Connection of Cancer Exosomal LncRNAs, Sponging miRNAs, and Exosomal Processing and Their Potential Modulation by Natural Products
Abstract
:Simple Summary
Abstract
1. Introduction
2. Cancer Exosomal lncRNAs, Sponging miRNAs, and Exosome Processing (Secretion and Assembly)
2.1. Cancer Exosomal lncRNAs and Their Sponging miRNAs
2.2. The Exosomal Processing Targets of Exosomal lncRNA-Sponging miRNAs
3. Relationship between Tumor Microenvironments (TMEs), Sponging miRNAs, and Exosomal Processing Targets
3.1. TME and Its Associated lncRNAs
3.2. Potential Functions of CAF-Associated lncRNAs That Sponge miRNAs and Modulate miRNA-Targeted Exosomal Processing Genes
3.3. Potential Functions of CSC-Associated lncRNAs That Sponge miRNAs and Modulate miRNA-Targeted Exosomal Processing Genes
3.4. Potential Functions of TAM-Associated lncRNAs That Sponge miRNAs and Modulate the miRNA-Targeted Exosomal Process
4. The Potential Sponging miRNAs and Exosomal Processing Targets for Natural-Product-Modulated lncRNAs
4.1. The Predicted Sponging miRNAs of Natural-Product-Downregulated lncRNAs
4.2. Predicted Sponging miRNAs of lncRNAs Upregulated by Natural Products
4.3. The Predicted Exosomal Processing Targets of Sponging miRNAs for Natural-Product-Downregulated and -Upregulated lncRNAs
4.4. Overview of Natural Products That Modulate the Exosomal lncRNA–miRNA Axis to Regulate Exosomal Processing
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Zhang, C.; Ji, Q.; Yang, Y.; Li, Q.; Wang, Z. Exosome: Function and role in cancer metastasis and drug resistance. Technol. Cancer Res. Treat. 2018, 17, 1533033818763450. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thery, C.; Zitvogel, L.; Amigorena, S. Exosomes: Composition, biogenesis and function. Nat. Rev. Immunol. 2002, 2, 569–579. [Google Scholar] [CrossRef]
- Dilsiz, N. Role of exosomes and exosomal microRNAs in cancer. Future Sci. OA 2020, 6, FSO465. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lu, Y.; Zheng, Z.; Yuan, Y.; Pathak, J.L.; Yang, X.; Wang, L.; Ye, Z.; Cho, W.C.; Zeng, M.; Wu, L. The emerging role of exosomes in oral squamous cell carcinoma. Front. Cell Dev. Biol. 2021, 9, 628103. [Google Scholar] [CrossRef]
- Dhar, R.; Mallik, S.; Devi, A. Exosomal microRNAs (exoMIRs): Micromolecules with macro impact in oral cancer. 3 Biotech 2022, 12, 155. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Gao, S.; Hu, Q.; Wu, F. Functional properties of cancer epithelium and stroma-derived exosomes in head and neck squamous cell carcinoma. Life 2022, 12, 757. [Google Scholar] [CrossRef]
- St-Denis-Bissonnette, F.; Khoury, R.; Mediratta, K.; El-Sahli, S.; Wang, L.; Lavoie, J.R. Applications of extracellular vesicles in triple-negative breast cancer. Cancers 2022, 14, 451. [Google Scholar] [CrossRef]
- Lorenc, T.; Klimczyk, K.; Michalczewska, I.; Slomka, M.; Kubiak-Tomaszewska, G.; Olejarz, W. Exosomes in prostate cancer diagnosis, prognosis and therapy. Int. J. Mol. Sci. 2020, 21, 2118. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Jiang, W.; Gan, Y.; Zhou, W. The application of exosomal microRNAs in the treatment of pancreatic cancer and its research progress. Pancreas 2021, 50, 12–16. [Google Scholar] [CrossRef] [PubMed]
- Babaker, M.A.; Aljoud, F.A.; Alkhilaiwi, F.; Algarni, A.; Ahmed, A.; Khan, M.I.; Saadeldin, I.M.; Alzahrani, F.A. The Therapeutic Potential of Milk Extracellular Vesicles on Colorectal Cancer. Int. J. Mol. Sci. 2022, 23, 6812. [Google Scholar] [CrossRef]
- Hashemipour, M.; Boroumand, H.; Mollazadeh, S.; Tajiknia, V.; Nourollahzadeh, Z.; Rohani Borj, M.; Pourghadamyari, H.; Rahimian, N.; Hamblin, M.R.; Mirzaei, H. Exosomal microRNAs and exosomal long non-coding RNAs in gynecologic cancers. Gynecol. Oncol. 2021, 161, 314–327. [Google Scholar] [CrossRef]
- Sun, W.; Fu, S.; Wu, S.; Tu, R. Growing evidence of exosomal microRNA-related metastasis of hepatocellular carcinoma. BioMed Res. Int. 2020, 2020, 4501454. [Google Scholar] [CrossRef] [PubMed]
- Zhao, C.; Zhang, G.; Liu, J.; Zhang, C.; Yao, Y.; Liao, W. Exosomal cargoes in OSCC: Current findings and potential functions. PeerJ 2020, 8, e10062. [Google Scholar] [CrossRef]
- Bach, D.H.; Hong, J.Y.; Park, H.J.; Lee, S.K. The role of exosomes and miRNAs in drug-resistance of cancer cells. Int. J. Cancer 2017, 141, 220–230. [Google Scholar] [CrossRef] [Green Version]
- Singh, R.; Pochampally, R.; Watabe, K.; Lu, Z.; Mo, Y.Y. Exosome-mediated transfer of miR-10b promotes cell invasion in breast cancer. Mol. Cancer 2014, 13, 256. [Google Scholar] [CrossRef] [Green Version]
- Bian, E.B.; Chen, E.F.; Xu, Y.D.; Yang, Z.H.; Tang, F.; Ma, C.C.; Wang, H.L.; Zhao, B. Exosomal lncRNA-ATB activates astrocytes that promote glioma cell invasion. Int. J. Oncol. 2019, 54, 713–721. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lafitte, M.; Lecointre, C.; Roche, S. Roles of exosomes in metastatic colorectal cancer. Am. J. Physiol. Cell Physiol. 2019, 317, C869–C880. [Google Scholar] [CrossRef] [PubMed]
- Kahlert, C.; Kalluri, R. Exosomes in tumor microenvironment influence cancer progression and metastasis. J. Mol. Med. 2013, 91, 431–437. [Google Scholar] [CrossRef] [Green Version]
- Milane, L.; Singh, A.; Mattheolabakis, G.; Suresh, M.; Amiji, M.M. Exosome mediated communication within the tumor microenvironment. J. Control. Release 2015, 219, 278–294. [Google Scholar] [CrossRef]
- Xie, Q.H.; Zheng, J.Q.; Ding, J.Y.; Wu, Y.F.; Liu, L.; Yu, Z.L.; Chen, G. Exosome-mediated immunosuppression in tumor microenvironments. Cells 2022, 11, 1946. [Google Scholar] [CrossRef]
- Feng, S.; Lou, K.; Zou, X.; Zou, J.; Zhang, G. The potential role of exosomal proteins in prostate cancer. Front. Oncol. 2022, 12, 873296. [Google Scholar] [CrossRef]
- Liang, Y.; Duan, L.; Lu, J.; Xia, J. Engineering exosomes for targeted drug delivery. Theranostics 2021, 11, 3183–3195. [Google Scholar] [CrossRef] [PubMed]
- Jan, A.T.; Rahman, S.; Badierah, R.; Lee, E.J.; Mattar, E.H.; Redwan, E.M.; Choi, I. Expedition into exosome biology: A perspective of progress from discovery to therapeutic development. Cancers 2021, 13, 1157. [Google Scholar] [CrossRef] [PubMed]
- Kalluri, R.; LeBleu, V.S. The biology, function, and biomedical applications of exosomes. Science 2020, 367, eaau6977. [Google Scholar] [CrossRef]
- Gurunathan, S.; Kang, M.H.; Jeyaraj, M.; Qasim, M.; Kim, J.H. Review of the isolation, characterization, biological function, and multifarious therapeutic approaches of exosomes. Cells 2019, 8, 307. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pegtel, D.M.; Gould, S.J. Exosomes. Annu. Rev. Biochem. 2019, 88, 487–514. [Google Scholar] [CrossRef] [PubMed]
- Farooqi, A.A.; Desai, N.N.; Qureshi, M.Z.; Librelotto, D.R.N.; Gasparri, M.L.; Bishayee, A.; Nabavi, S.M.; Curti, V.; Daglia, M. Exosome biogenesis, bioactivities and functions as new delivery systems of natural compounds. Biotechnol. Adv. 2018, 36, 328–334. [Google Scholar] [CrossRef]
- Teng, F.; Fussenegger, M. Shedding light on extracellular vesicle biogenesis and bioengineering. Adv. Sci. 2020, 8, 2003505. [Google Scholar] [CrossRef]
- Hu, S.; Liu, Y.; Guan, S.; Qiu, Z.; Liu, D. Natural products exert anti-tumor effects by regulating exosomal ncRNA. Front. Oncol. 2022, 12, 1006114. [Google Scholar] [CrossRef]
- Bult, C.J.; Blake, J.A.; Smith, C.L.; Kadin, J.A.; Richardson, J.E.; Mouse Genome Database, G. Mouse Genome Database (MGD) 2019. Nucleic Acids Res. 2019, 47, D801–D806. [Google Scholar] [CrossRef] [Green Version]
- Anastasiadou, E.; Jacob, L.S.; Slack, F.J. Non-coding RNA networks in cancer. Nat. Rev. Cancer 2018, 18, 5–18. [Google Scholar] [CrossRef]
- Fan, T.; Sun, N.; He, J. Exosome-derived lncRNAs in lung cancer. Front. Oncol. 2020, 10, 1728. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Zhou, J.; Tang, J.; Min, X.; Yi, T.; Zhao, J.; Ren, Y. Identification of serum exosomal lncRNA MIAT as a novel diagnostic and prognostic biomarker for gastric cancer. J. Clin. Lab. Anal. 2020, 34, e23323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhao, H.; Shi, J.; Zhang, Y.; Xie, A.; Yu, L.; Zhang, C.; Lei, J.; Xu, H.; Leng, Z.; Li, T.; et al. LncTarD: A manually-curated database of experimentally-supported functional lncRNA-target regulations in human diseases. Nucleic Acids Res. 2020, 48, D118–D126. [Google Scholar] [CrossRef] [PubMed]
- Salmena, L.; Poliseno, L.; Tay, Y.; Kats, L.; Pandolfi, P.P. A ceRNA hypothesis: The Rosetta Stone of a hidden RNA language? Cell 2011, 146, 353–358. [Google Scholar] [CrossRef] [Green Version]
- Cesana, M.; Cacchiarelli, D.; Legnini, I.; Santini, T.; Sthandier, O.; Chinappi, M.; Tramontano, A.; Bozzoni, I. A long noncoding RNA controls muscle differentiation by functioning as a competing endogenous RNA. Cell 2011, 147, 358–369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cai, Y.; Yu, X.; Hu, S.; Yu, J. A brief review on the mechanisms of miRNA regulation. Genom. Proteom. Bioinform. 2009, 7, 147–154. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Wang, X. miRDB: An online database for prediction of functional microRNA targets. Nucleic Acids Res. 2020, 48, D127–D131. [Google Scholar] [CrossRef] [Green Version]
- Han, S.; Qi, Y.; Luo, Y.; Chen, X.; Liang, H. Exosomal long non-coding RNA: Interaction between cancer cells and non-cancer cells. Front. Oncol. 2020, 10, 617837. [Google Scholar] [CrossRef]
- Chen, F.; Wang, N.; Tan, H.Y.; Guo, W.; Zhang, C.; Feng, Y. The functional roles of exosomes-derived long non-coding RNA in human cancer. Cancer Biol. Ther. 2019, 20, 583–592. [Google Scholar] [CrossRef]
- Li, C.; Ni, Y.Q.; Xu, H.; Xiang, Q.Y.; Zhao, Y.; Zhan, J.K.; He, J.Y.; Li, S.; Liu, Y.S. Roles and mechanisms of exosomal non-coding RNAs in human health and diseases. Signal Transduct. Target. Ther. 2021, 6, 383. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Cai, X.; Yu, J.; Lu, X.; Qian, Q.; Qian, W. Exosome-mediated transfer of lncRNA RP11-838N2.4 promotes erlotinib resistance in non-small cell lung cancer. Int. J. Oncol. 2018, 53, 527–538. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, M.; Xu, R.; Ji, H.; Greening, D.W.; Rai, A.; Izumikawa, K.; Ishikawa, H.; Takahashi, N.; Simpson, R.J. Transcriptome and long noncoding RNA sequencing of three extracellular vesicle subtypes released from the human colon cancer LIM1863 cell line. Sci. Rep. 2016, 6, 38397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dragomir, M.; Chen, B.; Calin, G.A. Exosomal lncRNAs as new players in cell-to-cell communication. Transl. Cancer Res. 2018, 7, S243–S252. [Google Scholar] [CrossRef]
- Luo, X.; Wei, J.; Yang, F.L.; Pang, X.X.; Shi, F.; Wei, Y.X.; Liao, B.Y.; Wang, J.L. Exosomal lncRNA HNF1A-AS1 affects cisplatin resistance in cervical cancer cells through regulating microRNA-34b/TUFT1 axis. Cancer Cell Int. 2019, 19, 323. [Google Scholar] [CrossRef] [Green Version]
- Fang, X.; Xu, Y.; Li, K.; Liu, P.; Zhang, H.; Jiang, Y.; Tang, J.; Li, Y. Exosomal lncRNA PCAT1 promotes tumor circulating cell-mediated colorectal cancer liver metastasis by regulating the activity of the miR-329-3p/Netrin-1-CD146 complex. J. Immunol. Res. 2022, 2022, 9916228. [Google Scholar] [CrossRef]
- Fang, X.; Cai, Y.; Xu, Y.; Zhang, H. Exosome-mediated lncRNA SNHG11 regulates angiogenesis in pancreatic carcinoma through miR-324-3p/VEGFA axis. Cell Biol. Int. 2022, 46, 106–117. [Google Scholar] [CrossRef]
- Dong, H.; Wang, W.; Chen, R.; Zhang, Y.; Zou, K.; Ye, M.; He, X.; Zhang, F.; Han, J. Exosome-mediated transfer of lncRNA-SNHG14 promotes trastuzumab chemoresistance in breast cancer. Int. J. Oncol. 2018, 53, 1013–1026. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Chen, J.; Li, C.; Yuan, Y.; Fang, S.; Liu, W.; Qian, Y.; Ma, J.; Chang, L.; Chen, F.; et al. Exosome-mediated transfer of SNHG7 enhances docetaxel resistance in lung adenocarcinoma. Cancer Lett. 2022, 526, 142–154. [Google Scholar] [CrossRef]
- Cui, C.; Zhai, D.; Cai, L.; Duan, Q.; Xie, L.; Yu, J. Long noncoding RNA HEIH promotes colorectal cancer tumorigenesis via counteracting miR-939-Mediated transcriptional repression of Bcl-xL. Cancer Res. Treat. 2018, 50, 992–1008. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Zhai, R.; Lv, X.; Wang, K.; Xu, J. LINC02418 promotes malignant behaviors in lung adenocarcinoma cells by sponging miR-4677-3p to upregulate KNL1 expression. BMC Pulm. Med. 2020, 20, 217. [Google Scholar] [CrossRef] [PubMed]
- Chang, S.; Sun, L.; Feng, G. SP1-mediated long noncoding RNA POU3F3 accelerates the cervical cancer through miR-127-5p/FOXD1. Biomed. Pharmacother. 2019, 117, 109133. [Google Scholar] [CrossRef] [PubMed]
- Khajehdehi, M.; Khalaj-Kondori, M.; Ghasemi, T.; Jahanghiri, B.; Damaghi, M. Long noncoding RNAs in gastrointestinal cancer: Tumor suppression versus tumor promotion. Dig. Dis. Sci. 2021, 66, 381–397. [Google Scholar] [CrossRef]
- Zhen, Y.; Ye, Y.; Wang, H.; Xia, Z.; Wang, B.; Yi, W.; Deng, X. Knockdown of SNHG8 repressed the growth, migration, and invasion of colorectal cancer cells by directly sponging with miR-663. Biomed. Pharmacother. 2019, 116, 109000. [Google Scholar] [CrossRef]
- Li, Y.; Lu, Y.; Chen, Y. Long non-coding RNA SNHG16 affects cell proliferation and predicts a poor prognosis in patients with colorectal cancer via sponging miR-200a-3p. Biosci. Rep. 2019, 39, BSR20182498. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Liang, W.; Liu, J.; Zang, X.; Gu, J.; Pan, L.; Shi, H.; Fu, M.; Huang, Z.; Zhang, Y.; et al. Long non-coding RNA UFC1 promotes gastric cancer progression by regulating miR-498/Lin28b. J. Exp. Clin. Cancer Res. 2018, 37, 134. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, J.; Xu, W.; Ma, L.; Sheng, J.; Ye, M.; Chen, H.; Zhang, Y.; Wang, B.; Liao, M.; Meng, T.; et al. Formononetin relieves the facilitating effect of lncRNA AFAP1-AS1-miR-195/miR-545 axis on progression and chemo-resistance of triple-negative breast cancer. Aging 2021, 13, 18191–18222. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, J.; Jia, E.; Zhang, J.; Liu, N.; Chi, C. lncRNA BCAR4 sponges miR-370-3p to promote bladder cancer progression via Wnt signaling. Int. J. Mol. Med. 2020, 45, 578–588. [Google Scholar] [CrossRef]
- Hua, F.; Li, C.H.; Chen, X.G.; Liu, X.P. Long noncoding RNA CCAT2 knockdown suppresses tumorous progression by sponging miR-424 in epithelial ovarian cancer. Oncol. Res. 2018, 26, 241–247. [Google Scholar] [CrossRef] [PubMed]
- Jing, H.; Xia, H.; Qian, M.; Lv, X. Long noncoding RNA CRNDE promotes non-small cell lung cancer progression via sponging microRNA-338-3p. Biomed. Pharmacother. 2019, 110, 825–833. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Lin, Y.; Liu, J. Long non-coding RNA DLX6-AS1 promotes proliferation by acting as a ceRNA targeting miR-199a in cervical cancer. Mol. Med. Rep. 2019, 19, 1248–1255. [Google Scholar] [CrossRef] [Green Version]
- Fang, C.; Xu, L.; He, W.; Dai, J.; Sun, F. Long noncoding RNA DLX6-AS1 promotes cell growth and invasiveness in bladder cancer via modulating the miR-223-HSP90B1 axis. Cell Cycle 2019, 18, 3288–3299. [Google Scholar] [CrossRef]
- Zhang, G.; An, X.; Zhao, H.; Zhang, Q.; Zhao, H. Long non-coding RNA HNF1A-AS1 promotes cell proliferation and invasion via regulating miR-17-5p in non-small cell lung cancer. Biomed. Pharmacother. 2018, 98, 594–599. [Google Scholar] [CrossRef] [PubMed]
- Dong, X.; Fang, Z.; Yu, M.; Zhang, L.; Xiao, R.; Li, X.; Pan, G.; Liu, J. Knockdown of long noncoding RNA HOXA-AS2 suppresses chemoresistance of acute myeloid leukemia via the miR-520c-3p/S100A4 axis. Cell. Physiol. Biochem. 2018, 51, 886–896. [Google Scholar] [CrossRef]
- Lu, Y.B.; Jiang, Q.; Yang, M.Y.; Zhou, J.X.; Zhang, Q. Long noncoding RNA NNT-AS1 promotes hepatocellular carcinoma progression and metastasis through miR-363/CDK6 axis. Oncotarget 2017, 8, 88804–88814. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, Q.; Jiang, Y. LncRNA NNT-AS1 promotes the proliferation, and invasion of lung cancer cells via regulating miR-129-5p expression. Biomed. Pharmacother. 2018, 105, 176–181. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zong, Z.H.; Guan, X.; Wang, L.L.; Zhao, Y. The role of long non-coding RNA PCA3 in epithelial ovarian carcinoma tumorigenesis and progression. Gene 2017, 633, 42–47. [Google Scholar] [CrossRef]
- Wang, A.H.; Fan, W.J.; Fu, L.; Wang, X.T. LncRNA PCAT-1 regulated cell proliferation, invasion, migration and apoptosis in colorectal cancer through targeting miR-149-5p. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 8310–8320. [Google Scholar] [CrossRef]
- Min, F.; Chu, G. Long noncoding RNA PCAT-1 knockdown prevents the development of ovarian cancer cells via microRNA-124-3p. J. Cell. Biochem. 2020, 121, 1963–1972. [Google Scholar] [CrossRef]
- Prensner, J.R.; Chen, W.; Han, S.; Iyer, M.K.; Cao, Q.; Kothari, V.; Evans, J.R.; Knudsen, K.E.; Paulsen, M.T.; Ljungman, M.; et al. The long non-coding RNA PCAT-1 promotes prostate cancer cell proliferation through cMyc. Neoplasia 2014, 16, 900–908. [Google Scholar] [CrossRef] [Green Version]
- Gao, F.; Feng, J.; Yao, H.; Li, Y.; Xi, J.; Yang, J. LncRNA SBF2-AS1 promotes the progression of cervical cancer by regulating miR-361-5p/FOXM1 axis. Artif. Cells Nanomed. Biotechnol. 2019, 47, 776–782. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Z.; Wang, Y.; Zhang, W.; Li, J.; Liu, W.; Lu, W. Long non-coding RNA SNHG14 exerts oncogenic functions in non-small cell lung cancer through acting as an miR-340 sponge. Biosci. Rep. 2019, 39, BSR20180941. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Zhao, P.; Wang, C.; Xin, B. SNHG14 enhances gemcitabine resistance by sponging miR-101 to stimulate cell autophagy in pancreatic cancer. Biochem. Biophys. Res. Commun. 2019, 510, 508–514. [Google Scholar] [CrossRef] [PubMed]
- Yu, C.; Sun, J.; Leng, X.; Yang, J. Long noncoding RNA SNHG6 functions as a competing endogenous RNA by sponging miR-181a-5p to regulate E2F5 expression in colorectal cancer. Cancer Manag. Res. 2019, 11, 611–624. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wei, R.; Ding, C.; Rodriguez, R.A.; Del Mar Requena Mullor, M. The SOX2OT/miR-194-5p axis regulates cell proliferation and mobility of gastric cancer through suppressing epithelial-mesenchymal transition. Oncol. Lett. 2018, 16, 6361–6368. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, P.; Cai, J.; Chen, Q.; Han, B.; Meng, X.; Li, Y.; Li, Z.; Wang, R.; Lin, L.; Duan, C.; et al. Lnc-TALC promotes O(6)-methylguanine-DNA methyltransferase expression via regulating the c-Met pathway by competitively binding with miR-20b-3p. Nat. Commun. 2019, 10, 2045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Xing, Y.; Ruan, G.; Ni, H.; Qin, H.; Chen, S.; Gu, X.; Shang, J.; Zhou, Y.; Tao, X.; Zheng, L. Tumor immune microenvironment and its related miRNAs in tumor progression. Front. Immunol. 2021, 12, 624725. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.P.; Lin, J.Y.; An, P.; Chen, Y.Y.; Luan, X.; Zhang, H. LncRNAs in tumor microenvironment: The potential target for cancer treatment with natural compounds and chemical drugs. Biochem. Pharmacol. 2021, 193, 114802. [Google Scholar] [CrossRef]
- Sahai, E.; Astsaturov, I.; Cukierman, E.; DeNardo, D.G.; Egeblad, M.; Evans, R.M.; Fearon, D.; Greten, F.R.; Hingorani, S.R.; Hunter, T.; et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat. Rev. Cancer 2020, 20, 174–186. [Google Scholar] [CrossRef] [Green Version]
- Yu, Z.; Pestell, T.G.; Lisanti, M.P.; Pestell, R.G. Cancer stem cells. Int. J. Biochem. Cell Biol. 2012, 44, 2144–2151. [Google Scholar] [CrossRef] [Green Version]
- Ping, Q.; Yan, R.; Cheng, X.; Wang, W.; Zhong, Y.; Hou, Z.; Shi, Y.; Wang, C.; Li, R. Cancer-associated fibroblasts: Overview, progress, challenges, and directions. Cancer Gene Ther. 2021, 28, 984–999. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Yu, Y.; Wang, X.; Zhang, T. Tumor-associated macrophages in tumor immunity. Front. Immunol. 2020, 11, 583084. [Google Scholar] [CrossRef]
- Yang, D.; Liu, K.; Fan, L.; Liang, W.; Xu, T.; Jiang, W.; Lu, H.; Jiang, J.; Wang, C.; Li, G.; et al. LncRNA RP11-361F15.2 promotes osteosarcoma tumorigenesis by inhibiting M2-Like polarization of tumor-associated macrophages of CPEB4. Cancer Lett. 2020, 473, 33–49. [Google Scholar] [CrossRef]
- He, Z.; Wang, J.; Zhu, C.; Xu, J.; Chen, P.; Jiang, X.; Chen, Y.; Jiang, J.; Sun, C. Exosome-derived FGD5-AS1 promotes tumor-associated macrophage M2 polarization-mediated pancreatic cancer cell proliferation and metastasis. Cancer Lett. 2022, 548, 215751. [Google Scholar] [CrossRef]
- Xin, L.; Wu, Y.; Liu, C.; Zeng, F.; Wang, J.L.; Wu, D.Z.; Wu, J.P.; Yue, Z.Q.; Gan, J.H.; Lu, H.; et al. Exosome-mediated transfer of lncRNA HCG18 promotes M2 macrophage polarization in gastric cancer. Mol. Immunol. 2021, 140, 196–205. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Lv, Q.; Xu, F.; Li, H.; Guo, X. LncRNA CASC9-1 facilitates cell malignant behaviors in cervical squamous cell carcinoma by targeting miR-383-5p to up-regulate MAPKAP1. Arch. Med. Res. 2022, 53, 138–146. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Wu, Z.; Zhang, Y. LncRNA SNHG3 promotes cell growth by sponging miR-196a-5p and indicates the poor survival in osteosarcoma. Int. J. Immunopathol. Pharm. 2019, 33, 2058738418820743. [Google Scholar] [CrossRef] [PubMed]
- Chai, L.; Yuan, Y.; Chen, C.; Zhou, J.; Wu, Y. The role of long non-coding RNA ANRIL in the carcinogenesis of oral cancer by targeting miR-125a. Biomed. Pharmacother. 2018, 103, 38–45. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, Y.; Liu, H.; Su, D.; Luo, F.; Zhou, F. Long noncoding RNA CDKN2B-AS1 interacts with miR-411-3p to regulate ovarian cancer in vitro and in vivo through HIF-1a/VEGF/P38 pathway. Biochem. Biophys. Res. Commun. 2019, 514, 44–50. [Google Scholar] [CrossRef]
- Wu, X.; Yan, T.; Wang, Z.; Wu, X.; Cao, G.; Zhang, C. LncRNA ZEB2-AS1 promotes bladder cancer cell proliferation and inhibits apoptosis by regulating miR-27b. Biomed. Pharmacother. 2017, 96, 299–304. [Google Scholar] [CrossRef]
- Luo, X.; Wang, G.H.; Bian, Z.L.; Li, X.W.; Zhu, B.Y.; Jin, C.J.; Ju, S.Q. Long non-coding RNA CCAL/miR-149/FOXM1 axis promotes metastasis in gastric cancer. Cell Death Dis. 2018, 9, 993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.Z.; Wang, J.W.; Meng, F.C.; Yang, P.; Zhang, X.G.; Wu, H.Z. LncRNATCF7 up-regulates DNMT1 mediated by HPV-18 E6 and regulates biological behavior of cervical cancer cells by inhibiting miR-155. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 8779–8787. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Bu, P.; Ai, Y.; Srinivasan, T.; Chen, H.J.; Xiang, K.; Lipkin, S.M.; Shen, X. A long non-coding RNA targets microRNA miR-34a to regulate colon cancer stem cell asymmetric division. eLife 2016, 5, e14620. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Zhu, H.; Yang, D.; Xia, J.; Zheng, Z. Long noncoding RNA lncBRM promotes proliferation and invasion of colorectal cancer by sponging miR-204-3p and upregulating TPT1. Biochem. Biophys. Res. Commun. 2019, 508, 1259–1263. [Google Scholar] [CrossRef] [PubMed]
- Yu, X.; Mi, L.; Dong, J.; Zou, J. Long intergenic non-protein-coding RNA 1567 (LINC01567) acts as a “sponge” against microRNA-93 in regulating the proliferation and tumorigenesis of human colon cancer stem cells. BMC Cancer 2017, 17, 716. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yang, J.R.; Shi, M.X.; Zeng, Y. LncRNA HAND2-AS1 inhibits proliferation and promotes apoptosis of chronic myeloid leukemia cells by sponging with micRNA-1275. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 2103–2111. [Google Scholar] [CrossRef]
- Tang, T.; Shan, G.; Zeng, F. Knockdown of DGCR5 enhances the radiosensitivity of human laryngeal carcinoma cells via inducing miR-195. J. Cell. Physiol. 2019, 234, 12918–12925. [Google Scholar] [CrossRef]
- Tang, T.; Shan, G. DGCR5 promotes cancer stem cell-like properties of radioresistant laryngeal carcinoma cells by sponging miR-506 via Wnt pathway. J. Cell. Physiol. 2019, 234, 18423–18431. [Google Scholar] [CrossRef]
- Wu, Y.; Cheng, K.; Liang, W.; Wang, X. lncRNA RPPH1 promotes non-small cell lung cancer progression through the miR-326/WNT2B axis. Oncol. Lett. 2020, 20, 105. [Google Scholar] [CrossRef]
- Wu, L.; Zhu, X.; Song, Z.; Guo, M.; Liang, J.; Yan, D. FGD5-AS1 facilitates glioblastoma progression by activation of Wnt/beta-catenin signaling via regulating miR-129-5p/HNRNPK axis. Life Sci. 2020, 256, 117998. [Google Scholar] [CrossRef]
- Li, D.; Jiang, X.; Zhang, X.; Cao, G.; Wang, D.; Chen, Z. Long noncoding RNA FGD5-AS1 promotes colorectal cancer cell proliferation, migration, and invasion through upregulating CDCA7 via sponging miR-302e. Vitr. Cell. Dev. Biol. Anim. 2019, 55, 577–585. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Wu, T.; Zhang, D.; Sun, X.; Zhang, X. The long non-coding RNA HCG18 promotes the growth and invasion of colorectal cancer cells through sponging miR-1271 and upregulating MTDH/Wnt/beta-catenin. Clin. Exp. Pharmacol. Physiol. 2020, 47, 703–712. [Google Scholar] [CrossRef]
- Li, S.; Han, Y.; Liang, X.; Zhao, M. LINC01089 inhibits the progression of cervical cancer via inhibiting miR-27a-3p and increasing BTG2. J. Gene Med. 2021, 23, e3280. [Google Scholar] [CrossRef] [PubMed]
- Amirinejad, R.; Rezaei, M.; Shirvani-Farsani, Z. An update on long intergenic noncoding RNA p21: A regulatory molecule with various significant functions in cancer. Cell Biosci. 2020, 10, 82. [Google Scholar] [CrossRef]
- Kalhori, M.R.; Khodayari, H.; Khodayari, S.; Vesovic, M.; Jackson, G.; Farzaei, M.H.; Bishayee, A. Regulation of long non-coding RNAs by plant secondary metabolites: A novel anticancer therapeutic approach. Cancers 2021, 13, 1274. [Google Scholar] [CrossRef]
- Li, X.Y.; Zhou, L.Y.; Luo, H.; Zhu, Q.; Zuo, L.; Liu, G.Y.; Feng, C.; Zhao, J.Y.; Zhang, Y.Y.; Li, X. The long noncoding RNA MIR210HG promotes tumor metastasis by acting as a ceRNA of miR-1226-3p to regulate mucin-1c expression in invasive breast cancer. Aging 2019, 11, 5646–5665. [Google Scholar] [CrossRef]
- Chen, Q.; Liu, X.; Xu, L.; Wang, Y.; Wang, S.; Li, Q.; Huang, Y.; Liu, T. Long non-coding RNA BACE1-AS is a novel target for anisomycin-mediated suppression of ovarian cancer stem cell proliferation and invasion. Oncol. Rep. 2016, 35, 1916–1924. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, C.; Wang, H.; Tang, L.; Huang, H.; Xu, M.; Lin, Y.; Zhou, L.; Ho, L.; Lu, J.; Ai, X. LncRNA BACE1-AS enhances the invasive and metastatic capacity of hepatocellular carcinoma cells through mediating miR-377-3p/CELF1 axis. Life Sci. 2021, 275, 119288. [Google Scholar] [CrossRef]
- Hu, T.; Gao, Y. beta-Elemene suppresses tumor growth of diffuse large B-cell lymphoma through regulating lncRNA HULC-mediated apoptotic pathway. Biosci. Rep. 2020, 40, BSR20190804. [Google Scholar] [CrossRef]
- Kong, D.; Wang, Y. Knockdown of lncRNA HULC inhibits proliferation, migration, invasion, and promotes apoptosis by sponging miR-122 in osteosarcoma. J. Cell. Biochem. 2018, 119, 1050–1061. [Google Scholar] [CrossRef]
- Takahashi, K.; Ota, Y.; Kogure, T.; Suzuki, Y.; Iwamoto, H.; Yamakita, K.; Kitano, Y.; Fujii, S.; Haneda, M.; Patel, T.; et al. Circulating extracellular vesicle-encapsulated HULC is a potential biomarker for human pancreatic cancer. Cancer Sci. 2020, 111, 98–111. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hu, T.; Fei, Z.; Su, H.; Xie, R.; Chen, L. Polydatin inhibits proliferation and promotes apoptosis of doxorubicin-resistant osteosarcoma through LncRNA TUG1 mediated suppression of Akt signaling. Toxicol. Appl. Pharmacol. 2019, 371, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Tang, Q.; Li, X.; Chen, Y.; Long, S.; Yu, Y.; Sheng, H.; Wang, S.; Han, L.; Wu, W. Solamargine inhibits the growth of hepatocellular carcinoma and enhances the anticancer effect of sorafenib by regulating HOTTIP-TUG1/miR-4726-5p/MUC1 pathway. Mol. Carcinog. 2022, 61, 417–432. [Google Scholar] [CrossRef]
- Qian, W.; Ren, Z.; Lu, X. Knockdown of long non-coding RNA TUG1 suppresses nasopharyngeal carcinoma progression by inhibiting epithelial-mesenchymal transition (EMT) via the promotion of miR-384. Biochem. Biophys. Res. Commun. 2019, 509, 56–63. [Google Scholar] [CrossRef]
- Liu, T.; Chi, H.; Chen, J.; Chen, C.; Huang, Y.; Xi, H.; Xue, J.; Si, Y. Curcumin suppresses proliferation and in vitro invasion of human prostate cancer stem cells by ceRNA effect of miR-145 and lncRNA-ROR. Gene 2017, 631, 29–38. [Google Scholar] [CrossRef]
- Zhou, X.; Gao, Q.; Wang, J.; Zhang, X.; Liu, K.; Duan, Z. Linc-RNA-RoR acts as a “sponge” against mediation of the differentiation of endometrial cancer stem cells by microRNA-145. Gynecol. Oncol. 2014, 133, 333–339. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Sun, H.; Zheng, B.; Xie, M.; Xu, C.; Zhang, G.; Huang, X.; Zhuang, J. Curcumin attenuates lncRNA H19-induced epithelial-mesenchymal transition in tamoxifen-resistant breast cancer cells. Mol. Med. Rep. 2021, 23, 13. [Google Scholar] [CrossRef]
- Luo, Y.; Yan, B.; Liu, L.; Yin, L.; Ji, H.; An, X.; Gladkich, J.; Qi, Z.; De La Torre, C.; Herr, I. Sulforaphane inhibits the expression of long noncoding RNA H19 and its target APOBEC3G and thereby pancreatic cancer progression. Cancers 2021, 13, 827. [Google Scholar] [CrossRef]
- Yuan, W.; Huang, J.; Hou, S.; Li, H.; Bie, L.; Chen, B.; Li, G.; Zhou, Y.; Chen, X. The antigastric cancer effect of triptolide is associated with H19/NF-κB/FLIP axis. Front. Pharmacol. 2022, 13, 918588. [Google Scholar] [CrossRef]
- Ghaedi, H.; Mozaffari, M.A.N.; Salehi, Z.; Ghasemi, H.; Zadian, S.S.; Alipoor, S.; Hadianpour, S.; Alipoor, B. Co-expression profiling of plasma miRNAs and long noncoding RNAs in gastric cancer patients. Gene 2019, 687, 135–142. [Google Scholar] [CrossRef]
- Gan, L.; Lv, L.; Liao, S. Long non-coding RNA H19 regulates cell growth and metastasis via the miR-22-3p/Snail1 axis in gastric cancer. Int. J. Oncol. 2019, 54, 2157–2168. [Google Scholar] [CrossRef]
- Chen, L.; Wang, Y.; He, J.; Zhang, C.; Chen, J.; Shi, D. Long noncoding RNA H19 promotes proliferation and invasion in human glioma cells by downregulating miR-152. Oncol. Res. 2018, 26, 1419–1428. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.P.; Zhang, F.; Zhu, K.; Zhu, J.F.; Yuan, Y.; Yang, Y.L.; Liu, L.; Wang, M.; Li, J.J. Matrine exerted an anti-tumor effect on acute myeloid leukemia via the lncRNA LINC01116/miR-592-mediated JAK/STAT pathway inactivation. Neoplasma 2022, 69, 123–135. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Gao, G.; Wang, Z.; Sun, D.; Wei, X.; Ma, Y.; Ding, Y. Long non-coding RNA HOTTIP promotes prostate cancer cells proliferation and migration by sponging miR-216a-5p. Biosci. Rep. 2018, 38, BSR20180566. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ma, D.M.; Sun, D.; Wang, J.; Jin, D.H.; Li, Y.; Han, Y.E. Long non-coding RNA MIR4435-2HG recruits miR-802 from FLOT2 to promote melanoma progression. Eur. Rev. Med. Pharmacol. Sci. 2020, 24, 2616–2624. [Google Scholar] [CrossRef] [PubMed]
- Wu, X.; Xia, T.; Cao, M.; Zhang, P.; Shi, G.; Chen, L.; Zhang, J.; Yin, J.; Wu, P.; Cai, B.; et al. LncRNA BANCR promotes pancreatic cancer tumorigenesis via modulating miR-195-5p/Wnt/beta-catenin signaling pathway. Technol. Cancer Res. Treat. 2019, 18, 1533033819887962. [Google Scholar] [CrossRef]
- Hu, Z.; Zhao, P.; Xu, H. Hyperoside exhibits anticancer activity in non-small cell lung cancer cells with T790M mutations by upregulating FoxO1 via CCAT1. Oncol. Rep. 2020, 43, 617–624. [Google Scholar] [CrossRef]
- Wang, Z.H.; Guo, X.Q.; Zhang, Q.S.; Zhang, J.L.; Duan, Y.L.; Li, G.F.; Zheng, D.L. Long non-coding RNA CCAT1 promotes glioma cell proliferation via inhibiting microRNA-410. Biochem. Biophys. Res. Commun. 2016, 480, 715–720. [Google Scholar] [CrossRef]
- Li, N.; Hao, W.; Yang, J.; Guo, Y.; Guo, Y.; Du, Y. Long non-coding RNA colon cancer-associated transcript-1 regulates tumor cell proliferation and invasion of non-small-cell lung cancer through suppressing miR-152. Geriatr. Gerontol. Int. 2020, 20, 629–636. [Google Scholar] [CrossRef]
- Jabbari, N.; Ghoran, S.H.; Semsari, H.; Hussen, B.M.; Babaei, E. Gemini curcumin suppresses gastric cancer AGS cell proliferation through modulation of lncRNA CCAT2 and c-Myc genes. Turk. J. Pharm. Sci. 2022, 19, 239–245. [Google Scholar] [CrossRef]
- Zhou, Q.; Xie, Y.; Wang, L.; Xu, T.; Gao, Y. LncRNA EWSAT1 upregulates CPEB4 via miR-330-5p to promote cervical cancer development. Mol. Cell. Biochem. 2020, 471, 177–188. [Google Scholar] [CrossRef]
- Song, P.; Yin, S.C. Long non-coding RNA EWSAT1 promotes human nasopharyngeal carcinoma cell growth in vitro by targeting miR-326/-330-5p. Aging 2016, 8, 2948–2960. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, X.; Zhu, Z. Long noncoding RNA HOTAIR contributes to progression in hepatocellular carcinoma by sponging miR-217-5p. Cancer Biother. Radiopharm. 2020, 35, 387–396. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Zou, J.; Li, B.; Du, J. Anticancer effects of melatonin via regulating lncRNA JPX-Wnt/beta-catenin signalling pathway in human osteosarcoma cells. J. Cell. Mol. Med. 2021, 25, 9543–9556. [Google Scholar] [CrossRef] [PubMed]
- Pan, J.; Fang, S.; Tian, H.; Zhou, C.; Zhao, X.; Tian, H.; He, J.; Shen, W.; Meng, X.; Jin, X.; et al. lncRNA JPX/miR-33a-5p/Twist1 axis regulates tumorigenesis and metastasis of lung cancer by activating Wnt/beta-catenin signaling. Mol. Cancer 2020, 19, 9. [Google Scholar] [CrossRef]
- Wang, D.; Liu, K.; Chen, E. LINC00511 promotes proliferation and invasion by sponging miR-515-5p in gastric cancer. Cell. Mol. Biol. Lett. 2020, 25, 4. [Google Scholar] [CrossRef]
- Wang, R.P.; Jiang, J.; Jiang, T.; Wang, Y.; Chen, L.X. Increased long noncoding RNA LINC00511 is correlated with poor prognosis and contributes to cell proliferation and metastasis by modulating miR-424 in hepatocellular carcinoma. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 3291–3301. [Google Scholar] [CrossRef]
- Esteghlal, S.; Mokhtari, M.J.; Beyzaei, Z. Quercetin can inhibit angiogenesis via the down regulation of MALAT1 and MIAT lncRNAs in human umbilical vein endothelial cells. Int. J. Prev. Med. 2021, 12, 59. [Google Scholar]
- Si, Y.; Yang, Z.; Ge, Q.; Yu, L.; Yao, M.; Sun, X.; Ren, Z.; Ding, C. Long non-coding RNA Malat1 activated autophagy, hence promoting cell proliferation and inhibiting apoptosis by sponging miR-101 in colorectal cancer. Cell. Mol. Biol. Lett. 2019, 24, 50. [Google Scholar] [CrossRef] [Green Version]
- Zuo, Y.; Li, Y.; Zhou, Z.; Ma, M.; Fu, K. Long non-coding RNA MALAT1 promotes proliferation and invasion via targeting miR-129-5p in triple-negative breast cancer. Biomed. Pharmacother. 2017, 95, 922–928. [Google Scholar] [CrossRef]
- Xiong, Y.; Wang, J.; Zhu, H.; Liu, L.; Jiang, Y. Chronic oxymatrine treatment induces resistance and epithelial-mesenchymal transition through targeting the long non-coding RNA MALAT1 in colorectal cancer cells. Oncol. Rep. 2018, 39, 967–976. [Google Scholar] [CrossRef] [PubMed]
- Ye, W.; Ni, Z.; Yicheng, S.; Pan, H.; Huang, Y.; Xiong, Y.; Liu, T. Anisomycin inhibits angiogenesis in ovarian cancer by attenuating the molecular sponge effect of the lncRNA-Meg3/miR-421/PDGFRA axis. Int. J. Oncol. 2019, 55, 1296–1312. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, L.L.; Hu, D.; Zou, L.H. Low expression of lncRNA MEG3 promotes the progression of oral squamous cell carcinoma by targeting miR-21. Eur. Rev. Med. Pharmacol. Sci. 2018, 22, 8315–8323. [Google Scholar] [CrossRef]
- Zhang, S.; Ji, W.W.; Wei, W.; Zhan, L.X.; Huang, X. Long noncoding RNA Meg3 sponges miR-708 to inhibit intestinal tumorigenesis via SOCS3-repressed cancer stem cells growth. Cell Death Dis. 2021, 13, 25. [Google Scholar] [CrossRef]
- Wang, G.; Li, X.; Song, L.; Pan, H.; Jiang, J.; Sun, L. Long noncoding RNA MIAT promotes the progression of acute myeloid leukemia by negatively regulating miR-495. Leuk. Res. 2019, 87, 106265. [Google Scholar] [CrossRef]
- Shao, S.; Tian, J.; Zhang, H.; Wang, S. LncRNA myocardial infarction-associated transcript promotes cell proliferation and inhibits cell apoptosis by targeting miR-330-5p in epithelial ovarian cancer cells. Arch. Med. Sci. 2018, 14, 1263–1270. [Google Scholar] [CrossRef] [PubMed]
- He, J.H.; Zhang, J.Z.; Han, Z.P.; Wang, L.; Lv, Y.B.; Li, Y.G. Reciprocal regulation of PCGEM1 and miR-145 promote proliferation of LNCaP prostate cancer cells. J. Exp. Clin. Cancer Res. 2014, 33, 72. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Tang, X.; Wu, X.; Yang, M.; Wang, W.; Wang, L.; Tang, D.; Wang, D. Cardamonin exerts anti-gastric cancer activity via inhibiting LncRNA-PVT1-STAT3 axis. Biosci. Rep. 2019, 39, BSR20190357. [Google Scholar] [CrossRef] [Green Version]
- Liu, K.; Xu, Q. LncRNA PVT1 regulates gallbladder cancer progression through miR-30d-5p. J. Biol. Regul. Homeost. Agents 2020, 34, 875–883. [Google Scholar] [CrossRef]
- Jin, J.; Chu, Z.; Ma, P.; Meng, Y.; Yang, Y. Long non-coding RNA SPRY4-IT1 promotes proliferation and invasion by acting as a ceRNA of miR-101-3p in colorectal cancer cells. Tumour Biol. 2017, 39, 1010428317716250. [Google Scholar] [CrossRef] [Green Version]
- Ji, D.; Zheng, W.; Huang, P.; Yao, Y.; Zhong, X.; Kang, P.; Wang, Z.; Shi, G.; Xu, Y.; Cui, Y. Huaier restrains cholangiocarcinoma progression in vitro and in vivo through modulating lncRNA TP73-AS1 and inducing oxidative stress. OncoTargets Ther. 2020, 13, 7819–7837. [Google Scholar] [CrossRef] [PubMed]
- Guan, M.M.; Rao, Q.X.; Huang, M.L.; Wang, L.J.; Lin, S.D.; Chen, Q.; Liu, C.H. Long noncoding RNA TP73-AS1 targets microRNA-329-3p to regulate expression of the SMAD2 gene in human cervical cancer tissue and cell lines. Med. Sci. 2019, 25, 8131–8141. [Google Scholar] [CrossRef]
- Seçme, M.; Dodurga, Y. Usnic acid inhibits cell proliferation and downregulates lncRNA UCA1 expression in Ishikawa endometrial cancer cells. Nat. Prod. Biotechnol. 2021, 1, 28–37. [Google Scholar]
- Wang, C.J.; Zhu, C.C.; Xu, J.; Wang, M.; Zhao, W.Y.; Liu, Q.; Zhao, G.; Zhang, Z.Z. The lncRNA UCA1 promotes proliferation, migration, immune escape and inhibits apoptosis in gastric cancer by sponging anti-tumor miRNAs. Mol. Cancer 2019, 18, 115. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, D.; Li, H.; Yang, Y.; Kang, L. Long noncoding RNA urothelial carcinoma-associated 1 promotes the proliferation and metastasis of human lung tumor cells by regulating microRNA-144. Oncol. Res. 2018, 26, 537–546. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Wang, Z.; Yu, Q.; Shen, J.; He, W.; Zhou, D.; Yu, Q.; Fan, J.; Gao, S.; Duan, L. Atractylenolide II reverses the influence of lncRNA XIST/miR-30a-5p/ROR1 axis on chemo-resistance of colorectal cancer cells. J. Cell. Mol. Med. 2019, 23, 3151–3165. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Chen, T.; Guo, Y.; Wang, C.; Dong, L.; Lu, C. Platycodin D (PD) regulates LncRNA-XIST/miR-335 axis to slow down bladder cancer progression in vitro and in vivo. Exp. Cell Res. 2020, 396, 112281. [Google Scholar] [CrossRef]
- Liu, W.G.; Xu, Q. Long non-coding RNA XIST promotes hepatocellular carcinoma progression by sponging miR-200b-3p. Eur. Rev. Med. Pharmacol. Sci. 2019, 23, 9857–9862. [Google Scholar] [CrossRef]
- Wang, M.; Ji, Y.Q.; Song, Z.B.; Ma, X.X.; Zou, Y.Y.; Li, X.S. Knockdown of lncRNA ZFAS1 inhibits progression of nasopharyngeal carcinoma by sponging miR-135a. Neoplasma 2019, 66, 939–945. [Google Scholar] [CrossRef]
- Chang, Z.W.; Jia, Y.X.; Zhang, W.J.; Song, L.J.; Gao, M.; Li, M.J.; Zhao, R.H.; Li, J.; Zhong, Y.L.; Sun, Q.Z.; et al. LncRNA-TUSC7/miR-224 affected chemotherapy resistance of esophageal squamous cell carcinoma by competitively regulating DESC1. J. Exp. Clin. Cancer Res. 2018, 37, 56. [Google Scholar] [CrossRef] [Green Version]
- Shang, C.; Tang, W.; Pan, C.; Hu, X.; Hong, Y. Long non-coding RNA TUSC7 inhibits temozolomide resistance by targeting miR-10a in glioblastoma. Cancer Chemother. Pharmacol. 2018, 81, 671–678. [Google Scholar] [CrossRef]
- Yu, X.; Cao, Y.; Tang, L.; Yang, Y.; Chen, F.; Xia, J. Baicalein inhibits breast cancer growth via activating a novel isoform of the long noncoding RNA PAX8-AS1-N. J. Cell. Biochem. 2018, 119, 6842–6856. [Google Scholar] [CrossRef]
- Zhou, P.; Xu, T.; Hu, H.; Hua, F. Overexpression of PAX8-AS1 inhibits malignant phenotypes of papillary thyroid carcinoma cells via miR-96-5p/PKN2 axis. Int. J. Endocrinol. 2021, 2021, 5499963. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.Y.; Chen, C.C.; Shieh, T.M.; Hsueh, C.; Wang, S.H.; Leu, Y.L.; Lian, J.H.; Wang, T.H. Corylin suppresses hepatocellular carcinoma progression via the inhibition of epithelial-mesenchymal transition, mediated by long noncoding RNA GAS5. Int. J. Mol. Sci. 2018, 19, 380. [Google Scholar] [CrossRef] [Green Version]
- Jing, Z.; Gao, L.; Wang, H.; Chen, J.; Nie, B.; Hong, Q. Long non-coding RNA GAS5 regulates human B lymphocytic leukaemia tumourigenesis and metastasis by sponging miR-222. Cancer Biomark. 2019, 26, 385–392. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Gu, J.; Lu, H. The GAS5/miR-222 axis regulates proliferation of gastric cancer cells through the PTEN/Akt/mTOR pathway. Dig. Dis. Sci. 2017, 62, 3426–3437. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Zhou, J.; Wang, Z.; Wang, P.; Gao, X.; Wang, Y. Long noncoding RNA GAS5 suppresses triple negative breast cancer progression through inhibition of proliferation and invasion by competitively binding miR-196a-5p. Biomed. Pharmacother. 2018, 104, 451–457. [Google Scholar] [CrossRef]
- Shao, S.; Wang, C.; Wang, S.; Zhang, H.; Zhang, Y. LncRNA STXBP5-AS1 suppressed cervical cancer progression via targeting miR-96-5p/PTEN axis. Biomed. Pharmacother. 2019, 117, 109082. [Google Scholar] [CrossRef]
- Lu, B.; Lv, H.; Yang, Z.; Shu, J.; Zhang, H. LncRNA PCAT29 up-regulates the expression of PTEN by down-regulating miR-494 in non-small-cell lung cancer to suppress tumor progression. Crit. Rev. Eukaryot. Gene Expr. 2021, 31, 9–15. [Google Scholar] [CrossRef]
Exosomal lncRNAs | Sponging miRNAs | Sponging Function | Exosomal Processing Targets |
---|---|---|---|
HEIH [40] | miR-939-5p (colon ca) [50] | proliferation (+) | X |
LINC02418 [41] | miR-4677-3p (lung ca) [51] | proliferation (+) | X |
POU3F3 [40] | miR-127-5p (cervical ca) [52] | proliferation (+) | X |
GAPLINC [42] | miR-211-3p (gastric ca) [53] | proliferation (+) | X |
SNHG8 [43] | miR-663a (colon ca) [54] | proliferation (+) | X |
SNHG16 [39] | miR-200a-3p (colon ca) [55] | proliferation (+) | X |
UFC1 [32] | miR-498 (gastric ca) [56] | proliferation (+) | X |
AFAP1-AS1 [39] | miR-195-5p (breast ca) [57] | proliferation (+) | MYO5B, VPS4A |
BCAR4 [40] | miR-370-3p (bladder ca) [58] | proliferation (+) | ATP9A, RAB11A, RAB7A |
CCAT2 [39] | miR-424-5p (ovarian ca) [59] | proliferation (+) | MYO5B, VPS4A |
CRNDE [44] | miR-338-3p (lung ca) [60] | proliferation (+) | RAB11A |
DLX6-AS1 [32] | miR-199a-5p (cervical ca) [61]/miR-223-3p (bladder ca) [62] | proliferation (+) | ATP9A/MYO5B |
HNF1A-AS1 [45] | miR-17-5p (lung ca) [63] | proliferation (+) | MYO5B |
HOXA-AS2 [44] | miR-520c-3p (breast ca) [64] | proliferation (+) | RAB11A, SDC1 |
NNT-AS1 [41] | miR-363-3p (gastric ca) [65]/miR-129-5p (lung ca) [66] | proliferation (+) | VPS4B/ATP9A, PDCD6IP, VPS4B |
PCA3 [44] | miR-106b-5p (ovarian ca) [67] | proliferation (+) | MYO5B, TSG101 |
PCAT1 [46] | miR-149-5p (colon ca) [68]/miR-124-3p (ovarian ca) [69]/miR-3667-3p (prostate ca) [70] | proliferation (+) | CD34, VPS4A/MYO5B, RAB11A, RAB27A, SDC1, VPS4B/SMPD3 |
SBF2-AS1 [39] | miR-361-5p (cervical ca) [71] | proliferation (+) | SDCBP |
SNHG11 [47] | miR-324-3p (pancreatic ca) [47] | proliferation (+) | RAB7B |
SNHG14 [48] | miR-340-5p (lung ca) [72]/miR-101-3p (pancreatic ca) [73] | proliferation (+) | PDCD6IP, VPS4A/RAB27A |
SNHG6 [43] | miR-181a-5p (colon ca) [74] | proliferation (+) | PRKN |
SNHG7 [49] | miR-186-5p (breast ca) [74] | proliferation (+) | ATP9A, VPS4B |
SOX2-OT [41] | miR-194-5p (gastric ca) [75] | proliferation (+) | SDC4 |
LNCARSR [39] | miR-20b-3p (glioblastoma) [76] | chemoresistance (+) | X |
LNCRNA-ATB [39] | miR-204-3p (glioma) [16] | migration (+) | RAB11A |
LncRNAs | LncRNA Status (TME) | Sponging miRNAs | Sponging Function | Exosomal Processing Targets |
---|---|---|---|---|
CASC9 [78] | CAFs | miR-383-5p (cervical ca) [86] | proliferation | X |
POU3F3 [78] | CAFs | miR-127-5p (cervical ca) [52] | proliferation | X |
SNHG3 [78] | CAFs | miR-196a-5p (osteosarcoma) [87] | proliferation | X |
CDKN2B-AS1 [78] | CAFs | miR-125a-5p (oral ca) [88]/miR-411-3p (ovarian ca) [89] | proliferation | VPS4B/SDCBP |
ZEB2-AS1 [78] | CAFs | miR-27b-3p (bladder ca) [90] | proliferation | SMPD3 |
CCAL [78] | CAFs | miR-149-5p (gastric ca) [91] | metastasis | CD34, VPS4A |
TCF7 [78] | CSCs | miR-155-5p (cervical ca) [92] | invasion | X |
Lnc34a [78] | CSCs | miR-34a-5p (colon ca) [93] | proliferation | VPS4A |
LNCBRM [78] | CSCs | miR-204-3p (colon ca) [94] | proliferation | RAB11A |
DLX6-AS1 [78] | CSCs | miR-199a-5p (cervical ca) [61]/miR-223-3p (bladder ca) [62] | proliferation | ATP9A/MYO5B |
LINC01567 [78] | CSCs | miR-93-5p (colon ca) [95] | proliferation | MYO5B |
HAND2-AS1 [78] | CSCs | miR-1275 (leukemia) [96] | proliferation | X |
DGCR5 [78] | CSCs | miR-195-5p (laryngeal ca) [97]/miR-506-3p (laryngeal ca) [98] | radiosensitivity | MYO5B, VPS4A/MYO5B, RAB11A, RAB27A, SDC1, SDC4, STEAP3, VPS4B |
RP11-361F15.2 [78] | TAMs | miR-30c-5p (osteosarcoma) [83] | invasion | RAB11A |
RPPH1 [78] | TAMs | miR-326 (lung ca) [99] | invasion | CD34 |
FGD5-AS1 [84] | TAMs | miR-129-5p (glioblastoma) [100]/miR-302e (colon ca) [101] | proliferation | ATP9A, PDCD6IP, VPS4B/RAB11A, RAB7A, SDC1, SMPD3 |
HCG18 [85] | TAMs | miR-1271-5p (colon ca) [102] | proliferation | MYO5B, RAB7A |
LINC01089 [78] | TAMs | miR-27a-3p (cervical ca) [103] | proliferation | X |
TP53COR1 [78] | TAMs | miR-9-5p (liver ca) [104] | proliferation | CD34, PDCD6IP, SDC1, SMPD3, STEAP3 |
Natural Products | lncRNAs | Sponging miRNAs | Sponging Function | Exosomal Processing Targets | |
---|---|---|---|---|---|
Downregulation | Anacardic acid [105] | MIR210HG | miR-1226-3p (breast ca) [106] | invasion | X |
Anisomycin [78,107] | BACE1-AS | miR-377-3p (liver ca) [108] | invasion | X | |
β-Elemene [78,109] | HULC | miR-122-5p (osteosarcoma) [110]/miR-133b (pancreatic ca) [111] | invasion | X | |
Polydatin [112], Solamargine [113] | TUG1 | miR-384 (nsopharynx ca) [114] | migration | PDCD6IP | |
Curcumin [115] | LINC-ROR | miR-145 (endometrial ca) [116] | differentiation | X | |
Curcumin [117], Sulforaphane [118], Bharangin [105], Ginsenosides [105], Triptolide [119] | H19 | miR-141-3p (gastric ca) [120]/miR-22-3p (gastric ca) [121], miR-152 (glioma) [122] | proliferation | X | |
Sulforaphane [105] | LINC01116 | miR-592 (leukemia) [123] | proliferation | X | |
Solamargine [113] | HOTTIP | miR-216a-5p (prostate ca) [124] | proliferation | X | |
Formononetin [57] | AFAP1-AS1 | miR-195-5p (breast ca) [57] | proliferation | MYO5B, VPS4A | |
Resveratrol [105] | MIR4435-2HG | miR-802 (melanoma) [125] | proliferation | RAB7A, SDC4 | |
Luteolin [105] | BANCR | miR-195-5p (pancreatic ca) [126] | proliferation | MYO5B, VPS4A | |
Hyperoside, Baicalein [78,127] | CCAT1 | miR-410-3p (glioma) [128]/miR-152-5p (lung ca) [129] | proliferation | RAB11A/SDC1, SMPD3 | |
Gemini Curcumin [130] | CCAT2 | miR-424-5p (ovarian ca) [59] | proliferation | MYO5B, VPS4A | |
Calycosin [105] | EWSAT1 | miR-330-5p (cervical, nasopharynx ca) [131,132] | proliferation | CD34, PDCD6IP | |
Berberis, Calycosin, Curcumin, 3,30-Diindolylmethane, Genistein, Silibinin [105] | HOTAIR | miR-217-5p (liver ca) [133] | proliferation | ATP9A, PDCD6IP, STEAP3 | |
Melatonin [134] | JPX | miR-362-3p (lung ca) [135] | proliferation | PDCD6IP | |
Epigallocatechin-3-gallate [105] | LINC00511 | miR-515-5p (gastric ca) [136]/miR-424-5p (liver ca) [137] | proliferation | RAB11A/MYO5B, VPS4A | |
Betulinic acid [78], Quercetin [138], Resveratrol K [105] | MALAT1 | miR-101-3p (colon ca) [139]/miR-129-5p (breast ca) [140] | proliferation | RAB27A/ATP9A, PDCD6IP, VPS4B | |
Anisomycin [78,141,142] | MEG3 | miR-21-5p (oral ca) [143]/miR-708-5p (colon ca) [144] | proliferation | MYO5B, RAB11A/SDC1 | |
Quercetin [138] | MIAT | miR-495-3P (leukemia) [145]/miR-330-5p (ovarian ca) [146] | proliferation | SDC4/CD34, PDCD6IP | |
3,30-Diindolylmethane [105] | PCGEM1 | miR-145-5p (prostate ca) [147] | proliferation | STAM | |
Curcumin [78], Cardamonin [148] | PVT1 | miR-30d-5p (gallbladder ca) [149] | proliferation | RAB11A | |
Epigallocatechin-3-gallate [105] | SOX2-OT | miR-194-5p (gastric ca) [75] | proliferation | SDC4 | |
Gambogic acid [105] | SPRY4-IT1 | miR-101-3p (colon ca) [150] | proliferation | RAB27A | |
Huaier [78,151] | TP73-AS1 | miR-329-3p (cervical ca) [152] | proliferation | PDCD6IP | |
Curcumin [105], Usnic acid [153] | UCA1 | miR-26a-5p (gastric ca) [154]/miR-144-3p (lung ca) [155] | proliferation | RAB11A/PDCD6IP, SMPD3, VPS4B | |
Atractylenolide II [156], Platycodin D [157] | XIST | miR-200b-3p (liver ca) [158] | proliferation | PRKN, STAM | |
Silibinin [105] | ZFAS1 | miR-135a-5p (nasopharynx ca) [159] | proliferation | PDCD6IP, SDCBP | |
Upregulation | Curcumin [105] | TUSC7 | miR-224-5p (esophagus ca) [160]/miR-10a-5p (glioblastoma) [161] | chemoresistance | ATP9A/SDC1, SMPD3 |
Baicalein [162] | PAX8-AS1 | miR-96-5p (thyroid ca) [163] | proliferation | MYO5B, RAB27A, RAB7A | |
Bharangin, Curcumin, Gambogic acid [105], Corylin [164] | GAS5 | miR-222-3p (leukemia, gastric ca) [165,166]/miR-196a-5p (breast ca) [167] | proliferation | X | |
Ginsenosides [105] | STXBP5-AS1 | miR-96-5p (cervical ca) [168] | proliferation | MYO5B, RAB27A, RAB7A | |
Resveratrol [105] | PCAT29 | miR-494 (lung ca) [169] | proliferation | X |
Exosome Processing | Sponging miRNAs | lncRNAs | Natural Products | Exosome Processing | Sponging miRNAs | lncRNAs | Natural Products |
---|---|---|---|---|---|---|---|
ATP9A | 217-5p | HOTAIR | Berberis, Calycosin, Curcumin, 3,30-diindolylmethane, Genistein, Silibinin | PDCD6IP | 330-5p | EWSAT1 | Calycosin |
129-5p | MALAT1 | Betulinic acid, Quercetin, Resveratrol | 217-5p | HOTAIR | Berberis, Calycosin, Curcumin, 3,30-diindolylmethane, Genistein, Silibinin | ||
224-5p | TUSC7 | Curcumin | 362-3p | JPX | Melatonin | ||
CD34 | 330-5p | EWSAT1 | Calycosin | 129-5p | MALAT1 | Betulinic acid, Quercetin, Resveratrol | |
MIAT | Quercetin | 330-5p | MIAT | Quercetin | |||
MYO5B | 195-5p | AFAP1-AS1 | Formononetin | 329-3p | TP73-AS1 | Huaier | |
BANCR | Luteolin | 384 | TUG1 | Polydatin, Solamargine | |||
424-5p | CCAT2 | Gemini Curcumin | 144-3p | UCA1 | Curcumin, Usnic acid | ||
LINC00511 | epigallocatechin-3-gallate | 135a-5p | ZFAS1 | Silibinin | |||
21-5p | MEG3 | Anisomycin | SDC1 | 152-5p | CCAT1 | Hyperoside, Baicalein | |
96-5p | PAX8-AS1 | Baicalein | 708-5p | MEG3 | Anisomycin | ||
STXBP5-AS1 | Ginsenosides | 10a-5p | TUSC7 | Curcumin | |||
PRKN | 200b-3p | XIST | Atractylenolide II, Platycodin D | SDC4 | 802 | AK001796 | Resveratrol |
RAB11A | 410-3p | CCAT1 | Hyperoside, Baicalein | 495-3p | MIAT | Quercetin | |
515-5p | LINC00511 | epigallocatechin-3-gallate | 194-5p | SOX2-OT | epigallocatechin-3-gallate | ||
21-5p | MEG3 | Anisomycin | SDCBP | 135a-5p | ZFAS1 | Silibinin | |
NBR2 | Curcumin | SMPD3 | 152-5p | CCAT1 | Hyperoside, Baicalein | ||
30d-5p | PVT1 | Curcumin, Cardamonin | 10a-5p | TUSC7 | Curcumin | ||
26a-5p | UCA1 | Curcumin, Usnic acid | 144-3p | UCA1 | Curcumin, Usnic acid | ||
RAB27A | 101-3p | MALAT1 | Betulinic acid, Quercetin, Resveratrol | STAM | 128-3p | HOTTIP | Solamargine |
96-5p | PAX8-AS1 | Baicalein | 145-5p | PCGEM1 | 3,30-diindolylmethane | ||
101-3p | SPRY4-IT1 | Gambogic acid | 200b-3p | XIST | Atractylenolide II, Platycodin D | ||
96-5p | STXBP5-AS1 | Ginsenosides | STEAP3 | 217-5p | HOTAIR | Berberis, Calycosin, Curcumin, 3,30-diindolylmethane, Genistein, Silibinin | |
RAB7A | 802 | AK001796 | Resveratrol | VPS4A | 195-5p | AFAP1-AS1 | Formononetin |
96-5p | PAX8-AS1 | Baicalein | BANCR | Luteolin | |||
STXBP5-AS1 | Ginsenosides | 424-5p | CCAT2 | Gemini curcumin | |||
LINC00511 | epigallocatechin-3-gallate | ||||||
VPS4B | 128-3p | HOTTIP | Solamargine | ||||
129-5p | MALAT1 | Betulinic acid, Quercetin, Resveratrol | |||||
144-3p | UCA1 | Curcumin, Usnic acid |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chuang, Y.-T.; Shiau, J.-P.; Tang, J.-Y.; Farooqi, A.A.; Chang, F.-R.; Tsai, Y.-H.; Yen, C.-Y.; Chang, H.-W. Connection of Cancer Exosomal LncRNAs, Sponging miRNAs, and Exosomal Processing and Their Potential Modulation by Natural Products. Cancers 2023, 15, 2215. https://doi.org/10.3390/cancers15082215
Chuang Y-T, Shiau J-P, Tang J-Y, Farooqi AA, Chang F-R, Tsai Y-H, Yen C-Y, Chang H-W. Connection of Cancer Exosomal LncRNAs, Sponging miRNAs, and Exosomal Processing and Their Potential Modulation by Natural Products. Cancers. 2023; 15(8):2215. https://doi.org/10.3390/cancers15082215
Chicago/Turabian StyleChuang, Ya-Ting, Jun-Ping Shiau, Jen-Yang Tang, Ammad Ahmad Farooqi, Fang-Rong Chang, Yi-Hong Tsai, Ching-Yu Yen, and Hsueh-Wei Chang. 2023. "Connection of Cancer Exosomal LncRNAs, Sponging miRNAs, and Exosomal Processing and Their Potential Modulation by Natural Products" Cancers 15, no. 8: 2215. https://doi.org/10.3390/cancers15082215
APA StyleChuang, Y.-T., Shiau, J.-P., Tang, J.-Y., Farooqi, A. A., Chang, F.-R., Tsai, Y.-H., Yen, C.-Y., & Chang, H.-W. (2023). Connection of Cancer Exosomal LncRNAs, Sponging miRNAs, and Exosomal Processing and Their Potential Modulation by Natural Products. Cancers, 15(8), 2215. https://doi.org/10.3390/cancers15082215