 140 (Suppl. S1), 10172–10173. [Google Scholar] [CrossRef]
- Grosicki, P.S.; Mellqvist, U.-H.; Pruchniewski, L.; Crafoord, J.; Trudel, S.; Min, C.-K.; White, D.; Alegre, A.; Hansson, M.; Ikeda, T.; et al. Elranatamab in combination with daratumumab for patients (pts) with relapsed/refractory multiple myeloma (RRMM): Results from the Phase 3 Magnetismm-5 study safety lead-in cohort. Blood 2022, 140 (Suppl. S1), 4407–4408. [Google Scholar] [CrossRef]
- Cooper, D.; Madduri, D.; Lentzsch, S.; Jagannath, S.; Li, J.; Boyapati, A.; Adriaens, L.; Chokshi, B.D.; Zhu, M.; Lowy, I.; et al. Safety and Preliminary Clinical Activity of REGN5458, an Anti-Bcma x Anti-CD3 Bispecific Antibody, in Patients with Relapsed/Refractory Multiple Myeloma. Blood 2019, 134 (Suppl. S1), 3176. [Google Scholar] [CrossRef]
- DiLillo, D.J.; Olson, K.; Mohrs, K.; Meagher, T.C.; Bray, K.; Sineshchekova, O.; Startz, T.; Kuhnert, J.; Retter, M.W.; Godin, S.; et al. A BCMAxCD3 bispecific T cell–engaging antibody demonstrates robust antitumor efficacy similar to that of anti-BCMA CAR T cells. Blood Adv. 2021, 5, 1291–1304. [Google Scholar] [CrossRef]
- D’Souza, A.; Shah, N.; Rodriguez, C.; Voorhees, P.M.; Weisel, K.; Bueno, O.F.; Pothacamury, R.K.; Freise, K.J.; Yue, S.; Ross, J.A.; et al. A Phase I First-in-Human Study of ABBV-383, a B-Cell Maturation Antigen × CD3 Bispecific T-Cell Redirecting Antibody, in Patients With Relapsed/Refractory Multiple Myeloma. J. Clin. Oncol. 2022, 40, 3576–3586. [Google Scholar] [CrossRef]
- Wong, S.W.; Bar, N.; Paris, L.; Hofmeister, C.C.; Hansson, M.; Santoro, A.; Mateos, M.-V.; Rodríguez-Otero, P.; Lund, J.; Encinas, C.; et al. Alnuctamab (ALNUC.; BMS-986349; CC-93269), a B-Cell Maturation Antigen (BCMA) x CD3 T-Cell Engager (TCE), in Patients (pts) with Relapsed/Refractory Multiple Myeloma (RRMM): Results from a Phase 1 First-in-Human Clinical Study. Blood 2022, 140 (Suppl. S1), 400–402. [Google Scholar] [CrossRef]
- Riley, C.; Hutchings, M.; Yoon, S.-S.; Koh, Y.; Manier, S.; Facon, T.; Harrison, S.; Er, J.; Volzone, F.; Pinto, A.; et al. S180: RG6234, a novel GPRC5D T-cell engaging bispecific antibody, induces rapid responses in patients with relapsed/refractory multiple myeloma: Preliminary results from a first-in-human trial. HemaSphere 2022, 6, 81–82. [Google Scholar] [CrossRef]
- Doucey, M.-A.; Pouleau, B.; Estoppey, C.; Stutz, C.; Croset, A.; Laurendon, A.; Monney, T.; Pluess, M.; Ries-Fecourt, C.; Macoin, J.; et al. ISB 1342: A first-in-class CD38 T cell engager for the treatment of relapsed refractory multiple myeloma. J. Clin. Oncol. 2021, 39, 8044. [Google Scholar] [CrossRef]
- Zuch de Zafra, C.L.; Fajardo, F.; Zhong, W.; Bernett, M.J.; Muchhal, U.S.; Moore, G.L.; Stevens, J.; Case, R.; Pearson, J.T.; Liu, S.; et al. Targeting Multiple Myeloma with AMG 424, a Novel Anti-CD38/CD3 Bispecific T-cell–recruiting Antibody Optimized for Cytotoxicity and Cytokine Release. Clin. Cancer Res. 2019, 25, 3921–3933. [Google Scholar] [CrossRef] [Green Version]
- Smith, E.L.; Harrington, K.; Staehr, M.; Masakayan, R.; Jones, J.; Long, T.J.; Ng, K.Y.; Ghoddusi, M.; Purdon, T.J.; Wang, X.; et al. GPRC5D is a target for the immunotherapy of multiple myeloma with rationally designed CAR T cells. Sci. Transl. Med. 2019, 11, eaau7746. [Google Scholar] [CrossRef] [PubMed]
- Verkleij, C.P.M.; Broekmans, M.E.C.; van Duin, M.; Frerichs, K.A.; Kuiper, R.; de Jonge, A.V.; Kaiser, M.; Morgan, G.; Axel, A.; Boominathan, R.; et al. Preclinical activity and determinants of response of the GPRC5DxCD3 bispecific antibody talquetamab in multiple myeloma. Blood Adv. 2021, 5, 2196–2215. [Google Scholar] [CrossRef] [PubMed]
- Pillarisetti, K.; Edavettal, S.; Mendonça, M.; Li, Y.; Tornetta, M.; Babich, A.; Majewski, N.; Husovsky, M.; Reeves, D.; Walsh, E.; et al. A T-cell–redirecting bispecific G-protein–coupled receptor class 5 member D x CD3 antibody to treat multiple myelom. Blood 2020, 135, 1232–1243. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Minnema, M.C.; Krishnan, A.Y.; Berdeja, J.G.; Oriol, A.; van de Donk, N.W.C.J.; Rodriguez-Otero, P.; Morillo, D.; Mateos, M.V.; Costa, L.J.; Caers, J.; et al. Efficacy and safety of talquetamab, a G protein-coupled receptor family C group 5 member D x CD3 bispecific antibody, in patients with relapsed/refractory multiple myeloma (RRMM): Updated results from MonumenTAL-1. J. Clin. Oncol. 2022, 40 (Suppl. S16), 8015. [Google Scholar] [CrossRef]
- Chari, A.; Touzeau, C.; Schinke, C.; Minnema, M.C.; Berdeja, J.; Oriol, A.; Van De Donk, N.W.; Rodriguez Otero, P.; Askari, E.; Mateos, M.V.; et al. Talquetamab, a G Protein-Coupled Receptor Family C Group 5 Member D x CD3 bispecific antibody, in patients with relapsed/refractory multiple myeloma (RRMM): Phase 1/2 results from MonumenTAL-1. Blood 2022, 140 (Suppl. S1), 384–387. [Google Scholar] [CrossRef]
- Touzeau, P.C.; Chari, A.; Schinke, C.; Minnema, M.C.; Berdeja, J.; Oriol, A.; Van De Donk, N.W.C.J.; Rodriguez Otero, P.; Askari, E.; Mateos, M.V.; et al. Health-related quality of life in patients with relapsed/refractory multiple myeloma treated with talquetamab, a G Protein-Coupled Receptor Family C Group 5 Member D x CD3 bispecific antibody: Patient-reported outcomes from MonumenTAL-1. Blood 2022, 140 (Suppl. S1), 4447–4449. [Google Scholar] [CrossRef]
- Cohen, Y.C.; Moreau, P.; Tolbert, J.; Qin, X.; Ma, X.; Vieyra, D.; Langlois, A.; Courtoux, C.; Terry, W.; Pei, L.; et al. MonumenTAL-3: Phase 3 trial of talquetamab + daratumumab ± pomalidomide versus daratumumab + pomalidomide + dexamethasone in relapsed/refractory multiple myeloma following ≥1 prior line of therapy. Blood 2022, 140 (Suppl. S1), 4418–4419. [Google Scholar] [CrossRef]
- Kumar, S.K.; Garfall, A.L.; Trudel, S.; Ocio, E.M.; Scott, E.; Huang, L.; Ma, X.; Olyslager, Y.; Thakkar, P.; Pei, L.; et al. MonumenTAL-5: A phase 3 study of talquetamab versus belantamab mafodotin in patients with relapsed/refractory multiple myeloma who received ≥4 prior lines of therapy, including a proteasome inhibitor, an immunomodulatory drug, and an anti-CD38 monoclonal. Blood 2022, 140 (Suppl. S1), 7292–7293. [Google Scholar] [CrossRef]
- Cohen, A.D.; Harrison, S.J.; Krishnan, A.; Fonseca, R.; Forsberg, P.A.; Spencer, A.; Berdeja, J.A.; Laubach, J.P.; Li, M.; Choeurng, V.; et al. Initial clinical activity and safety of BFCR4350A, a FcRH5/CD3 T-Cell-Engaging bispecific antibody, in relapsed/refractory multiple myeloma. Blood 2020, 136 (Suppl. S1), 42–43. [Google Scholar] [CrossRef]
- Lesokhin, A.M.; Richter, J.; Trudel, S.; Cohen, A.D.; Spencer, A.; Forsberg, P.A.; Laubach, J.P.; Thomas, S.K.; Bahlis, N.J.; Costa, L.J.M.; et al. Enduring responses after 1-year, fixed-duration cevostamab therapy in patients with relapsed/refractory multiple myeloma: Early experience from a phase I study. Blood 2022, 140 (Suppl. S1), 4415–4417. [Google Scholar] [CrossRef]
- Zou, J.; Chen, D.; Zong, Y.; Ye, S.; Tang, J.; Meng, H.; An, G.; Zhang, X.; Yang, L. Immunotherapy based on bispecific T-cell engager with hIgG1 Fc sequence as a new therapeutic strategy in multiple myeloma. Cancer Sci. 2015, 106, 512–521. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Zou, J.; Zong, Y.; Meng, H.; An, G.; Yang, L. Anti-human CD138 monoclonal antibodies and their bispecific formats: Generation and characterization. Immunopharmacol. Immunotoxicol. 2016, 38, 175–183. [Google Scholar] [CrossRef] [PubMed]
- Gleason, M.K.; Verneris, M.R.; Todhunter, D.A.; Zhang, B.; McCullar, V.; Zhou, S.X.; Panoskaltsis-Mortari, A.; Weiner, L.M.; Vallera, D.A.; Miller, J.S. Bispecific and trispecific killer cell engagers directly activate human NK cells through CD16 signaling and induce cytotoxicity and cytokine production. Mol. Cancer Ther. 2012, 11, 2674–2684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rafiq, S.; Hackett, C.S.; Brentjens, R.J. Engineering strategies to overcome the current roadblocks in CAR T cell therapy. Nat. Rev. Clin. Oncol. 2020, 17, 147–167. [Google Scholar] [CrossRef]
- Munshi, N.C.; Anderson, L.D.; Shah, N.; Madduri, D.; Berdeja, J.; Lonial, S.; Raje, N.; Lin, Y.; Siegel, D.; Oriol, A.; et al. Idecabtagene vicleucel in relapsed and refractory multiple myeloma. N. Engl. J. Med. 2021, 384, 705–716. [Google Scholar] [CrossRef]
- Anderson, L.D. Idecabtagene vicleucel (ide-cel) CAR T-cell therapy for relapsed and refractory multiple myeloma. Futur. Oncol. 2022, 18, 277–289. [Google Scholar] [CrossRef]
- Usmani, P.S.; Patel, K.; Hari, P.; Berdeja, J.; Alsina, M.; Vij, R.; Raje, N.; Leleu, X.; Dhodapkar, M.; Reshef, R.; et al. KarMMa-2 Cohort 2a: Efficacy and safety of Idecabtagene Vicleucel in clinical high-risk multiple myeloma patients with early relapse after frontline autologous stem cell transplantation. Blood 2022, 140 (Suppl. S1), 875–877. [Google Scholar] [CrossRef]
- Dhodapkar, M.; Alsina, M.; Berdeja, J.; Patel, K.; Vij, R.; Leleu, X.; Truppel-Hartmann, A.; Basudhar, D.; Thompson, E.; Zheng, X.; et al. KarMMa-2 Cohort 2c: Efficacy and safety of Idecabtagene Vicleucel in patients with clinical high-risk multiple myeloma due to inadequate response to frontline autologous stem cell transplantation. Blood 2022, 140 (Suppl. S1), 7441–7443. [Google Scholar] [CrossRef]
- Berdeja, J.G.; Madduri, D.; Usmani, S.Z.; Jakubowiak, A.; Agha, M.; Cohen, A.D.; Stewart, A.K.; Hari, P.; Htut, M.; Lesokhin, A.; et al. Ciltacabtagene autoleucel, a B-cell maturation antigen-directed chimeric antigen receptor T-cell therapy in patients with relapsed or refractory multiple myeloma (CARTITUDE-1): A phase 1b/2 open-label study. Lancet 2021, 398, 314–324. [Google Scholar] [CrossRef]
- Martin, T.; Usmani, S.Z.; Berdeja, J.G.; Agha, M.; Cohen, A.D.; Hari, P.; Avigan, D.; Deol, A.; Htut, M.; Lesokhin, A.; et al. Ciltacabtagene Autoleucel, an anti–B-cell Maturation Antigen Chimeric Antigen Receptor T-Cell Therapy, for relapsed/refractory multiple myeloma: CARTITUDE-1 2-Year Follow-Up. J. Clin. Oncol. 2023, 41, 1265–1274. [Google Scholar] [CrossRef]
- Munshi, N.C.; Paiva, B.; Martin, T.; Usmani, S.; Lin, Y.; Schecter, J.M.; Jackson, C.C.; Madduri, D.; Zudaire, E.; Yeh, T.-M.; et al. Efficacy outcomes and characteristics of patients with multiple myeloma (MM) who achieved sustained minimal residual disease negativity after treatment with Ciltacabtagene Autoleucel (cilta-cel) in CARTITUDE-1. Blood 2022, 140 (Suppl. S1), 4652–4654. [Google Scholar] [CrossRef]
- Agha, M.E.; Cohen, A.D.; Madduri, D.; Cohen, Y.C.; Delforge, M.; Hillengass, J.; Goldschmidt, H.; Weisel, K.; Raab, M.-S.; Scheid, C.; et al. CARTITUDE-2: Efficacy and safety of ciltacabtagene autoleucel (cilta-cel), a BCMA-directed CAR T-cell therapy, in patients with progressive multiple myeloma (MM) after one to three prior lines of therapy. J. Clin. Oncol. 2021, 39, 8013. [Google Scholar] [CrossRef]
- Van De Donk, N.W.C.J.; Agha, M.; Cohen, A.D.; Cohen, Y.C.; Anguille, S.; Kerre, T.; Roeloffzen, W.W.H.; Madduri, D.; Schecter, J.M.; De Braganca, K.C.; et al. Ciltacabtagene Autoleucel (Cilta-cel), a BCMA-directed CAR-T Cell therapy, in patients with multiple myeloma (MM) and early relapse after initial therapy: CARTITUDE-2 Cohort B 18-Month Follow-up. Blood 2022, 140 (Suppl. S1), 7536–7537. [Google Scholar] [CrossRef]
- Mailankody, S.; Matous, J.V.; Chhabra, S.; Liedtke, M.; Sidana, S.; Oluwole, O.O.; Malik, S.; Nath, R.; Anwer, F.; Cruz, J.C.; et al. Allogeneic BCMA-targeting CAR T cells in relapsed/refractory multiple myeloma: Phase 1 UNIVERSAL trial interim results. Nat. Med. 2023, 29, 422–429. [Google Scholar] [CrossRef] [PubMed]
- Otero, P.R.; San Miguel, J.F. Cellular therapy for multiple myeloma: What’s now and what’s next. Hematol. Am. Soc. Hematol. Educ. Program 2022, 2022, 180–189. [Google Scholar] [CrossRef] [PubMed]
- Cohen, A.D.; Garfall, A.L.; Stadtmauer, E.A.; Melenhorst, J.J.; Lacey, S.F.; Lancaster, E.; Vogl, D.T.; Weiss, B.M.; Dengel, K.; Nelson, A.; et al. B cell maturation antigen–specific CAR T cells are clinically active in multiple myeloma. J. Clin. Investig. 2019, 129, 2210–2221. [Google Scholar] [CrossRef] [Green Version]
- Manier, S.; Ingegnere, T.; Escure, G.; Prodhomme, C.; Nudel, M.; Mitra, S.; Facon, T. Current state and next-generation CAR-T cells in multiple myeloma. Blood Rev. 2022, 54, 100929. [Google Scholar] [CrossRef]
- Wang, D.; Wang, J.; Hu, G.; Wang, W.; Xiao, Y.; Cai, H.; Jiang, L.; Meng, L.; Yang, Y.; Zhou, X.; et al. A Phase I Study of a Novel Fully Human BCMA-Targeting CAR (CT103A) in Patients with Relapsed/Refractory Multiple Myeloma. Blood 2021. [Google Scholar] [CrossRef]
- Raje, N.S.; Shah, N.; Jagannath, S.; Kaufman, J.L.; Siegel, D.S.; Munshi, N.C.; Rosenblatt, J.; Lin, Y.; Jakubowiak, A.; Timm, A.; et al. Updated Clinical and Correlative Results from the Phase I CRB-402 Study of the BCMA-Targeted CAR T Cell Therapy bb21217 in Patients with Relapsed and Refractory Multiple Myeloma. Blood 2021, 138, 548. [Google Scholar] [CrossRef]
- Rodriguez-Marquez, P.; Calleja-Cervantes, M.E.; Serrano, G.; Palacios-Berraquero, M.L.; Alignani, D.; Martin-Uriz, P.S.; Vilas-Zornoza, A.; Ceballos, C.; Martin-Mallo, A.; Rodríguez-Diaz, S.; et al. CAR Density Influences Antitumoral Efficacy of BCMA CAR-T Cells and Correlates with Clinical Outcome. Blood 2021, 138, 735. [Google Scholar] [CrossRef]
- Katsarou, A.; Sjöstrand, M.; Naik, J.; Mansilla-Soto, J.; Kefala, D.; Kladis, G.; Nianias, A.; Ruiter, R.; Poels, R.; Sarkar, I.; et al. Combining a CAR and a chimeric costimulatory receptor enhances T cell sensitivity to low antigen density and promotes persistence. Sci. Transl. Med. 2021, 13, abh1962. [Google Scholar] [CrossRef] [PubMed]
- Mansilla-Soto, J.; Eyquem, J.; Haubner, S.; Hamieh, M.; Feucht, J.; Paillon, N.; Zucchetti, A.E.; Li, Z.; Sjöstrand, M.; Lindenbergh, P.L.; et al. HLA-independent T cell receptors for targeting tumors with low antigen density. Nat. Med. 2022, 28, 345–352. [Google Scholar] [CrossRef]
- Cowan, A.J.; Pont, M.; Sather, B.D.; Turtle, C.J.; Till, B.G.; Libby, E.; Coffey, D.G.; Tuazon, S.A.; Wood, B.L.; Gooley, T.A.; et al. Safety and Efficacy of Fully Human BCMA CAR T Cells in Combination with a Gamma Secretase Inhibitor to Increase BCMA Surface Expression in Patients with Relapsed or Refractory Multiple Myeloma. Blood 2021, 138, 551. [Google Scholar] [CrossRef]
- Ferreri, C.J.; Hildebrandt, M.A.; Hashmi, H.; Shune, L.O.; McGuirk, J.P.; Sborov, D.W.; Wagner, C.B.; Kocoglu, M.H.; Atrash, S.; Voorhees, P.M.; et al. Idecabtagene Vicleucel (Ide-cel) Chimeric Antigen Receptor (CAR) T-Cell Therapy in Patients with Relapsed/Refractory Multiple Myeloma (RRMM) Who Have Received a Prior BCMA-Targeted Therapy: Real World, Multi-Institutional Experience. Blood 2022, 140, 1856–1858. [Google Scholar] [CrossRef]
- Sidana, S.; Peres, L.C.; Hashmi, H.; Hosoya, H.; Ferreri, C.J.; Atrash, S.; Khouri, J.; Voorhees, P.M.; Dima, D.; Simmons, G.; et al. Idecabtagene Vicleucel Chimeric Antigen Receptor T-Cell Therapy for Relapsed/Refractory Multiple Myeloma with Renal Insufficiency: Real World Experience. Blood 2022, 140, 10377–10379. [Google Scholar] [CrossRef]
- Reyes, K.R.; Liu, Y.-C.; Huang, C.-Y.; Banerjee, R.; Martin, T.; Shah, N.; Wong, S.W.; Wolf, J.L.; Arora, S.; Chung, A. Clinical Outcomes and Salvage Therapies in Patients with Relapsed/Refractory Multiple Myeloma Following Progression on BCMA-Targeted CAR-T Therapy. Blood 2022, 140, 617–619. [Google Scholar] [CrossRef]
- Ferment, B.; Lambert, J.; Caillot, D.; Lafon, I.; Karlin, L.; Lazareth, A.; Touzeau, C.; Leleu, X.; Moya, N.; Harel, S.; et al. French Early Nationwide Idecabtagene Vicleucel (Ide-Cel) Chimeric Antigen Receptor (CAR) T-Cell Therapy Experience in Patients with Relapsed/Refractory Multiple Myeloma (FENIX): An IFM Study from the Descar-T Registry. Blood 2022, 140, 4668–4670. [Google Scholar] [CrossRef]
- Cohen, A.D.; Mateos, M.V.; Cohen, Y.C.; Rodriguez-Otero, P.; Paiva, B.; van de Donk, N.W.C.J.; Martin, T.; Suvannasankha, A.; De Braganca, K.C.; Corsale, C.; et al. Efficacy and safety of cilta-cel in patients with progressive MM after exposure to other BCMA-targeting agents. Blood 2023, 141, 219–230. [Google Scholar] [CrossRef]
- Touzeau, C.; Krishnan, A.; Moreau, P.; Perrot, A.; Usmani, S.Z.; Manier, S.; Cavo, M.; Martinez-Chamorro, C.; Nooka, A.; Martin, T.; et al. S184: Evaluating Teclistamab in patients with relapsed/ refractory multiple myeloma following exposure to other B-Cell Maturation Antigen (Bcma)-Targeted Agents. HemaSphere 2022, 6, 85–86. [Google Scholar] [CrossRef]
- Dalovisio, A.; Bahlis, N.; Raje, N.; Costello, C.; Dholaria, B.; Solh, M.; Levy, M.; Tomasson, M.; Dube, H.; Damore, M.; et al. P897 Updated results from the ongoing phase 1 study of elranatamab, a bcma targeted tcell redirecting immunotherapy, for patients with relapsed or refractory multiple myeloma. HemaSphere 2022, 6, 85–86. [Google Scholar] [CrossRef]
- Hansen, D.K.; Sidana, S.; Peres, L.C.; Colin Leitzinger, C.; Shune, L.; Shrewsbury, A.; Gonzalez, R.; Sborov, D.W.; Wagner, C.; Dima, D.; et al. Idecabtagene Vicleucel for relapsed/refractory multiple myeloma: Real-world experience from the Myeloma CAR T Consortium. J. Clin. Oncol. 2023, 41, 2087–2097. [Google Scholar] [CrossRef]
- Kaufman, J.L.; Quach, H.; Baz, R.C.; Vangsted, A.J.; Ho, S.-J.; Harrison, S.J.; Plesner, T.; Moreau, P.; Gibbs, S.D.; Medvedova, E.; et al. An updated safety and efficacy analysis of Venetoclax plus Daratumumab and dexamethasone in an expansion cohort of a phase 1/2 Study of patients with t(11;14) relapsed/refractory multiple myeloma. Blood 2022, 140 (Suppl. S1), 7261–7263. [Google Scholar] [CrossRef]
- Lonial, S.; Abdallah, A.-O.; Anwer, F.; Badros, A.Z.; Bhutani, M.; Khan, A.; Lipe, B.; Oriol, A.; White, D.; Amatangelo, M.; et al. Iberdomide (IBER) in combination with dexamethasone (DEX) in relapsed/refractory multiple myeloma (RRMM): Results from the Anti-B-Cell Maturation Antigen (BCMA)-Exposed Cohort of the CC-220-MM-001 Trial. Blood 2022, 140 (Suppl. S1), 4398–4400. [Google Scholar] [CrossRef]
- Richardson, P.G.; Vangsted, A.J.; Ramasamy, K.; Trudel, S.; Martínez, J.; Mateos, M.-V.; Rodríguez Otero, P.; Lonial, S.; Popat, R.; Oriol, A.; et al. First-in-human phase I study of the novel CELMoD agent CC-92480 combined with dexamethasone (DEX) in patients (pts) with relapsed/refractory multiple myeloma (RRMM). J. Clin. Oncol. 2020, 38, 8500. [Google Scholar] [CrossRef]
- Richardson, P.G.; Trudel, S.; Quach, H.; Popat, R.; Lonial, S.; Orlowski, R.Z.; Kim, K.; Mateos, M.-V.; Pawlyn, C.; Ramasamy, K.; et al. Mezigdomide (CC-92480), a potent, novel Cereblon E3 Ligase Modulator (CELMoD), combined with dexamethasone (DEX) in patients (pts) with relapsed/refractory multiple myeloma (RRMM): Preliminary results from the dose-expansion phase of the CC-92480-MM-001 Trial. Blood 2022, 140 (Suppl. S1), 1366–1368. [Google Scholar]
- Grosicki, S.; Simonova, M.; Spicka, I.; Pour, L.; Kriachok, I.; Gavriatopoulou, M.; Pylypenko, H.; Auner, H.W.; Leleu, X.; Doronin, V.; et al. Once-per-week selinexor, bortezomib, and dexamethasone versus twice-per-week bortezomib and dexamethasone in patients with multiple myeloma (BOSTON): A randomised, open-label, phase 3 trial. Lancet 2020, 396, 1563–1573. [Google Scholar] [CrossRef]
- Schiller, G.J.; Tuchman, S.A.; Callander, N.; Baljevic, M.; Rossi, A.C.; Kotb, R.; White, D.J.; Bahlis, N.J.; Sutherland, H.J.; Madan, S.; et al. Once weekly Selinexor, Carfilzomib and Dexamethasone (XKd) in triple class refractory multiple myelom. Blood 2022, 140 (Suppl. S1), 718–725. [Google Scholar] [CrossRef]
- Vogl, D.T.; Atrash, S.; Holstein, S.A.; Nadeem, O.; Benson, D.M.; Suryanarayan, K.; Liu, Y.; Collins, S.; Parot, X.; Kaufman, J.L. Final Results from the First-in-Human Phase 1/2 Study of Modakafusp Alfa, an Immune-Targeting Attenuated Cytokine, in Patients (Pts) with Relapsed/Refractory Multiple Myeloma (RRMM). Blood 2022, 140 (Suppl. S1), 1357–1359. [Google Scholar] [CrossRef]
- Paiva, B.; San-Miguel, J.; Avet-Loiseau, H. MRD in multiple myeloma: Does CR really matter? Blood 2022, 140, 2423–2428. [Google Scholar] [CrossRef] [PubMed]
Risk Score/Parameter | Description | References |
---|---|---|
Genomic approaches | ||
IAC-50 Model | Including both clinic and genomic features (a 46-gene expression signature, beta2-microglobulin, ISS stage, and first-line treatment scheme). It was validated in an external cohort and outperformed UAMS70 in the prediction of OS, particularly in the first 2 years after diagnosis. | [38,39] |
EMC92-ISS | Four-group model, strong predictor for OS combining ISS and EMC92 genomic signature | [40] |
SKY-RISS | Combining R-ISS and SKY92 signature and acted as an immunomodulatory agent predictor | [41] |
SKY92 + FISH | Combining SKY92 and FISH identifying the “highest-risk” MM in a real-life study | [42] |
PCL-like transcriptome + R2-ISS | Identifying an exceptionally high risk NDMM population, with a median OS of only 7 months | [43,44] |
Clinical-Mixed approaches | ||
Cytogenetic PI | Improving R-ISS with cytogenetic features as del(17p); t(4;14); del(1p32); 1q21 gain | [45] |
Durie/Salmon plus | Incorporating EMD and Durie/Salmon staging system | [46] |
CPC + R-ISS | quantifying cPCs by MFC can potentially enhance the R-ISS classification of a subset of NDMM patients with stage I and II disease by identifying those patients with a worse than expected survival outcome | [47] |
Nomogram Prognostic Model | Using CTCs as an independent predictor of PFS and OS in NDMM patients. Nomograms predicting PFS and OS were developed according to CPC, lactate dehydrogenase (LDH) and creatinine | [48] |
Trial | Phase | Regimen | ≥CR (%) | MRD Negativity (%) | MRD Method/Sensitivity | Timing of Response Assessment |
---|---|---|---|---|---|---|
PETHEMA/ GEM2012 | III | VRD (6) → ASCT → VRD (2) | 50.2 | 45.2 | NGF/3 × 106 | Post-consolidation |
FORTE | II | KRD (4) → ASCT → KRD (4) | 54 | 62 | MCF/10−5 | Post-consolidation |
CASSIOPEIA | III | Dara-VTD (4) → ASCT → Dara-VTD (2) | 39 | 64 | NGF/10−5 | Post-consolidation |
GRIFFIN | II | Dara-VRD (4) → ASCT → Dara-VRD (2) | 52 | 50 | NGS/10−5 | Post-consolidation |
MASTER | II | Dara-KRD (4) → ASCT → Dara-KRD (4) → Dara-KRD (4) | 86 | 81 | NGS/10−5 | Post-consolidation (MRD-driven) |
IFM 2018-04 (HR) | II | Dara-KRD (6) → ASCT → Dara-KRD (4) | 31 | 61 | NGS/10−5 | Post-induction |
IFM 2018-01 | II | Dara-IRD (6) → ASCT → Dara-IRD (4) | 32.6 | 39.5 | NGS/10−6 | Post-consolidation |
GMMG-HD7 | II | Isa-VRD (3) → ASCT | 24.2 | 50.1 | NGF/10−5 | Post-induction |
GMMG-CONCEPT (HR) | II | Isa-KRD (6) → ASCT → Isa-KRD (4) | 72.7 | 67.7 | NGF/10−5 | Post-consolidation |
Name | Description/Target | ORR (%) | References |
---|---|---|---|
AMG 224 | humanized IgG1 anti-BCMA mertansine-conjugated | 27% | [170] |
MEDI2228 | humanized pyrrolobenzodiazepine (PBD)-conjugated | 65.9% | [171] |
Indatuximab ravtansine | anti-CD138 chimerized MAb (nBT062) linked to the maytansinoid DM4 | - | [172] |
Lorvotuzumab mertansine | CD56-binding antibody with a maytansinoid cell-killing agent, DM1, attached using a disulfide linker, SPP | - | [173] |
STRO-001 | fully human, aglycosylated anti-CD74 ADC incorporating a non-cleavable linker-maytansinoid warhead with a drug-antibody ratio of 2 | - | [174] |
Name | Description/Target | ORR (%) | References |
---|---|---|---|
Linvoseltamab (REGN5458) | fully humanized BCMA/CD3, generated by Regeneron’s proprietary human antibody mouse technology (VelocImmune) and full length BiAb platform (VelociBiTM) | 75 | [186,187] |
TNB-383B (ABBV-383) | next-generation BCMA/CD3 fully human bispecific monoclonal IgG4 antibody | >50 | [188] |
Alnuctamab (CC-93269) | BsAb with 2 asymmetric arms carrying humanized IgG1 T-cell engagers that bind bivalently to BCMA and monovalently to CD3 in a 2 + 1 format | 39 | [189] |
RG2634 (RO7425781) | GPRC5D/CD3-directed BsAb, characterized by silent Fc region that reduces toxicity and increases its half-life | 68 | [190] |
ISB 1342 (GBR 1342) | first CD38/CD3 BsAb engineered (using the Glenmark Bispecific Engagement by Antibodies based on the T cell receptor [BEAT] platform) | - | [191] |
AMG 424 | humanized T cell-recruiting CD3/CD38 BsAb | - | [192] |
Technique | Description | References |
---|---|---|
Improving CART manufacturing | Cellular platforms such as natural killer CART or γδ T cells try to enhance CART expansion and persistence | [218,219] |
Creating humanized or fully human constructs | A way to overcome the negative impact of immunogenicity in CART outcomes | [220] |
CART enrichment | CART enrichment with a T cell subset having a memory-like phenotype and a superior proliferative capacity upon adoptive transfer | [221] |
Developing next-generation CART | CART directed towards other targets could be the solution to overcome the antigen loss (FASTCAR platform are exploring with a dual BCMA/CD19-targeted CART) | [219] |
Identifying alternative targets | GPRC5D, SLAMF7, CD138, CD38, light chains and CD19 | |
Fine-tuning of CAR density in the T cell | Molecular refinements to the CAR spacer can impact multiple biological processes and antitumor activity | [222] |
Co-infusion of CAR and chimeric costimulatory receptors (CCR) | Combination of a CAR and a CCR to improve the clinical outcomes of CART by enhancing cytotoxic efficacy and persistence | [223] |
Using HLA-independent T-cell receptors instead of CAR | HLA-independent T cell receptors (hit receptors) consistently afford high antigen sensitivity and mediate tumor recognition beyond what CD28-based cars | [224] |
Armoring CART | Combination of CART with gamma-secretase inhibitors to increase BCMA density in the tumor cell | [225] |
Trial | Results | References |
---|---|---|
Multicenter experience (USA, University of Texas) | Ide-cel was associated with a trend towards worse efficacy outcomes for patients who received it less than 6 months after a previous anti-BCMA therapy. In CARTITUDE-2 depth of response and DoR appeared lower in patients already treated with anti-BCMA than in naïve patients (≥VGPR in 55%, 46.7% and 42.9% in full cohort, ADC exposed and BsAb exposed, respectively) | [226] |
Multicenter experience (USA, University of Standford) | Feasibility of Ida-cel in 28 patients with renal failure, with the same efficacy data than patients with normal renal function, but significantly higher rate of grade ≥ 3 cytopenia, within 90 days, and longer hospitalization stay | [227] |
Multicenter experience (USA, University of California) | Feasibility of Ide-cel in in 77 patients with ≥70 years, with similar outcomes than younger patients and without a significant increase of toxicity | [228] |
Multicenter experience (Europe, France) | Efficacy and safety data od Ide-cel was comparable to these of the original study | [229] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morè, S.; Corvatta, L.; Manieri, V.M.; Olivieri, A.; Offidani, M. Current Main Topics in Multiple Myeloma. Cancers 2023, 15, 2203. https://doi.org/10.3390/cancers15082203
Morè S, Corvatta L, Manieri VM, Olivieri A, Offidani M. Current Main Topics in Multiple Myeloma. Cancers. 2023; 15(8):2203. https://doi.org/10.3390/cancers15082203
Chicago/Turabian StyleMorè, Sonia, Laura Corvatta, Valentina Maria Manieri, Attilio Olivieri, and Massimo Offidani. 2023. "Current Main Topics in Multiple Myeloma" Cancers 15, no. 8: 2203. https://doi.org/10.3390/cancers15082203
APA StyleMorè, S., Corvatta, L., Manieri, V. M., Olivieri, A., & Offidani, M. (2023). Current Main Topics in Multiple Myeloma. Cancers, 15(8), 2203. https://doi.org/10.3390/cancers15082203