Targeting P21-Activated Kinase-1 for Metastatic Prostate Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. PCa Pathophysiology and Current Treatments
3. P21-Activated Kinases (PAKs)
4. Structure and Mechanism of Activation of Group-I PAKs
4.1. Activation of PAKs by the GTPases
4.2. GTPase-Independent Activation of Group-I PAKs
5. PAK1-Mediated Regulation of Cytoskeletal Remodeling and Cell Motility
6. PAK Signaling in the Endothelium and Tumor Blood Vessels
7. PAK1 in Cancer
Cancer Type | PAK1 Expression | References |
---|---|---|
Breast Cancer | Accumulation of active PAK1 in the nucleus, cell motility, and cytoskeletal dynamics, and promotes cancer growth and metastasis of triple-negative breast cancer. Increased PAK1 expression in patient biopsies correlated to drug resistance and increased mortality. | [151,152,153,154,155,156,157,158] |
Ovarian Cancer | Increased PAK1 expression correlated with poor outcomes in patients. | [151] |
Gastric Cancer | Promotes migration, invasion, and hematogenous metastasis. High PAK1 expression is associated with EMT, advanced-stage tumors, distant metastasis, and reduced survival in patients. | [163,164,165,166,167,168,169,170] |
Pancreatic Ductal Carcinoma | PAK1 activation is linked to autophagy and immune evasion. Co-targeting PAK1 sensitizes cancer cells to chemotherapeutics in vitro. | [171,172,173,174,175] |
Non-Small Cell Lung Cancer | PAK1 deregulation promoted EMT and conferred chemoresistance and poor outcomes in patients. | [176,177,178] |
Colorectal Cancer | PAK1 expression correlated to cancer cell infiltration and metastasis in patients. | [179] |
Osteosarcoma | PAK1 activation promoted metastasis in patients. | [180] |
Hepatocellular Carcinoma | PAK1 activation promoted EMT and metastasis in patients. | [181] |
Glioma | Induced cytoskeletal changes in cells, PAK3 has been reported as a signature gene of the glioma cells in promoting proliferation, growth, and differentiation. | [182,183] |
Melanoma | PAK1 activation promotes cell metastasis to the brain in mice | [177] |
Bladder Cancer | Increased PAK1 expression in cancer cells compared to normal bladder epithelial cells, and was also comparable to high histological grade, lymph node metastasis, and tumor size in patients. | [184] |
Upper Urinary Tract Cancer | Increased PAK1 activity associated with lymphovascular invasion and lymph node metastasis in patients. | [185,186,187] |
Renal Cell Carcinoma | PAK1 expression correlated to poor prognosis, immune evasion, and metastasis in patients. PAK1 dictated stem-like phenotype and sunitinib resistance in cells with its reversal by treatment with IPA-3. | [188,189] |
Lymphoma | Increased PAK1 expression develops drug resistance in lymphoma patients. | [190] |
Acute and Chronic Myeloid Leukemia | PAK1 suppression inhibited cell proliferation in vitro. | [191,192,193] |
Prostate Cancer | PAK1 is absent in normal prostate and prostatic epithelial cells but is expressed in PCa cells and correlates with increased invasive potential in cells and Gleason Score in patients. PAK1 suppression by IPA-3 and/or SSL-IPA3 inhibits tumor growth, EMT, metastasis to the lungs, and PCa cell-induced bone remodeling. | [55,194,195,196,197] |
8. PAK1 in mPCa
9. PAKs and Androgen Signaling in PCa
10. Inhibitors of PAKs and Their Potential Clinical Utility
10.1. ATP-Competing PAK1 Inhibitors
10.2. Allosteric Modulation of PAK1 Activity for PCa Therapy
11. IPA-3 as a Therapy for mPCa and PCa Cell-Induced Bone Remodeling
12. Nanoliposomal Packaging of IPA-3 for Improved Delivery, Drug Stability, and Efficacy for PCa Therapy
13. Liposomal Formulations of IPA-3 and Their Therapeutic Benefits for mPCa
14. Summary, Conclusions, and Future Directions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Taitt, H.E. Global Trends and Prostate Cancer: A Review of Incidence, Detection, and Mortality as Influenced by Race, Ethnicity, and Geographic Location. Am. J. Mens Health 2018, 12, 1807–1823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siegel, R.L.; Miller, K.D.; Wagle, N.S.; Jemal, A. Cancer statistics, 2023. CA Cancer J. Clin. 2023, 73, 17–48. [Google Scholar] [CrossRef] [PubMed]
- Torre, L.A.; Siegel, R.L.; Ward, E.M.; Jemal, A. Global Cancer Incidence and Mortality Rates and Trends—An Update. Cancer Epidemiol. Biomarkers Prev. 2016, 25, 16–27. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siegel, R.L.; Miller, K.D.; Fuchs, H.E.; Jemal, A. Cancer statistics, 2022. CA Cancer J. Clin. 2022, 72, 7–33. [Google Scholar] [CrossRef] [PubMed]
- Siegel, R.L.; Miller, K.D.; Jemal, A. Cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 7–30. [Google Scholar] [CrossRef]
- do Pazo, C.; Webster, R.M. The prostate cancer drug market. Nat. Rev. Drug. Discov. 2021, 20, 663–664. [Google Scholar] [CrossRef]
- Roehrborn, C.G.; Black, L.K. The economic burden of prostate cancer. BJU Int. 2011, 108, 806–813. [Google Scholar] [CrossRef]
- Zheng, G.; Sundquist, J.; Sundquist, K.; Ji, J. Prostate cancer incidence and survival in relation to prostate cancer as second cancer in relatives. Cancer Med. 2022, 11, 2117–2124. [Google Scholar] [CrossRef]
- Leslie, S.W.; Soon-Sutton, T.L.; Sajjad, H.; Siref, L.E. Prostate Cancer. StatPearls: Treasure Island, FL, USA, 2022. [Google Scholar]
- James, N.D.; Spears, M.R.; Clarke, N.W.; Dearnaley, D.P.; De Bono, J.S.; Gale, J.; Hetherington, J.; Hoskin, P.J.; Jones, R.J.; Laing, R.; et al. Survival with Newly Diagnosed Metastatic Prostate Cancer in the “Docetaxel Erad”: Data from 917 Patients in the Control Arm of the STAMPEDE Trial (MRC PR08, CRUK/06/019). Eur. Urol. 2015, 67, 1028–1038. [Google Scholar] [CrossRef] [Green Version]
- Zhu, J.; Liang, X.; Wu, D.; Chen, S.; Yang, B.; Mao, W.; Shen, D. Clinicopathological characteristics and survival outcomes in neuroendocrine prostate cancer: A population-based study. Medicine 2021, 100, e25237. [Google Scholar] [CrossRef]
- Kichina, J.V.; Goc, A.; Al-Husein, B.; Somanath, P.R.; Kandel, E.S. PAK1 as a therapeutic target. Expert. Opin. Ther. Targets 2010, 14, 703–725. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, D.; Li, C.; Rajoka, M.S.R.; He, Z.; Huang, J.; Wang, J.; Zhang, J. P21-Activated Kinase 1: Emerging biological functions and potential therapeutic targets in Cancer. Theranostics 2020, 10, 9741–9766. [Google Scholar] [CrossRef]
- Lee, S.H.; Shen, M.M. Cell types of origin for prostate cancer. Curr. Opin. Cell Biol. 2015, 37, 35–41. [Google Scholar] [CrossRef] [PubMed]
- Castillejos-Molina, R.A.; Gabilondo-Navarro, F.B. Prostate cancer. Salud Publica Mex. 2016, 58, 279–284. [Google Scholar] [CrossRef] [PubMed]
- Montironi, R.; Santoni, M.; Mazzucchelli, R.; Burattini, L.; Berardi, R.; Galosi, A.B.; Cheng, L.; Lopez-Beltran, A.; Briganti, A.; Montorsi, F.; et al. Prostate cancer: From Gleason scoring to prognostic grade grouping. Expert. Rev. Anticancer. Ther. 2016, 16, 433–440. [Google Scholar] [CrossRef] [PubMed]
- Gleason, D.F.; Mellinger, G.T. Prediction of prognosis for prostatic adenocarcinoma by combined histological grading and clinical staging. J. Urol. 1974, 111, 58–64. [Google Scholar] [CrossRef]
- van Leenders, G.; van der Kwast, T.H.; Grignon, D.J.; Evans, A.J.; Kristiansen, G.; Kweldam, C.F.; Litjens, G.; McKenney, J.K.; Melamed, J.; Mottet, N.; et al. The 2019 International Society of Urological Pathology (ISUP) Consensus Conference on Grading of Prostatic Carcinoma. Am. J. Surg. Pathol. 2020, 44, e87–e99. [Google Scholar] [CrossRef]
- Ferraro, S.; Biganzoli, D.; Rossi, R.S.; Palmisano, F.; Bussetti, M.; Verzotti, E.; Gregori, A.; Bianchi, F.; Maggioni, M.; Ceriotti, F.; et al. Individual risk prediction of high grade prostate cancer based on the combination between total prostate-specific antigen (PSA) and free to total PSA ratio. Clin. Chem. Lab. Med. 2023. Online ahead of print. [Google Scholar] [CrossRef]
- Chen, Y.; Zhou, Q.; Hankey, W.; Fang, X.; Yuan, F. Second generation androgen receptor antagonists and challenges in prostate cancer treatment. Cell Death Dis. 2022, 13, 632. [Google Scholar] [CrossRef]
- Posdzich, P.; Darr, C.; Hilser, T.; Wahl, M.; Herrmann, K.; Hadaschik, B.; Grunwald, V. Metastatic Prostate Cancer-A Review of Current Treatment Options and Promising New Approaches. Cancers 2023, 15, 461. [Google Scholar] [CrossRef]
- Teo, M.Y.; Rathkopf, D.E.; Kantoff, P. Treatment of Advanced Prostate Cancer. Annu. Rev. Med. 2019, 70, 479–499. [Google Scholar] [CrossRef] [PubMed]
- Sonnenburg, D.W.; Morgans, A.K. Emerging Therapies in Metastatic Prostate Cancer. Curr. Oncol. Rep. 2018, 20, 46. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Shi, L.; Li, F.; Yao, B.; Chang, L.; Lu, H.; Song, D. Establishment of a Novel Combined Nomogram for Predicting the Risk of Progression Related to Castration Resistance in Patients With Prostate Cancer. Front. Genet. 2022, 13, 823716. [Google Scholar] [CrossRef] [PubMed]
- Manser, E.; Leung, T.; Salihuddin, H.; Zhao, Z.S.; Lim, L. A brain serine/threonine protein kinase activated by Cdc42 and Rac1. Nature 1994, 367, 40–46. [Google Scholar] [CrossRef] [PubMed]
- Martin, G.A.; Bollag, G.; McCormick, F.; Abo, A. A novel serine kinase activated by rac1/CDC42Hs-dependent autophosphorylation is related to PAK65 and STE20. EMBO J. 1995, 14, 1970–1978. [Google Scholar] [CrossRef]
- Knaus, U.G.; Morris, S.; Dong, H.J.; Chernoff, J.; Bokoch, G.M. Regulation of human leukocyte p21-activated kinases through G protein--coupled receptors. Science 1995, 269, 221–223. [Google Scholar] [CrossRef]
- Bagrodia, S.; Taylor, S.J.; Creasy, C.L.; Chernoff, J.; Cerione, R.A. Identification of a mouse p21Cdc42/Rac activated kinase. J. Biol. Chem. 1995, 270, 22731–22737. [Google Scholar] [CrossRef] [Green Version]
- Somanath, P.R.; Vijai, J.; Kichina, J.V.; Byzova, T.; Kandel, E.S. The role of PAK-1 in activation of MAP kinase cascade and oncogenic transformation by Akt. Oncogene 2009, 28, 2365–2369. [Google Scholar] [CrossRef] [Green Version]
- Marlin, J.W.; Eaton, A.; Montano, G.T.; Chang, Y.W.; Jakobi, R. Elevated p21-activated kinase 2 activity results in anchorage-independent growth and resistance to anticancer drug-induced cell death. Neoplasia 2009, 11, 286–297. [Google Scholar] [CrossRef] [Green Version]
- Maroto, B.; Ye, M.B.; von Lohneysen, K.; Schnelzer, A.; Knaus, U.G. P21-activated kinase is required for mitotic progression and regulates Plk1. Oncogene 2008, 27, 4900–4908. [Google Scholar] [CrossRef] [Green Version]
- Bokoch, G.M. Biology of the p21-activated kinases. Annu. Rev. Biochem. 2003, 72, 743–781. [Google Scholar] [CrossRef] [PubMed]
- Beeser, A.; Jaffer, Z.M.; Hofmann, C.; Chernoff, J. Role of group A p21-activated kinases in activation of extracellular-regulated kinase by growth factors. J. Biol. Chem. 2005, 280, 36609–36615. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Somanath, P.R.; Byzova, T.V. 14-3-3beta-Rac1-p21 activated kinase signaling regulates Akt1-mediated cytoskeletal organization, lamellipodia formation and fibronectin matrix assembly. J. Cell. Physiol. 2009, 218, 394–404. [Google Scholar] [CrossRef] [Green Version]
- Eswaran, J.; Lee, W.H.; Debreczeni, J.E.; Filippakopoulos, P.; Turnbull, A.; Fedorov, O.; Deacon, S.W.; Peterson, J.R.; Knapp, S. Crystal Structures of the p21-activated kinases PAK4, PAK5, and PAK6 reveal catalytic domain plasticity of active group II PAKs. Structure 2007, 15, 201–213. [Google Scholar] [CrossRef] [Green Version]
- Eswaran, J.; Soundararajan, M.; Knapp, S. Targeting group II PAKs in cancer and metastasis. Cancer Metastasis Rev. 2009, 28, 209–217. [Google Scholar] [CrossRef] [PubMed]
- Jaffer, Z.M.; Chernoff, J. p21-activated kinases: Three more join the Pak. Int. J. Biochem. Cell Biol. 2002, 34, 713–717. [Google Scholar] [CrossRef]
- Ha, B.H.; Morse, E.M.; Turk, B.E.; Boggon, T.J. Signaling, Regulation, and Specificity of the Type II p21-activated Kinases. J. Biol. Chem. 2015, 290, 12975–12983. [Google Scholar] [CrossRef] [Green Version]
- Bright, M.D.; Garner, A.P.; Ridley, A.J. PAK1 and PAK2 have different roles in HGF-induced morphological responses. Cell. Signal. 2009, 21, 1738–1747. [Google Scholar] [CrossRef]
- Coniglio, S.J.; Zavarella, S.; Symons, M.H. Pak1 and Pak2 mediate tumor cell invasion through distinct signaling mechanisms. Mol. Cell. Biol. 2008, 28, 4162–4172. [Google Scholar] [CrossRef] [Green Version]
- Su, A.I.; Wiltshire, T.; Batalov, S.; Lapp, H.; Ching, K.A.; Block, D.; Zhang, J.; Soden, R.; Hayakawa, M.; Kreiman, G.; et al. A gene atlas of the mouse and human protein-encoding transcriptomes. Proc. Natl. Acad. Sci. USA 2004, 101, 6062–6067. [Google Scholar] [CrossRef] [Green Version]
- Burbelo, P.D.; Kozak, C.A.; Finegold, A.A.; Hall, A.; Pirone, D.M. Cloning, central nervous system expression and chromosomal mapping of the mouse PAK-1 and PAK-3 genes. Gene 1999, 232, 209–215. [Google Scholar] [CrossRef]
- Clerk, A.; Sugden, P.H. Activation of p21-activated protein kinase alpha (alpha PAK) by hyperosmotic shock in neonatal ventricular myocytes. FEBS Lett. 1997, 403, 23–25. [Google Scholar] [CrossRef] [Green Version]
- Dharmawardhane, S.; Brownson, D.; Lennartz, M.; Bokoch, G.M. Localization of p21-activated kinase 1 (PAK1) to pseudopodia, membrane ruffles, and phagocytic cups in activated human neutrophils. J. Leukoc. Biol. 1999, 66, 521–527. [Google Scholar] [CrossRef] [PubMed]
- Kageyama, K.; Sakihara, S.; Suda, T. Regulation and role of p21-activated kinase 3 by corticotropin-releasing factor in mouse pituitary. Regul. Pept. 2009, 152, 88–94. [Google Scholar] [CrossRef] [PubMed]
- Rudolph, J.; Murray, L.J.; Ndubaku, C.O.; O’Brien, T.; Blackwood, E.; Wang, W.; Aliagas, I.; Gazzard, L.; Crawford, J.J.; Drobnick, J.; et al. Chemically Diverse Group I p21-Activated Kinase (PAK) Inhibitors Impart Acute Cardiovascular Toxicity with a Narrow Therapeutic Window. J. Med. Chem. 2016, 59, 5520–5541. [Google Scholar] [CrossRef]
- Abo, A.; Qu, J.; Cammarano, M.S.; Dan, C.; Fritsch, A.; Baud, V.; Belisle, B.; Minden, A. PAK4, a novel effector for Cdc42Hs, is implicated in the reorganization of the actin cytoskeleton and in the formation of filopodia. EMBO J. 1998, 17, 6527–6540. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Callow, M.G.; Clairvoyant, F.; Zhu, S.; Schryver, B.; Whyte, D.B.; Bischoff, J.R.; Jallal, B.; Smeal, T. Requirement for PAK4 in the anchorage-independent growth of human cancer cell lines. J. Biol. Chem. 2002, 277, 550–558. [Google Scholar] [CrossRef] [Green Version]
- Qu, J.; Li, X.; Novitch, B.G.; Zheng, Y.; Kohn, M.; Xie, J.M.; Kozinn, S.; Bronson, R.; Beg, A.A.; Minden, A. PAK4 kinase is essential for embryonic viability and for proper neuronal development. Mol. Cell. Biol. 2003, 23, 7122–7133. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Minden, A. Targeted disruption of the gene for the PAK5 kinase in mice. Mol. Cell. Biol. 2003, 23, 7134–7142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nekrasova, T.; Jobes, M.L.; Ting, J.H.; Wagner, G.C.; Minden, A. Targeted disruption of the Pak5 and Pak6 genes in mice leads to deficits in learning and locomotion. Dev. Biol. 2008, 322, 95–108. [Google Scholar] [CrossRef] [Green Version]
- Pandey, A.; Dan, I.; Kristiansen, T.Z.; Watanabe, N.M.; Voldby, J.; Kajikawa, E.; Khosravi-Far, R.; Blagoev, B.; Mann, M. Cloning and characterization of PAK5, a novel member of mammalian p21-activated kinase-II subfamily that is predominantly expressed in brain. Oncogene 2002, 21, 3939–3948. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, T.; Li, Y.; Liu, T.; Hu, B.; Li, J.; Liu, C.; Liu, T.; Li, F. Mitochondrial PAK6 inhibits prostate cancer cell apoptosis via the PAK6-SIRT4-ANT2 complex. Theranostics 2020, 10, 2571–2586. [Google Scholar] [CrossRef]
- Yang, F.; Li, X.; Sharma, M.; Zarnegar, M.; Lim, B.; Sun, Z. Androgen receptor specifically interacts with a novel p21-activated kinase, PAK6. J. Biol. Chem. 2001, 276, 15345–15353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goc, A.; Al-Azayzih, A.; Abdalla, M.; Al-Husein, B.; Kavuri, S.; Lee, J.; Moses, K.; Somanath, P.R. P21 activated kinase-1 (Pak1) promotes prostate tumor growth and microinvasion via inhibition of transforming growth factor β expression and enhanced matrix metalloproteinase 9 secretion. J. Biol. Chem. 2013, 288, 3025–3035. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kumar, A.; Molli, P.R.; Pakala, S.B.; Bui Nguyen, T.M.; Rayala, S.K.; Kumar, R. PAK thread from amoeba to mammals. J. Cell. Biochem. 2009, 107, 579–585. [Google Scholar] [CrossRef] [Green Version]
- Kumar, R.; Sanawar, R.; Li, X.; Li, F. Structure, biochemistry, and biology of PAK kinases. Gene 2017, 605, 20–31. [Google Scholar] [CrossRef] [Green Version]
- Knaus, U.G.; Bokoch, G.M. The p21Rac/Cdc42-activated kinases (PAKs). Int. J. Biochem. Cell Biol. 1998, 30, 857–862. [Google Scholar] [CrossRef]
- Lei, M.; Lu, W.; Meng, W.; Parrini, M.C.; Eck, M.J.; Mayer, B.J.; Harrison, S.C. Structure of PAK1 in an autoinhibited conformation reveals a multistage activation switch. Cell 2000, 102, 387–397. [Google Scholar] [CrossRef] [Green Version]
- Knaus, U.G.; Wang, Y.; Reilly, A.M.; Warnock, D.; Jackson, J.H. Structural requirements for PAK activation by Rac GTPases. J. Biol. Chem. 1998, 273, 21512–21518. [Google Scholar] [CrossRef] [Green Version]
- Manser, E.; Loo, T.H.; Koh, C.G.; Zhao, Z.S.; Chen, X.Q.; Tan, L.; Tan, I.; Leung, T.; Lim, L. PAK kinases are directly coupled to the PIX family of nucleotide exchange factors. Mol. Cell 1998, 1, 183–192. [Google Scholar] [CrossRef]
- Bagrodia, S.; Taylor, S.J.; Jordon, K.A.; Van Aelst, L.; Cerione, R.A. A novel regulator of p21-activated kinases. J. Biol. Chem. 1998, 273, 23633–23636. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Walter, B.N.; Huang, Z.; Jakobi, R.; Tuazon, P.T.; Alnemri, E.S.; Litwack, G.; Traugh, J.A. Cleavage and activation of p21-activated protein kinase gamma-PAK by CPP32 (caspase 3). Effects of autophosphorylation on activity. J. Biol. Chem. 1998, 273, 28733–28739. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, J.; Frost, J.A.; Cobb, M.H.; Ross, E.M. Reciprocal signaling between heterotrimeric G proteins and the p21-stimulated protein kinase. J. Biol. Chem. 1999, 274, 31641–31647. [Google Scholar] [CrossRef] [Green Version]
- Gatti, A.; Huang, Z.; Tuazon, P.T.; Traugh, J.A. Multisite autophosphorylation of p21-activated protein kinase gamma-PAK as a function of activation. J. Biol. Chem. 1999, 274, 8022–8028. [Google Scholar] [CrossRef] [Green Version]
- Chong, C.; Tan, L.; Lim, L.; Manser, E. The mechanism of PAK activation. Autophosphorylation events in both regulatory and kinase domains control activity. J. Biol. Chem. 2001, 276, 17347–17353. [Google Scholar] [CrossRef] [Green Version]
- Aronheim, A.; Broder, Y.C.; Cohen, A.; Fritsch, A.; Belisle, B.; Abo, A. Chp, a homologue of the GTPase Cdc42Hs, activates the JNK pathway and is implicated in reorganizing the actin cytoskeleton. Curr. Biol. 1998, 8, 1125–1128. [Google Scholar] [CrossRef] [Green Version]
- Neudauer, C.L.; Joberty, G.; Tatsis, N.; Macara, I.G. Distinct cellular effects and interactions of the Rho-family GTPase TC10. Curr. Biol. 1998, 8, 1151–1160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Tao, W.; Pennica, D.; Xu, L.; Kalejta, R.F.; Levine, A.J. Wrch-1, a novel member of the Rho gene family that is regulated by Wnt-1. Genes. Dev. 2001, 15, 1796–1807. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thompson, G.; Owen, D.; Chalk, P.A.; Lowe, P.N. Delineation of the Cdc42/Rac-binding domain of p21-activated kinase. Biochemistry 1998, 37, 7885–7891. [Google Scholar] [CrossRef]
- Goc, A.; Abdalla, M.; Al-Azayzih, A.; Somanath, P.R. Rac1 activation driven by 14-3-3ζ dimerization promotes prostate cancer cell-matrix interactions, motility and transendothelial migration. PLoS ONE 2012, 7, e40594. [Google Scholar] [CrossRef] [Green Version]
- Feng, Q.; Albeck, J.G.; Cerione, R.A.; Yang, W. Regulation of the Cool/Pix proteins: Key binding partners of the Cdc42/Rac targets, the p21-activated kinases. J. Biol. Chem. 2002, 277, 5644–5650. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stockton, R.; Reutershan, J.; Scott, D.; Sanders, J.; Ley, K.; Schwartz, M.A. Induction of vascular permeability: Beta PIX and GIT1 scaffold the activation of extracellular signal-regulated kinase by PAK. Mol. Biol. Cell 2007, 18, 2346–2355. [Google Scholar] [CrossRef] [PubMed]
- Matsuda, C.; Kameyama, K.; Suzuki, A.; Mishima, W.; Yamaji, S.; Okamoto, H.; Nishino, I.; Hayashi, Y.K. Affixin activates Rac1 via betaPIX in C2C12 myoblast. FEBS Lett. 2008, 582, 1189–1196. [Google Scholar] [CrossRef] [Green Version]
- Roig, J.; Traugh, J.A. Cytostatic p21 G protein-activated protein kinase gamma-PAK. Vitam. Horm. 2001, 62, 167–198. [Google Scholar] [CrossRef]
- Pirruccello, M.; Sondermann, H.; Pelton, J.G.; Pellicena, P.; Hoelz, A.; Chernoff, J.; Wemmer, D.E.; Kuriyan, J. A dimeric kinase assembly underlying autophosphorylation in the p21 activated kinases. J. Mol. Biol. 2006, 361, 312–326. [Google Scholar] [CrossRef]
- King, C.C.; Gardiner, E.M.; Zenke, F.T.; Bohl, B.P.; Newton, A.C.; Hemmings, B.A.; Bokoch, G.M. p21-activated kinase (PAK1) is phosphorylated and activated by 3-phosphoinositide-dependent kinase-1 (PDK1). J. Biol. Chem. 2000, 275, 41201–41209. [Google Scholar] [CrossRef] [Green Version]
- Dharmawardhane, S.; Sanders, L.C.; Martin, S.S.; Daniels, R.H.; Bokoch, G.M. Localization of p21-activated kinase 1 (PAK1) to pinocytic vesicles and cortical actin structures in stimulated cells. J. Cell. Biol. 1997, 138, 1265–1278. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, X.; Frost, J.A. Multiple Rho proteins regulate the subcellular targeting of PAK5. Biochem. Biophys. Res. Commun. 2006, 351, 328–335. [Google Scholar] [CrossRef]
- Galisteo, M.L.; Chernoff, J.; Su, Y.C.; Skolnik, E.Y.; Schlessinger, J. The adaptor protein Nck links receptor tyrosine kinases with the serine-threonine kinase Pak1. J. Biol. Chem. 1996, 271, 20997–21000. [Google Scholar] [CrossRef] [Green Version]
- Puto, L.A.; Pestonjamasp, K.; King, C.C.; Bokoch, G.M. p21-activated kinase 1 (PAK1) interacts with the Grb2 adapter protein to couple to growth factor signaling. J. Biol. Chem. 2003, 278, 9388–9393. [Google Scholar] [CrossRef] [Green Version]
- Bokoch, G.M.; Reilly, A.M.; Daniels, R.H.; King, C.C.; Olivera, A.; Spiegel, S.; Knaus, U.G. A GTPase-independent mechanism of p21-activated kinase activation. Regulation by sphingosine and other biologically active lipids. J. Biol. Chem. 1998, 273, 8137–8144. [Google Scholar] [CrossRef] [Green Version]
- Zhou, G.L.; Zhuo, Y.; King, C.C.; Fryer, B.H.; Bokoch, G.M.; Field, J. Akt phosphorylation of serine 21 on Pak1 modulates Nck binding and cell migration. Mol. Cell. Biol. 2003, 23, 8058–8069. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bagheri-Yarmand, R.; Mandal, M.; Taludker, A.H.; Wang, R.A.; Vadlamudi, R.K.; Kung, H.J.; Kumar, R. Etk/Bmx tyrosine kinase activates Pak1 and regulates tumorigenicity of breast cancer cells. J. Biol. Chem. 2001, 276, 29403–29409. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Oladimeji, P.; Skerl, R.; Rusch, C.; Diakonova, M. Synergistic Activation of ERalpha by Estrogen and Prolactin in Breast Cancer Cells Requires Tyrosyl Phosphorylation of PAK1. Cancer Res. 2016, 76, 2600–2611. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Westphal, R.S.; Coffee, R.L., Jr.; Marotta, A.; Pelech, S.L.; Wadzinski, B.E. Identification of kinase-phosphatase signaling modules composed of p70 S6 kinase-protein phosphatase 2A (PP2A) and p21-activated kinase-PP2A. J. Biol. Chem. 1999, 274, 687–692. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Koh, C.G.; Tan, E.J.; Manser, E.; Lim, L. The p21-activated kinase PAK is negatively regulated by POPX1 and POPX2, a pair of serine/threonine phosphatases of the PP2C family. Curr. Biol. 2002, 12, 317–321. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Meyer Zum Buschenfelde, U.; Brandenstein, L.I.; von Elsner, L.; Flato, K.; Holling, T.; Zenker, M.; Rosenberger, G.; Kutsche, K. RIT1 controls actin dynamics via complex formation with RAC1/CDC42 and PAK1. PLoS Genet. 2018, 14, e1007370. [Google Scholar] [CrossRef] [Green Version]
- Dummler, B.; Ohshiro, K.; Kumar, R.; Field, J. Pak protein kinases and their role in cancer. Cancer Metastasis Rev. 2009, 28, 51–63. [Google Scholar] [CrossRef] [Green Version]
- Brzeska, H.; Szczepanowska, J.; Matsumura, F.; Korn, E.D. Rac-induced increase of phosphorylation of myosin regulatory light chain in HeLa cells. Cell. Motil. Cytoskeleton 2004, 58, 186–199. [Google Scholar] [CrossRef]
- Leberer, E.; Dignard, D.; Harcus, D.; Thomas, D.Y.; Whiteway, M. The protein kinase homologue Ste20p is required to link the yeast pheromone response G-protein beta gamma subunits to downstream signalling components. EMBO J. 1992, 11, 4815–4824. [Google Scholar] [CrossRef]
- Wu, C.; Lytvyn, V.; Thomas, D.Y.; Leberer, E. The phosphorylation site for Ste20p-like protein kinases is essential for the function of myosin-I in yeast. J. Biol. Chem. 1997, 272, 30623–30626. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanders, L.C.; Matsumura, F.; Bokoch, G.M.; de Lanerolle, P. Inhibition of myosin light chain kinase by p21-activated kinase. Science 1999, 283, 2083–2085. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Webb, D.J.; Asmussen, H.; Niu, S.; Horwitz, A.F. A GIT1/PIX/Rac/PAK signaling module regulates spine morphogenesis and synapse formation through MLC. J. Neurosci. 2005, 25, 3379–3388. [Google Scholar] [CrossRef] [Green Version]
- Hunter, M.P.; Zegers, M.M. Pak1 regulates branching morphogenesis in 3D MDCK cell culture by a PIX and beta1-integrin-dependent mechanism. Am. J. Physiol. Cell. Physiol. 2010, 299, C21–C32. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, F.; Chipman, A.; Dong, J.F.; Kozar, R.A. Fibrinogen Activates PAK1/Cofilin Signaling Pathway to Protect Endothelial Barrier Integrity. Shock 2021, 55, 660–665. [Google Scholar] [CrossRef]
- Zhang, S.; Shi, W.; Hu, W.; Ma, D.; Yan, D.; Yu, K.; Zhang, G.; Cao, Y.; Wu, J.; Jiang, C.; et al. DEP Domain-Containing Protein 1B (DEPDC1B) Promotes Migration and Invasion in Pancreatic Cancer Through the Rac1/PAK1-LIMK1-Cofilin1 Signaling Pathway. Onco Targets Ther. 2020, 13, 1481–1496. [Google Scholar] [CrossRef] [Green Version]
- McGarry, D.J.; Castino, G.; Lilla, S.; Carnet, A.; Kelly, L.; Micovic, K.; Zanivan, S.; Olson, M.F. MICAL1 activation by PAK1 mediates actin filament disassembly. Cell Rep. 2022, 41, 111442. [Google Scholar] [CrossRef]
- Bernard, O. Lim kinases, regulators of actin dynamics. Int. J. Biochem. Cell Biol. 2007, 39, 1071–1076. [Google Scholar] [CrossRef]
- Po’uha, S.T.; Shum, M.S.; Goebel, A.; Bernard, O.; Kavallaris, M. LIM-kinase 2, a regulator of actin dynamics, is involved in mitotic spindle integrity and sensitivity to microtubule-destabilizing drugs. Oncogene 2010, 29, 597–607. [Google Scholar] [CrossRef] [Green Version]
- Vadlamudi, R.K.; Li, F.; Adam, L.; Nguyen, D.; Ohta, Y.; Stossel, T.P.; Kumar, R. Filamin is essential in actin cytoskeletal assembly mediated by p21-activated kinase 1. Nat. Cell. Biol. 2002, 4, 681–690. [Google Scholar] [CrossRef]
- Vadlamudi, R.K.; Li, F.; Barnes, C.J.; Bagheri-Yarmand, R.; Kumar, R. p41-Arc subunit of human Arp2/3 complex is a p21-activated kinase-1-interacting substrate. EMBO Rep. 2004, 5, 154–160. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ayala, I.; Baldassarre, M.; Giacchetti, G.; Caldieri, G.; Tete, S.; Luini, A.; Buccione, R. Multiple regulatory inputs converge on cortactin to control invadopodia biogenesis and extracellular matrix degradation. J. Cell. Sci. 2008, 121, 369–378. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Morita, T.; Mayanagi, T.; Yoshio, T.; Sobue, K. Changes in the balance between caldesmon regulated by p21-activated kinases and the Arp2/3 complex govern podosome formation. J. Biol. Chem. 2007, 282, 8454–8463. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ding, I.; Ostrowska-Podhorodecka, Z.; Lee, W.; Liu, R.S.C.; Carneiro, K.; Janmey, P.A.; McCulloch, C.A. Cooperative roles of PAK1 and filamin A in regulation of vimentin assembly and cell extension formation. Biochim. Biophys. Acta Mol. Cell Res. 2020, 1867, 118739. [Google Scholar] [CrossRef]
- Acconcia, F.; Barnes, C.J.; Singh, R.R.; Talukder, A.H.; Kumar, R. Phosphorylation-dependent regulation of nuclear localization and functions of integrin-linked kinase. Proc. Natl. Acad. Sci. USA 2007, 104, 6782–6787. [Google Scholar] [CrossRef] [Green Version]
- Menzel, N.; Melzer, J.; Waschke, J.; Lenz, C.; Wecklein, H.; Lochnit, G.; Drenckhahn, D.; Raabe, T. The Drosophila p21-activated kinase Mbt modulates DE-cadherin-mediated cell adhesion by phosphorylation of Armadillo. Biochem. J. 2008, 416, 231–241. [Google Scholar] [CrossRef] [Green Version]
- Hashimoto, S.; Tsubouchi, A.; Mazaki, Y.; Sabe, H. Interaction of paxillin with p21-activated Kinase (PAK). Association of paxillin alpha with the kinase-inactive and the Cdc42-activated forms of PAK3. J. Biol. Chem. 2001, 276, 6037–6045. [Google Scholar] [CrossRef] [Green Version]
- Rajah, A.; Boudreau, C.G.; Ilie, A.; Wee, T.L.; Tang, K.; Borisov, A.Z.; Orlowski, J.; Brown, C.M. Paxillin S273 Phosphorylation Regulates Adhesion Dynamics and Cell Migration through a Common Protein Complex with PAK1 and betaPIX. Sci. Rep. 2019, 9, 11430. [Google Scholar] [CrossRef] [Green Version]
- Wittmann, T.; Bokoch, G.M.; Waterman-Storer, C.M. Regulation of microtubule destabilizing activity of Op18/stathmin downstream of Rac1. J. Biol. Chem. 2004, 279, 6196–6203. [Google Scholar] [CrossRef] [Green Version]
- Vadlamudi, R.K.; Barnes, C.J.; Rayala, S.; Li, F.; Balasenthil, S.; Marcus, S.; Goodson, H.V.; Sahin, A.A.; Kumar, R. p21-activated kinase 1 regulates microtubule dynamics by phosphorylating tubulin cofactor B. Mol. Cell. Biol. 2005, 25, 3726–3736. [Google Scholar] [CrossRef] [Green Version]
- Vadlamudi, R.K.; Kumar, R. p21-activated kinase 1: An emerging therapeutic target. Cancer Treat. Res. 2004, 119, 77–88. [Google Scholar] [CrossRef] [PubMed]
- Cernohorska, M.; Sulimenko, V.; Hajkova, Z.; Sulimenko, T.; Sladkova, V.; Vinopal, S.; Draberova, E.; Draber, P. GIT1/betaPIX signaling proteins and PAK1 kinase regulate microtubule nucleation. Biochim. Biophys. Acta 2016, 1863, 1282–1297. [Google Scholar] [CrossRef] [PubMed]
- van Dijk, J.; Bompard, G.; Rabeharivelo, G.; Cau, J.; Delsert, C.; Morin, N. PAK1 Regulates MEC-17 Acetyltransferase Activity and Microtubule Acetylation during Proplatelet Extension. Int. J. Mol. Sci. 2020, 21, 7531. [Google Scholar] [CrossRef] [PubMed]
- Magliozzi, J.O.; Moseley, J.B. Pak1 kinase controls cell shape through ribonucleoprotein granules. eLife 2021, 10, e67648. [Google Scholar] [CrossRef] [PubMed]
- Hammer, A.; Diakonova, M. Prolactin-induced PAK1 tyrosyl phosphorylation promotes FAK dephosphorylation, breast cancer cell motility, invasion and metastasis. BMC Cell. Biol. 2016, 17, 31. [Google Scholar] [CrossRef] [Green Version]
- Carrasco-Ceballos, J.M.; Barrera-Hernandez, D.; Locia-Espinosa, J.; Sampieri, C.L.; Lara-Reyes, J.A.; Hernandez-Aguilar, M.E.; Aranda-Abreu, G.E.; Toledo-Cardenas, M.R.; Chi-Castaneda, L.D.; Perez-Estudillo, C.A.; et al. Involvement of the PRL-PAK1 Pathway in Cancer Cell Migration. Cancer Diagn. Progn. 2023, 3, 17–25. [Google Scholar] [CrossRef]
- Weis, S.M. Evaluating integrin function in models of angiogenesis and vascular permeability. Methods Enzymol. 2007, 426, 505–528. [Google Scholar] [CrossRef]
- Mammoto, A.; Mammoto, T.; Ingber, D.E. Rho signaling and mechanical control of vascular development. Curr. Opin. Hematol. 2008, 15, 228–234. [Google Scholar] [CrossRef]
- Kiosses, W.B.; Daniels, R.H.; Otey, C.; Bokoch, G.M.; Schwartz, M.A. A role for p21-activated kinase in endothelial cell migration. J. Cell. Biol. 1999, 147, 831–844. [Google Scholar] [CrossRef] [Green Version]
- Guo, F.; Debidda, M.; Yang, L.; Williams, D.A.; Zheng, Y. Genetic deletion of Rac1 GTPase reveals its critical role in actin stress fiber formation and focal adhesion complex assembly. J. Biol. Chem. 2006, 281, 18652–18659. [Google Scholar] [CrossRef] [Green Version]
- Zhou, G.L.; Tucker, D.F.; Bae, S.S.; Bhatheja, K.; Birnbaum, M.J.; Field, J. Opposing roles for Akt1 and Akt2 in Rac/Pak signaling and cell migration. J. Biol. Chem. 2006, 281, 36443–36453. [Google Scholar] [CrossRef] [PubMed]
- Radu, M.; Lyle, K.; Hoeflich, K.P.; Villamar-Cruz, O.; Koeppen, H.; Chernoff, J. p21-Activated Kinase 2 Regulates Endothelial Development and Function through the Bmk1/Erk5 Pathway. Mol. Cell. Biol. 2015, 35, 3990–4005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Boscher, C.; Gaonac’h-Lovejoy, V.; Delisle, C.; Gratton, J.P. Polarization and sprouting of endothelial cells by angiopoietin-1 require PAK2 and paxillin-dependent Cdc42 activation. Mol. Biol. Cell 2019, 30, 2227–2239. [Google Scholar] [CrossRef]
- Thirugnanam, K.; Prabhudesai, S.; Van Why, E.; Pan, A.; Gupta, A.; Foreman, K.; Zennadi, R.; Rarick, K.R.; Nauli, S.M.; Palecek, S.P.; et al. Ciliogenesis mechanisms mediated by PAK2-ARL13B signaling in brain endothelial cells is responsible for vascular stability. Biochem. Pharmacol. 2022, 202, 115143. [Google Scholar] [CrossRef] [PubMed]
- Orr, A.W.; Stockton, R.; Simmers, M.B.; Sanders, J.M.; Sarembock, I.J.; Blackman, B.R.; Schwartz, M.A. Matrix-specific p21-activated kinase activation regulates vascular permeability in atherogenesis. J. Cell. Biol. 2007, 176, 719–727. [Google Scholar] [CrossRef] [Green Version]
- Tan, W.; Palmby, T.R.; Gavard, J.; Amornphimoltham, P.; Zheng, Y.; Gutkind, J.S. An essential role for Rac1 in endothelial cell function and vascular development. FASEB J. 2008, 22, 1829–1838. [Google Scholar] [CrossRef]
- Connolly, J.O.; Simpson, N.; Hewlett, L.; Hall, A. Rac regulates endothelial morphogenesis and capillary assembly. Mol. Biol. Cell 2002, 13, 2474–2485. [Google Scholar] [CrossRef] [Green Version]
- Galan Moya, E.M.; Le Guelte, A.; Gavard, J. PAKing up to the endothelium. Cell. Signal. 2009, 21, 1727–1737. [Google Scholar] [CrossRef] [Green Version]
- Alavi, A.; Hood, J.D.; Frausto, R.; Stupack, D.G.; Cheresh, D.A. Role of Raf in vascular protection from distinct apoptotic stimuli. Science 2003, 301, 94–96. [Google Scholar] [CrossRef]
- Nakatsu, M.N.; Hughes, C.C. An optimized three-dimensional in vitro model for the analysis of angiogenesis. Methods Enzymol. 2008, 443, 65–82. [Google Scholar] [CrossRef]
- Kiosses, W.B.; Hood, J.; Yang, S.; Gerritsen, M.E.; Cheresh, D.A.; Alderson, N.; Schwartz, M.A. A dominant-negative p65 PAK peptide inhibits angiogenesis. Circ. Res. 2002, 90, 697–702. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stoletov, K.V.; Gong, C.; Terman, B.I. Nck and Crk mediate distinct VEGF-induced signaling pathways that serve overlapping functions in focal adhesion turnover and integrin activation. Exp. Cell. Res. 2004, 295, 258–268. [Google Scholar] [CrossRef] [PubMed]
- Koh, W.; Sachidanandam, K.; Stratman, A.N.; Sacharidou, A.; Mayo, A.M.; Murphy, E.A.; Cheresh, D.A.; Davis, G.E. Formation of endothelial lumens requires a coordinated PKCepsilon-, Src-, Pak- and Raf-kinase-dependent signaling cascade downstream of Cdc42 activation. J. Cell. Sci. 2009, 122, 1812–1822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kamei, M.; Saunders, W.B.; Bayless, K.J.; Dye, L.; Davis, G.E.; Weinstein, B.M. Endothelial tubes assemble from intracellular vacuoles in vivo. Nature 2006, 442, 453–456. [Google Scholar] [CrossRef]
- Gonzalez-Villasana, V.; Fuentes-Mattei, E.; Ivan, C.; Dalton, H.J.; Rodriguez-Aguayo, C.; Fernandez-de Thomas, R.J.; Aslan, B.; Del, C.M.P.; Velazquez-Torres, G.; Previs, R.A.; et al. Rac1/Pak1/p38/MMP-2 Axis Regulates Angiogenesis in Ovarian Cancer. Clin. Cancer Res. 2015, 21, 2127–2137. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Zhang, C.; Zheng, Q.; Ma, Z.; Qi, M.; Di, G.; Ling, S.; Xu, H.; Qi, B.; Yao, C.; et al. RhoJ facilitates angiogenesis in glioblastoma via JNK/VEGFR2 mediated activation of PAK and ERK signaling pathways. Int. J. Biol. Sci. 2022, 18, 942–955. [Google Scholar] [CrossRef]
- Bagheri-Yarmand, R.; Vadlamudi, R.K.; Wang, R.A.; Mendelsohn, J.; Kumar, R. Vascular endothelial growth factor up-regulation via p21-activated kinase-1 signaling regulates heregulin-beta1-mediated angiogenesis. J. Biol. Chem. 2000, 275, 39451–39457. [Google Scholar] [CrossRef] [Green Version]
- Mehta, D.; Rahman, A.; Malik, A.B. Protein kinase C-alpha signals rho-guanine nucleotide dissociation inhibitor phosphorylation and rho activation and regulates the endothelial cell barrier function. J. Biol. Chem. 2001, 276, 22614–22620. [Google Scholar] [CrossRef] [Green Version]
- Gavard, J.; Gutkind, J.S. VEGF controls endothelial-cell permeability by promoting the beta-arrestin-dependent endocytosis of VE-cadherin. Nat. Cell. Biol. 2006, 8, 1223–1234. [Google Scholar] [CrossRef]
- Stockton, R.A.; Schaefer, E.; Schwartz, M.A. p21-activated kinase regulates endothelial permeability through modulation of contractility. J. Biol. Chem. 2004, 279, 46621–46630. [Google Scholar] [CrossRef] [Green Version]
- Jiang, S.; Gao, Y.; Yu, Q.H.; Li, M.; Cheng, X.; Hu, S.B.; Song, Z.F.; Zheng, Q.C. P-21-activated kinase 1 contributes to tumor angiogenesis upon photodynamic therapy via the HIF-1alpha/VEGF pathway. Biochem. Biophys. Res. Commun. 2020, 526, 98–104. [Google Scholar] [CrossRef] [PubMed]
- Rowe, R.G.; Weiss, S.J. Breaching the basement membrane: Who, when and how? Trends Cell. Biol. 2008, 18, 560–574. [Google Scholar] [CrossRef]
- Murphy, G.; Nagase, H. Progress in matrix metalloproteinase research. Mol. Aspects Med. 2008, 29, 290–308. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Q.; Mullins, S.R.; Sloane, B.F.; Mattingly, R.R. p21-Activated kinase 1 coordinates aberrant cell survival and pericellular proteolysis in a three-dimensional culture model for premalignant progression of human breast cancer. Neoplasia 2008, 10, 314–329. [Google Scholar] [CrossRef] [Green Version]
- Francis, J.C.; Swain, A. Prostate Organogenesis. Cold Spring Harb. Perspect. Med. 2018, 8, a030353. [Google Scholar] [CrossRef] [PubMed]
- Lei, K.; Luo, M.; Tu, Z.; Lv, S.; Liu, J.; Gong, C.; Ye, M.; Wu, M.; Sheng, Y.; Long, X.; et al. Comprehensive analysis of the prognostic implications and functional exploration of PAK gene family in human cancer. Cancer Cell. Int. 2022, 22, 275. [Google Scholar] [CrossRef]
- Chow, H.Y.; Dong, B.; Valencia, C.A.; Zeng, C.T.; Koch, J.N.; Prudnikova, T.Y.; Chernoff, J. Group I Paks are essential for epithelial- mesenchymal transition in an Apc-driven model of colorectal cancer. Nat. Commun. 2018, 9, 3473. [Google Scholar] [CrossRef] [Green Version]
- Radu, M.; Semenova, G.; Kosoff, R.; Chernoff, J. PAK signalling during the development and progression of cancer. Nat. Rev. Cancer 2014, 14, 13–25. [Google Scholar] [CrossRef]
- Fang, F.; Pan, J.; Li, Y.P.; Li, G.; Xu, L.X.; Su, G.H.; Li, Z.H.; Feng, X.; Wang, J. p21-activated kinase 1 (PAK1) expression correlates with prognosis in solid tumors: A systematic review and meta-analysis. Oncotarget 2016, 7, 27422–27429. [Google Scholar] [CrossRef] [Green Version]
- Siu, M.K.; Wong, E.S.; Chan, H.Y.; Kong, D.S.; Woo, N.W.; Tam, K.F.; Ngan, H.Y.; Chan, Q.K.; Chan, D.C.; Chan, K.Y.; et al. Differential expression and phosphorylation of Pak1 and Pak2 in ovarian cancer: Effects on prognosis and cell invasion. Int. J. Cancer 2010, 127, 21–31. [Google Scholar] [CrossRef]
- Wang, R.A.; Zhang, H.; Balasenthil, S.; Medina, D.; Kumar, R. PAK1 hyperactivation is sufficient for mammary gland tumor formation. Oncogene 2006, 25, 2931–2936. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saldivar-Ceron, H.I.; Villamar-Cruz, O.; Wells, C.M.; Oguz, I.; Spaggiari, F.; Chernoff, J.; Patino-Lopez, G.; Huerta-Yepez, S.; Montecillo-Aguado, M.; Rivera-Pazos, C.M.; et al. p21-Activated Kinase 1 Promotes Breast Tumorigenesis via Phosphorylation and Activation of the Calcium/Calmodulin-Dependent Protein Kinase II. Front. Cell. Dev. Biol. 2021, 9, 759259. [Google Scholar] [CrossRef] [PubMed]
- Shi, W.; Ma, D.; Cao, Y.; Hu, L.; Liu, S.; Yan, D.; Zhang, S.; Zhang, G.; Wang, Z.; Wu, J.; et al. SphK2/S1P Promotes Metastasis of Triple-Negative Breast Cancer Through the PAK1/LIMK1/Cofilin1 Signaling Pathway. Front. Mol. Biosci. 2021, 8, 598218. [Google Scholar] [CrossRef] [PubMed]
- Najahi-Missaoui, W.; Quach, N.D.; Jenkins, A.; Dabke, I.; Somanath, P.R.; Cummings, B.S. Effect of P21-activated kinase 1 (PAK-1) inhibition on cancer cell growth, migration, and invasion. Pharmacol. Res. Perspect. 2019, 7, e00518. [Google Scholar] [CrossRef] [PubMed]
- Ong, C.C.; Gierke, S.; Pitt, C.; Sagolla, M.; Cheng, C.K.; Zhou, W.; Jubb, A.M.; Strickland, L.; Schmidt, M.; Duron, S.G.; et al. Small molecule inhibition of group I p21-activated kinases in breast cancer induces apoptosis and potentiates the activity of microtubule stabilizing agents. Breast Cancer Res. 2015, 17, 59. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gonzalez, N.; Cardama, G.A.; Comin, M.J.; Segatori, V.I.; Pifano, M.; Alonso, D.F.; Gomez, D.E.; Menna, P.L. Pharmacological inhibition of Rac1-PAK1 axis restores tamoxifen sensitivity in human resistant breast cancer cells. Cell. Signal. 2017, 30, 154–161. [Google Scholar] [CrossRef] [PubMed]
- Meng, X.; Li, W.; Meng, Z.; Li, Y. EIF4A3-induced circBRWD3 promotes tumorigenesis of breast cancer through miR-142-3p_miR-142-5p/RAC1/PAK1 signaling. BMC Cancer 2022, 22, 1225. [Google Scholar] [CrossRef]
- Bostner, J.; Skoog, L.; Fornander, T.; Nordenskjold, B.; Stal, O. Estrogen receptor-alpha phosphorylation at serine 305, nuclear p21-activated kinase 1 expression, and response to tamoxifen in postmenopausal breast cancer. Clin. Cancer Res. 2010, 16, 1624–1633. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bostner, J.; Ahnstrom Waltersson, M.; Fornander, T.; Skoog, L.; Nordenskjold, B.; Stal, O. Amplification of CCND1 and PAK1 as predictors of recurrence and tamoxifen resistance in postmenopausal breast cancer. Oncogene 2007, 26, 6997–7005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Vadlamudi, R.K.; Adam, L.; Wang, R.A.; Mandal, M.; Nguyen, D.; Sahin, A.; Chernoff, J.; Hung, M.C.; Kumar, R. Regulatable expression of p21-activated kinase-1 promotes anchorage-independent growth and abnormal organization of mitotic spindles in human epithelial breast cancer cells. J. Biol. Chem. 2000, 275, 36238–36244. [Google Scholar] [CrossRef] [Green Version]
- Wang, R.A.; Mazumdar, A.; Vadlamudi, R.K.; Kumar, R. P21-activated kinase-1 phosphorylates and transactivates estrogen receptor-alpha and promotes hyperplasia in mammary epithelium. EMBO J. 2002, 21, 5437–5447. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Zhang, Q.; Song, Y.; Wang, X.; Guo, Q.; Zhang, J.; Li, J.; Han, Y.; Miao, Z.; Li, F. PAK1 regulates RUFY3-mediated gastric cancer cell migration and invasion. Cell Death Dis. 2015, 6, e1682. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, F.; Cheng, Z.; Li, X.; Li, Y.; Zhang, H.; Li, J.; Liu, F.; Xu, H.; Li, F. A Novel Pak1/ATF2/miR-132 Signaling Axis Is Involved in the Hematogenous Metastasis of Gastric Cancer Cells. Mol. Ther. Nucleic Acids 2017, 8, 370–382. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, F.; Li, X.; Wang, C.; Cai, X.; Du, Z.; Xu, H.; Li, F. Downregulation of p21-activated kinase-1 inhibits the growth of gastric cancer cells involving cyclin B1. Int. J. Cancer 2009, 125, 2511–2519. [Google Scholar] [CrossRef]
- Li, X.; Li, F. p21-Activated Kinase: Role in Gastrointestinal Cancer and Beyond. Cancers 2022, 14, 4736. [Google Scholar] [CrossRef]
- Li, F.; Tan, B.; Chen, Z.; Zhao, Q.; Li, S.; Ding, P.; Liu, C.; Wang, X.; Li, X.; Li, Y. Long non-coding RNA CNALPTC1 promotes gastric cancer progression by regulating the miR-6788-5p/PAK1 pathway. J. Gastrointest. Oncol. 2022, 13, 2809–2822. [Google Scholar] [CrossRef]
- Chen, G.; Liao, J.; Xu, Y.; Chen, Y.; Li, J.; Bu, G.; Li, Q. LINC01232 Promotes Metastasis and EMT by Regulating miR-506-5p/PAK1 Axis in Gastric Cancer. Cancer Manag. Res. 2022, 14, 1729–1740. [Google Scholar] [CrossRef]
- Dammann, K.; Khare, V.; Harpain, F.; Lang, M.; Kurtovic, A.; Mesteri, I.; Evstatiev, R.; Gasche, C. PAK1 promotes intestinal tumor initiation. Cancer Prev. Res. 2015, 8, 1093–1101. [Google Scholar] [CrossRef] [Green Version]
- Huynh, N.; Wang, K.; Yim, M.; Dumesny, C.J.; Sandrin, M.S.; Baldwin, G.S.; Nikfarjam, M.; He, H. Depletion of p21-activated kinase 1 up-regulates the immune system of APC(14/+) mice and inhibits intestinal tumorigenesis. BMC Cancer 2017, 17, 431. [Google Scholar] [CrossRef]
- Ma, Y.; Nikfarjam, M.; He, H. The trilogy of P21 activated kinase, autophagy and immune evasion in pancreatic ductal adenocarcinoma. Cancer Lett. 2022, 548, 215868. [Google Scholar] [CrossRef]
- Li, M.; Zhou, J.; Zhang, Z.; Li, J.; Wang, F.; Ma, L.; Tian, X.; Mao, Z.; Yang, Y. Exosomal miR-485-3p derived from pancreatic ductal epithelial cells inhibits pancreatic cancer metastasis through targeting PAK1. Chin. Med. J. 2022, 135, 2326–2337. [Google Scholar] [CrossRef] [PubMed]
- Jagadeeshan, S.; Subramanian, A.; Tentu, S.; Beesetti, S.; Singhal, M.; Raghavan, S.; Surabhi, R.P.; Mavuluri, J.; Bhoopalan, H.; Biswal, J.; et al. P21-activated kinase 1 (Pak1) signaling influences therapeutic outcome in pancreatic cancer. Ann. Oncol. 2016, 27, 1546–1556. [Google Scholar] [CrossRef]
- Wang, K.; Zhan, Y.; Huynh, N.; Dumesny, C.; Wang, X.; Asadi, K.; Herrmann, D.; Timpson, P.; Yang, Y.; Walsh, K.; et al. Inhibition of PAK1 suppresses pancreatic cancer by stimulation of anti-tumour immunity through down-regulation of PD-L1. Cancer Lett. 2020, 472, 8–18. [Google Scholar] [CrossRef] [PubMed]
- Zhou, W.; Jubb, A.M.; Lyle, K.; Xiao, Q.; Ong, C.C.; Desai, R.; Fu, L.; Gnad, F.; Song, Q.; Haverty, P.M.; et al. PAK1 mediates pancreatic cancer cell migration and resistance to MET inhibition. J. Pathol. 2014, 234, 502–513. [Google Scholar] [CrossRef] [Green Version]
- Chen, M.J.; Wu, D.W.; Wang, Y.C.; Chen, C.Y.; Lee, H. PAK1 confers chemoresistance and poor outcome in non-small cell lung cancer via beta-catenin-mediated stemness. Sci. Rep. 2016, 6, 34933. [Google Scholar] [CrossRef]
- Stejerean-Todoran, I.; Gimotty, P.A.; Watters, A.; Brafford, P.; Krepler, C.; Godok, T.; Li, H.; Bonilla Del Rio, Z.; Zieseniss, A.; Katschinski, D.M.; et al. A distinct pattern of growth and RAC1 signaling in melanoma brain metastasis cells. Neuro Oncol. 2022, 25, 674–686. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Wang, H.; Xia, L.; Oyang, L.; Zhou, Y.; Zhang, B.; Chen, X.; Luo, X.; Liao, Q.; Liang, J. Overexpression of PAK1 Correlates with Aberrant Expression of EMT Markers and Poor Prognosis in Non-Small Cell Lung Cancer. J. Cancer 2017, 8, 1484–1491. [Google Scholar] [CrossRef] [Green Version]
- Song, B.; Wang, W.; Zheng, Y.; Yang, J.; Xu, Z. P21-activated kinase 1 and 4 were associated with colorectal cancer metastasis and infiltration. J. Surg. Res. 2015, 196, 130–135. [Google Scholar] [CrossRef]
- Chen, X.; Cates, J.M.M.; Du, Y.C.; Jain, A.; Jung, S.Y.; Li, X.N.; Hicks, J.M.; Man, T.K. Mislocalized cytoplasmic p27 activates PAK1-mediated metastasis and is a prognostic factor in osteosarcoma. Mol. Oncol. 2020, 14, 846–864. [Google Scholar] [CrossRef] [Green Version]
- Shin, S.K.; Ryu, S.; Nam, S.; Ha, S.Y.; Kwon, O.S.; Kim, Y.S.; Kim, S.H.; Kim, J.H. Clinical Significance of Combined Epithelial-Mesenchymal Transition Markers Expression and Role of Rac1 in Hepatocellular Carcinoma. Int. J. Mol. Sci. 2023, 24, 1765. [Google Scholar] [CrossRef]
- Zhang, H.; Meng, S.; Chu, K.; Chu, S.; Fan, Y.C.; Bai, J.; Yu, Z.Q. KIF4A drives gliomas growth by transcriptional repression of Rac1/Cdc42 to induce cytoskeletal remodeling in glioma cells. J. Cancer 2022, 13, 3640–3651. [Google Scholar] [CrossRef] [PubMed]
- Magne, N.; Rousseau, V.; Duarte, K.; Poea-Guyon, S.; Gleize, V.; Mutel, A.; Schmitt, C.; Castel, H.; Idbaih, A.; Huillard, E.; et al. PAK3 is a key signature gene of the glioma proneural subtype and affects its proliferation, differentiation and growth. Cell. Oncol. 2021, 44, 1257–1271. [Google Scholar] [CrossRef] [PubMed]
- Huang, K.; Chen, G.; Li, Y.; Liu, J.K.; Wang, Z.Y.; Zhou, G.C. Expression of PAK1 in bladder cancer and its influence on invasion of bladder cancer cells. Zhonghua Yi Xue Za Zhi 2016, 96, 3227–3231. [Google Scholar] [CrossRef] [PubMed]
- Kamai, T.; Shirataki, H.; Nakanishi, K.; Furuya, N.; Kambara, T.; Abe, H.; Oyama, T.; Yoshida, K. Increased Rac1 activity and Pak1 overexpression are associated with lymphovascular invasion and lymph node metastasis of upper urinary tract cancer. BMC Cancer 2010, 10, 164. [Google Scholar] [CrossRef] [Green Version]
- Huang, K.; Chen, G.; Luo, J.; Zhang, Y.; Xu, G. Clinicopathological and cellular signature of PAK1 in human bladder cancer. Tumour Biol. 2015, 36, 2359–2368. [Google Scholar] [CrossRef]
- Kuroda, K.; Asakuma, J.; Asano, T.; Horiguchi, A.; Isono, M.; Tsujita, Y.; Sato, A.; Seguchi, K.; Ito, K.; Asano, T. Clinical significance of p21-activated kinase 1 expression level in patients with upper urinary tract urothelial carcinoma. Jpn. J. Clin. Oncol. 2015, 45, 103–110. [Google Scholar] [CrossRef] [Green Version]
- Qu, Y.; Lin, Z.; Qi, Y.; Qi, Y.; Chen, Y.; Zhou, Q.; Zeng, H.; Liu, Z.; Wang, Z.; Wang, J.; et al. PAK1 expression determines poor prognosis and immune evasion in metastatic renal cell carcinoma patients. Urol. Oncol. 2020, 38, 293–304. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, H.; Xu, L.; An, H.; Liu, W.; Liu, Y.; Lin, Z.; Xu, J. p21-activated kinase 1 determines stem-like phenotype and sunitinib resistance via NF-kappaB/IL-6 activation in renal cell carcinoma. Cell Death Dis. 2015, 6, e1637. [Google Scholar] [CrossRef] [Green Version]
- Walsh, K.; McKinney, M.S.; Love, C.; Liu, Q.; Fan, A.; Patel, A.; Smith, J.; Beaven, A.; Jima, D.D.; Dave, S.S. PAK1 mediates resistance to PI3K inhibition in lymphomas. Clin. Cancer Res. 2013, 19, 1106–1115. [Google Scholar] [CrossRef] [Green Version]
- Flis, S.; Bratek, E.; Chojnacki, T.; Piskorek, M.; Skorski, T. Simultaneous Inhibition of BCR-ABL1 Tyrosine Kinase and PAK1/2 Serine/Threonine Kinase Exerts Synergistic Effect against Chronic Myeloid Leukemia Cells. Cancers 2019, 11, 1544. [Google Scholar] [CrossRef] [Green Version]
- Pandolfi, A.; Stanley, R.F.; Yu, Y.; Bartholdy, B.; Pendurti, G.; Gritsman, K.; Boultwood, J.; Chernoff, J.; Verma, A.; Steidl, U. PAK1 is a therapeutic target in acute myeloid leukemia and myelodysplastic syndrome. Blood 2015, 126, 1118–1127. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kuzelova, K.; Obr, A.; Roselova, P.; Grebenova, D.; Otevrelova, P.; Brodska, B.; Holoubek, A. Group I p21-activated kinases in leukemia cell adhesion to fibronectin. Cell. Adhes. Migr. 2021, 15, 18–36. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.; Najahi-Missaoui, W.; Cummings, B.S.; Somanath, P.R. Sterically stabilized liposomes targeting P21 (RAC1) activated kinase-1 and secreted phospholipase A2 suppress prostate cancer growth and metastasis. Oncol. Lett. 2020, 20, 179. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.; Artham, S.; Alwhaibi, A.; Adil, M.S.; Cummings, B.S.; Somanath, P.R. PAK1 inhibitor IPA-3 mitigates metastatic prostate cancer-induced bone remodeling. Biochem. Pharmacol. 2020, 177, 113943. [Google Scholar] [CrossRef]
- Al-Azayzih, A.; Gao, F.; Somanath, P.R. P21 activated kinase-1 mediates transforming growth factor β1-induced prostate cancer cell epithelial to mesenchymal transition. Biochim. Biophys. Acta 2015, 1853, 1229–1239. [Google Scholar] [CrossRef] [Green Version]
- Al-Azayzih, A.; Missaoui, W.N.; Cummings, B.S.; Somanath, P.R. Liposome-mediated delivery of the p21 activated kinase-1 (PAK-1) inhibitor IPA-3 limits prostate tumor growth in vivo. Nanomedicine 2016, 12, 1231–1239. [Google Scholar] [CrossRef] [Green Version]
- Kaur, R.; Yuan, X.; Lu, M.L.; Balk, S.P. Increased PAK6 expression in prostate cancer and identification of PAK6 associated proteins. Prostate 2008, 68, 1510–1516. [Google Scholar] [CrossRef]
- Wells, C.M.; Whale, A.D.; Parsons, M.; Masters, J.R.; Jones, G.E. PAK4: A pluripotent kinase that regulates prostate cancer cell adhesion. J. Cell. Sci. 2010, 123, 1663–1673. [Google Scholar] [CrossRef] [Green Version]
- Zins, K.; Lucas, T.; Reichl, P.; Abraham, D.; Aharinejad, S. A Rac1/Cdc42 GTPase-specific small molecule inhibitor suppresses growth of primary human prostate cancer xenografts and prolongs survival in mice. PLoS ONE 2013, 8, e74924. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Jia, G.; Li, Y.; Liu, J.; Luo, J.; Zhang, J.; Xu, G.; Chen, G. Clinicopathological signature of p21-activated kinase 1 in prostate cancer and its regulation of proliferation and autophagy via the mTOR signaling pathway. Oncotarget 2017, 8, 22563–22580. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Wang, Q.; Peng, S.; Yao, K.; Chen, J.; Tao, Y.; Gao, Z.; Wang, F.; Li, H.; Cai, W.; et al. The metastatic promoter DEPDC1B induces epithelial-mesenchymal transition and promotes prostate cancer cell proliferation via Rac1-PAK1 signaling. Clin. Transl. Med. 2020, 10, e191. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Zhang, Z.; Wei, H.; Wang, J.; Lv, J.; Zhang, K.; Keller, E.T.; Yao, Z.; Wang, Q. Cytotoxic necrotizing factor 1 promotes prostate cancer progression through activating the Cdc42-PAK1 axis. J. Pathol. 2017, 243, 208–219. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Misra, U.K.; Deedwania, R.; Pizzo, S.V. Binding of activated alpha2-macroglobulin to its cell surface receptor GRP78 in 1-LN prostate cancer cells regulates PAK-2-dependent activation of LIMK. J. Biol. Chem. 2005, 280, 26278–26286. [Google Scholar] [CrossRef] [Green Version]
- Even-Faitelson, L.; Rosenberg, M.; Ravid, S. PAK1 regulates myosin II-B phosphorylation, filament assembly, localization and cell chemotaxis. Cell. Signal. 2005, 17, 1137–1148. [Google Scholar] [CrossRef] [PubMed]
- Cancer Genome Atlas Research, N. The Molecular Taxonomy of Primary Prostate Cancer. Cell 2015, 163, 1011–1025. [Google Scholar] [CrossRef] [Green Version]
- Achard, V.; Putora, P.M.; Omlin, A.; Zilli, T.; Fischer, S. Metastatic Prostate Cancer: Treatment Options. Oncology 2022, 100, 48–59. [Google Scholar] [CrossRef]
- Lv, S.; Song, Q.; Chen, G.; Cheng, E.; Chen, W.; Cole, R.; Wu, Z.; Pascal, L.E.; Wang, K.; Wipf, P.; et al. Regulation and targeting of androgen receptor nuclear localization in castration-resistant prostate cancer. J. Clin. Investig. 2021, 131, e141335. [Google Scholar] [CrossRef]
- Lee, S.R.; Ramos, S.M.; Ko, A.; Masiello, D.; Swanson, K.D.; Lu, M.L.; Balk, S.P. AR and ER interaction with a p21-activated kinase (PAK6). Mol. Endocrinol. 2002, 16, 85–99. [Google Scholar] [CrossRef]
- Schrantz, N.; da Silva Correia, J.; Fowler, B.; Ge, Q.; Sun, Z.; Bokoch, G.M. Mechanism of p21-activated kinase 6-mediated inhibition of androgen receptor signaling. J. Biol. Chem. 2004, 279, 1922–1931. [Google Scholar] [CrossRef] [Green Version]
- Liu, T.; Li, Y.; Gu, H.; Zhu, G.; Li, J.; Cao, L.; Li, F. p21-Activated kinase 6 (PAK6) inhibits prostate cancer growth via phosphorylation of androgen receptor and tumorigenic E3 ligase murine double minute-2 (Mdm2). J. Biol. Chem. 2013, 288, 3359–3369. [Google Scholar] [CrossRef] [Green Version]
- Liu, X.; Busby, J.; John, C.; Wei, J.; Yuan, X.; Lu, M.L. Direct interaction between AR and PAK6 in androgen-stimulated PAK6 activation. PLoS ONE 2013, 8, e77367. [Google Scholar] [CrossRef]
- Xu, Y.; Foulks, J.M.; Clifford, A.; Brenning, B.; Lai, S.; Luo, B.; Parnell, K.M.; Merx, S.; McCullar, M.V.; Kanner, S.B.; et al. Synthesis and structure-activity relationship of 2-arylamino-4-aryl-pyrimidines as potent PAK1 inhibitors. Bioorg Med. Chem. Lett. 2013, 23, 4072–4075. [Google Scholar] [CrossRef]
- Kase, H.; Iwahashi, K.; Nakanishi, S.; Matsuda, Y.; Yamada, K.; Takahashi, M.; Murakata, C.; Sato, A.; Kaneko, M. K-252 compounds, novel and potent inhibitors of protein kinase C and cyclic nucleotide-dependent protein kinases. Biochem. Biophys. Res. Commun. 1987, 142, 436–440. [Google Scholar] [CrossRef] [PubMed]
- Nheu, T.V.; He, H.; Hirokawa, Y.; Tamaki, K.; Florin, L.; Schmitz, M.L.; Suzuki-Takahashi, I.; Jorissen, R.N.; Burgess, A.W.; Nishimura, S.; et al. The K252a derivatives, inhibitors for the PAK/MLK kinase family selectively block the growth of RAS transformants. Cancer J. 2002, 8, 328–336. [Google Scholar] [CrossRef]
- Karaman, M.W.; Herrgard, S.; Treiber, D.K.; Gallant, P.; Atteridge, C.E.; Campbell, B.T.; Chan, K.W.; Ciceri, P.; Davis, M.I.; Edeen, P.T.; et al. A quantitative analysis of kinase inhibitor selectivity. Nat. Biotechnol. 2008, 26, 127–132. [Google Scholar] [CrossRef] [PubMed]
- Murray, B.W.; Guo, C.; Piraino, J.; Westwick, J.K.; Zhang, C.; Lamerdin, J.; Dagostino, E.; Knighton, D.; Loi, C.M.; Zager, M.; et al. Small-molecule p21-activated kinase inhibitor PF-3758309 is a potent inhibitor of oncogenic signaling and tumor growth. Proc. Natl. Acad. Sci. USA 2010, 107, 9446–9451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shao, Y.G.; Ning, K.; Li, F. Group II p21-activated kinases as therapeutic targets in gastrointestinal cancer. World J. Gastroenterol. 2016, 22, 1224–1235. [Google Scholar] [CrossRef]
- Rudolph, J.; Crawford, J.J.; Hoeflich, K.P.; Wang, W. Inhibitors of p21-activated kinases (PAKs). J. Med. Chem. 2015, 58, 111–129. [Google Scholar] [CrossRef]
- Licciulli, S.; Maksimoska, J.; Zhou, C.; Troutman, S.; Kota, S.; Liu, Q.; Duron, S.; Campbell, D.; Chernoff, J.; Field, J.; et al. FRAX597, a small molecule inhibitor of the p21-activated kinases, inhibits tumorigenesis of neurofibromatosis type 2 (NF2)-associated Schwannomas. J. Biol. Chem. 2013, 288, 29105–29114. [Google Scholar] [CrossRef] [Green Version]
- Kelly, M.L.; Astsaturov, A.; Chernoff, J. Role of p21-activated kinases in cardiovascular development and function. Cell. Mol. Life Sci. 2013, 70, 4223–4228. [Google Scholar] [CrossRef] [Green Version]
- Dolan, B.M.; Duron, S.G.; Campbell, D.A.; Vollrath, B.; Shankaranarayana Rao, B.S.; Ko, H.Y.; Lin, G.G.; Govindarajan, A.; Choi, S.Y.; Tonegawa, S. Rescue of fragile X syndrome phenotypes in Fmr1 KO mice by the small-molecule PAK inhibitor FRAX486. Proc. Natl. Acad. Sci. USA 2013, 110, 5671–5676. [Google Scholar] [CrossRef] [Green Version]
- Ndubaku, C.O.; Crawford, J.J.; Drobnick, J.; Aliagas, I.; Campbell, D.; Dong, P.; Dornan, L.M.; Duron, S.; Epler, J.; Gazzard, L.; et al. Design of Selective PAK1 Inhibitor G-5555: Improving Properties by Employing an Unorthodox Low-pK a Polar Moiety. ACS Med. Chem. Lett. 2015, 6, 1241–1246. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Porchia, L.M.; Guerra, M.; Wang, Y.C.; Zhang, Y.; Espinosa, A.V.; Shinohara, M.; Kulp, S.K.; Kirschner, L.S.; Saji, M.; Chen, C.S.; et al. 2-amino-N-4-[5-(2-phenanthrenyl)-3-(trifluoromethyl)-1H-pyrazol-1-yl]-phenyl acetamide (OSU-03012), a celecoxib derivative, directly targets p21-activated kinase. Mol. Pharmacol. 2007, 72, 1124–1131. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Zhang, J.; Wang, J.; Cheng, M.S.; Zhao, D.M.; Li, F. Targeting PAK1 with the Small Molecule Drug AK963/40708899 Suppresses Gastric Cancer Cell Proliferation and Invasion by Downregulation of PAK1 Activity and PAK1-Related Signaling Pathways. Anat. Rec. 2019, 302, 1571–1579. [Google Scholar] [CrossRef]
- Zhang, J.; Zou, L.; Tang, P.; Pan, D.; He, Z.; Yao, D. Design, synthesis and biological evaluation of 1H-pyrazolo [3,4-d]pyrimidine derivatives as PAK1 inhibitors that trigger apoptosis, ER stress and anti-migration effect in MDA-MB-231 cells. Eur. J. Med. Chem. 2020, 194, 112220. [Google Scholar] [CrossRef]
- Maksimoska, J.; Feng, L.; Harms, K.; Yi, C.; Kissil, J.; Marmorstein, R.; Meggers, E. Targeting large kinase active site with rigid, bulky octahedral ruthenium complexes. J. Am. Chem. Soc. 2008, 130, 15764–15765. [Google Scholar] [CrossRef] [Green Version]
- McCoull, W.; Hennessy, E.J.; Blades, K.; Chuaqui, C.; Dowling, J.E.; Ferguson, A.D.; Goldberg, F.W.; Howe, N.; Jones, C.R.; Kemmitt, P.D.; et al. Optimization of Highly Kinase Selective Bis-anilino Pyrimidine PAK1 Inhibitors. ACS Med. Chem. Lett. 2016, 7, 1118–1123. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Semenova, G.; Chernoff, J. Targeting PAK1. Biochem. Soc. Trans. 2017, 45, 79–88. [Google Scholar] [CrossRef]
- Deacon, S.W.; Beeser, A.; Fukui, J.A.; Rennefahrt, U.E.; Myers, C.; Chernoff, J.; Peterson, J.R. An isoform-selective, small-molecule inhibitor targets the autoregulatory mechanism of p21-activated kinase. Chem. Biol. 2008, 15, 322–331. [Google Scholar] [CrossRef] [Green Version]
- Karpov, A.S.; Amiri, P.; Bellamacina, C.; Bellance, M.H.; Breitenstein, W.; Daniel, D.; Denay, R.; Fabbro, D.; Fernandez, C.; Galuba, I.; et al. Optimization of a Dibenzodiazepine Hit to a Potent and Selective Allosteric PAK1 Inhibitor. ACS Med. Chem. Lett. 2015, 6, 776–781. [Google Scholar] [CrossRef] [Green Version]
- Blanck, S.; Maksimoska, J.; Baumeister, J.; Harms, K.; Marmorstein, R.; Meggers, E. The art of filling protein pockets efficiently with octahedral metal complexes. Angew. Chem. Int. Ed. Engl. 2012, 51, 5244–5246. [Google Scholar] [CrossRef] [Green Version]
- Crawford, J.J.; Lee, W.; Aliagas, I.; Mathieu, S.; Hoeflich, K.P.; Zhou, W.; Wang, W.; Rouge, L.; Murray, L.; La, H.; et al. Structure-Guided Design of Group I Selective p21-Activated Kinase Inhibitors. J. Med. Chem. 2015, 58, 5121–5136. [Google Scholar] [CrossRef]
- Lee, W.; Crawford, J.J.; Aliagas, I.; Murray, L.J.; Tay, S.; Wang, W.; Heise, C.E.; Hoeflich, K.P.; La, H.; Mathieu, S.; et al. Synthesis and evaluation of a series of 4-azaindole-containing p21-activated kinase-1 inhibitors. Bioorg. Med. Chem. Lett. 2016, 26, 3518–3524. [Google Scholar] [CrossRef]
- Hao, C.; Zhao, F.; Song, H.; Guo, J.; Li, X.; Jiang, X.; Huan, R.; Song, S.; Zhang, Q.; Wang, R.; et al. Structure-Based Design of 6-Chloro-4-aminoquinazoline-2-carboxamide Derivatives as Potent and Selective p21-Activated Kinase 4 (PAK4) Inhibitors. J. Med. Chem. 2018, 61, 265–285. [Google Scholar] [CrossRef] [Green Version]
- Ferenc, B.; Csaba, S.K.; Zoltan, G.; Jeno, M.; Zoltan, V.; Gyorgy, K.; Laszlo, O. Development of PAK1 kinase inhibitors with “in silico” modeling methods. Acta Pharm. Hung. 2010, 80, 155–161. [Google Scholar] [PubMed]
- Kim, D.J.; Choi, C.K.; Lee, C.S.; Park, M.H.; Tian, X.; Kim, N.D.; Lee, K.I.; Choi, J.K.; Ahn, J.H.; Shin, E.Y.; et al. Small molecules that allosterically inhibit p21-activated kinase activity by binding to the regulatory p21-binding domain. Exp. Mol. Med. 2016, 48, e229. [Google Scholar] [CrossRef] [Green Version]
- Viaud, J.; Peterson, J.R. An allosteric kinase inhibitor binds the p21-activated kinase autoregulatory domain covalently. Mol. Cancer Ther. 2009, 8, 2559–2565. [Google Scholar] [CrossRef] [Green Version]
- Hawley, E.; Gehlhausen, J.; Karchugina, S.; Chow, H.Y.; Araiza-Olivera, D.; Radu, M.; Smith, A.; Burks, C.; Jiang, L.; Li, X.; et al. PAK1 inhibition reduces tumor size and extends the lifespan of mice in a genetically engineered mouse model of Neurofibromatosis Type 2 (NF2). Hum. Mol. Genet. 2021, 30, 1607–1617. [Google Scholar] [CrossRef]
- Binder, P.; Nguyen, B.; Collins, L.; Zi, M.; Liu, W.; Christou, F.; Luo, X.; Hille, S.S.; Frey, N.; Cartwright, E.J.; et al. Pak2 Regulation of Nrf2 Serves as a Novel Signaling Nexus Linking ER Stress Response and Oxidative Stress in the Heart. Front. Cardiovasc. Med. 2022, 9, 851419. [Google Scholar] [CrossRef] [PubMed]
- Chow, H.Y.; Karchugina, S.; Groendyke, B.J.; Toenjes, S.; Hatcher, J.; Donovan, K.A.; Fischer, E.S.; Abalakov, G.; Faezov, B.; Dunbrack, R.; et al. Development and Utility of a PAK1-Selective Degrader. J. Med. Chem. 2022, 65, 15627–15641. [Google Scholar] [CrossRef] [PubMed]
- Hensel, J.; Thalmann, G.N. Biology of Bone Metastases in Prostate Cancer. Urology 2016, 92, 6–13. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gerhauser, C.; Favero, F.; Risch, T.; Simon, R.; Feuerbach, L.; Assenov, Y.; Heckmann, D.; Sidiropoulos, N.; Waszak, S.M.; Hubschmann, D.; et al. Molecular Evolution of Early-Onset Prostate Cancer Identifies Molecular Risk Markers and Clinical Trajectories. Cancer Cell. 2018, 34, 996–1011.e8. [Google Scholar] [CrossRef] [Green Version]
- McCabe, N.P.; Madajka, M.; Vasanji, A.; Byzova, T.V. Intraosseous injection of RM1 murine prostate cancer cells promotes rapid osteolysis and periosteal bone deposition. Clin. Exp. Metastasis 2008, 25, 581–590. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Singhal, R.; Kandel, E.S. The response to PAK1 inhibitor IPA3 distinguishes between cancer cells with mutations in BRAF and Ras oncogenes. Oncotarget 2012, 3, 700–708. [Google Scholar] [CrossRef] [Green Version]
- Porcu, G.; Parsons, A.B.; Di Giandomenico, D.; Lucisano, G.; Mosca, M.G.; Boone, C.; Ragnini-Wilson, A. Combined p21-activated kinase and farnesyltransferase inhibitor treatment exhibits enhanced anti-proliferative activity on melanoma, colon and lung cancer cell lines. Mol. Cancer 2013, 12, 88. [Google Scholar] [CrossRef] [Green Version]
- El-Baba, C.; Mahadevan, V.; Fahlbusch, F.B.; Mohan, S.S.; Rau, T.T.; Gali-Muhtasib, H.; Schneider-Stock, R. Thymoquinone-induced conformational changes of PAK1 interrupt prosurvival MEK-ERK signaling in colorectal cancer. Mol. Cancer 2014, 13, 201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wong, L.L.; Lam, I.P.; Wong, T.Y.; Lai, W.L.; Liu, H.F.; Yeung, L.L.; Ching, Y.P. IPA-3 inhibits the growth of liver cancer cells by suppressing PAK1 and NF-kappaB activation. PLoS ONE 2013, 8, e68843. [Google Scholar] [CrossRef] [Green Version]
- Song, P.; Song, B.; Liu, J.; Wang, X.; Nan, X.; Wang, J. Blockage of PAK1 alleviates the proliferation and invasion of NSCLC cells via inhibiting ERK and AKT signaling activity. Clin. Transl. Oncol. 2021, 23, 892–901. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, S.; Dong, Q.Z.; Jiang, G.Y.; Han, Y.; Wang, L.; Wang, E.H. The P21-activated kinase expression pattern is different in non-small cell lung cancer and affects lung cancer cell sensitivity to epidermal growth factor receptor tyrosine kinase inhibitors. Med. Oncol. 2016, 33, 22. [Google Scholar] [CrossRef] [PubMed]
- Koranova, T.; Dvoracek, L.; Grebenova, D.; Roselova, P.; Obr, A.; Kuzelova, K. PAK1 and PAK2 in cell metabolism regulation. J. Cell. Biochem. 2022, 123, 375–389. [Google Scholar] [CrossRef]
- Chen, L.; Bi, S.; Hou, J.; Zhao, Z.; Wang, C.; Xie, S. Targeting p21-activated kinase 1 inhibits growth and metastasis via Raf1/MEK1/ERK signaling in esophageal squamous cell carcinoma cells. Cell. Commun. Signal. 2019, 17, 31. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Al-Azayzih, A.; Gao, F.; Goc, A.; Somanath, P.R. TGFbeta1 induces apoptosis in invasive prostate cancer and bladder cancer cells via Akt-independent, p38 MAPK and JNK/SAPK-mediated activation of caspases. Biochem. Biophys. Res. Commun. 2012, 427, 165–170. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Najahi-Missaoui, W.; Quach, N.D.; Somanath, P.R.; Cummings, B.S. Liposomes Targeting P21 Activated Kinase-1 (PAK-1) and Selective for Secretory Phospholipase A2 (sPLA2) Decrease Cell Viability and Induce Apoptosis in Metastatic Triple-Negative Breast Cancer Cells. Int. J. Mol. Sci. 2020, 21, 9396. [Google Scholar] [CrossRef]
- Ke, Y.; Wang, X.; Jin, X.Y.; Solaro, R.J.; Lei, M. PAK1 is a novel cardiac protective signaling molecule. Front. Med. 2014, 8, 399–403. [Google Scholar] [CrossRef] [PubMed]
- Koth, A.P.; Oliveira, B.R.; Parfitt, G.M.; Buonocore Jde, Q.; Barros, D.M. Participation of group I p21-activated kinases in neuroplasticity. J. Physiol. Paris. 2014, 108, 270–277. [Google Scholar] [CrossRef]
- Taglieri, D.M.; Ushio-Fukai, M.; Monasky, M.M. P21-activated kinase in inflammatory and cardiovascular disease. Cell. Signal. 2014, 26, 2060–2069. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Tsui, H.; Bolton, E.L.; Wang, X.; Huang, C.L.H.; Solaro, R.J.; Ke, Y.; Lei, M. Novel insights into mechanisms for Pak1-mediated regulation of cardiac Ca(2+) homeostasis. Front. Physiol. 2015, 6, 76. [Google Scholar] [CrossRef] [Green Version]
- Lin, A.; Giuliano, C.J.; Palladino, A.; John, K.M.; Abramowicz, C.; Yuan, M.L.; Sausville, E.L.; Lukow, D.A.; Liu, L.; Chait, A.R.; et al. Off-target toxicity is a common mechanism of action of cancer drugs undergoing clinical trials. Sci. Transl. Med. 2019, 11, eaaw8412. [Google Scholar] [CrossRef]
- Sun, D.; Gao, W.; Hu, H.; Zhou, S. Why 90% of clinical drug development fails and how to improve it? Acta Pharm. Sinica B. 2022, 12, 3049–3062. [Google Scholar] [CrossRef]
- Muggia, F.M. Liposomal encapsulated anthracyclines: New therapeutic horizons. Curr. Oncol. Rep. 2001, 3, 156–162. [Google Scholar] [CrossRef]
- Zhu, G.; Mock, J.N.; Aljuffali, I.; Cummings, B.S.; Arnold, R.D. Secretory phospholipase A₂ responsive liposomes. J. Pharm. Sci. 2011, 100, 3146–3159. [Google Scholar] [CrossRef] [Green Version]
- Marra, M.; Salzano, G.; Leonetti, C.; Porru, M.; Franco, R.; Zappavigna, S.; Liguori, G.; Botti, G.; Chieffi, P.; Lamberti, M.; et al. New self-assembly nanoparticles and stealth liposomes for the delivery of zoledronic acid: A comparative study. Biotechnol. Adv. 2012, 30, 302–309. [Google Scholar] [CrossRef]
- Lasic, D.D.; Martin, F.J.; Gabizon, A.; Huang, S.K.; Papahadjopoulos, D. Sterically stabilized liposomes: A hypothesis on the molecular origin of the extended circulation times. Biochim. Biophys. Acta 1991, 1070, 187–192. [Google Scholar] [CrossRef] [PubMed]
- Sharma, U.S.; Sharma, A.; Chau, R.I.; Straubinger, R.M. Liposome-mediated therapy of intracranial brain tumors in a rat model. Pharm. Res. 1997, 14, 992–998. [Google Scholar] [CrossRef]
- Maeda, H.; Wu, J.; Sawa, T.; Matsumura, Y.; Hori, K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review. J. Control. Release 2000, 65, 271–284. [Google Scholar] [CrossRef] [PubMed]
- Yuan, F.; Leunig, M.; Huang, S.K.; Berk, D.A.; Papahadjopoulos, D.; Jain, R.K. Microvascular permeability and interstitial penetration of sterically stabilized (stealth) liposomes in a human tumor xenograft. Cancer Res. 1994, 54, 3352–3356. [Google Scholar]
- Gabizon, A. Liposomes as a drug delivery system in cancer chemotherapy. Horiz. Biochem. Biophys. 1989, 9, 185–211. [Google Scholar]
- Mock, J.N.; Costyn, L.J.; Wilding, S.L.; Arnold, R.D.; Cummings, B.S. Evidence for distinct mechanisms of uptake and antitumor activity of secretory phospholipase A2 responsive liposome in prostate cancer. Integr. Biol. 2013, 5, 172–182. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Quach, N.D.; Mock, J.N.; Scholpa, N.E.; Eggert, M.W.; Payre, C.; Lambeau, G.; Arnold, R.D.; Cummings, B.S. Role of the phospholipase A2 receptor in liposome drug delivery in prostate cancer cells. Mol. Pharm. 2014, 11, 3443–3451. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.; Hao, F.Y.; Wang, J.G.; Xiao, W. Group IIa secretory phospholipase A2 (sPLA2IIa) and progression in patients with lung cancer. Eur. Rev. Med. Pharmacol. Sci. 2014, 18, 2648–2654. [Google Scholar]
- Yamashita, S.; Ogawa, M.; Sakamoto, K.; Abe, T.; Arakawa, H.; Yamashita, J. Elevation of serum group II phospholipase A2 levels in patients with advanced cancer. Clin. Chim. Acta 1994, 228, 91–99. [Google Scholar] [CrossRef]
- Junghans, R.P.; Ma, Q.; Rathore, R.; Gomes, E.M.; Bais, A.J.; Lo, A.S.; Abedi, M.; Davies, R.A.; Cabral, H.J.; Al-Homsi, A.S.; et al. Phase I Trial of Anti-PSMA Designer CAR-T Cells in Prostate Cancer: Possible Role for Interacting Interleukin 2-T Cell Pharmacodynamics as a Determinant of Clinical Response. Prostate 2016, 76, 1257–1270. [Google Scholar] [CrossRef]
- Schepisi, G.; Cursano, M.C.; Casadei, C.; Menna, C.; Altavilla, A.; Lolli, C.; Cerchione, C.; Paganelli, G.; Santini, D.; Tonini, G.; et al. CAR-T cell therapy: A potential new strategy against prostate cancer. J. Immunother. Cancer 2019, 7, 258. [Google Scholar] [CrossRef]
- Brown, L.C.; Halabi, S.; Somarelli, J.A.; Humeniuk, M.; Wu, Y.; Oyekunle, T.; Howard, L.; Huang, J.; Anand, M.; Davies, C.; et al. A phase 2 trial of avelumab in men with aggressive-variant or neuroendocrine prostate cancer. Prostate Cancer Prostatic Dis. 2022, 25, 762–769. [Google Scholar] [CrossRef] [PubMed]
- Fizazi, K.; Retz, M.; Petrylak, D.P.; Goh, J.C.; Perez-Gracia, J.; Lacombe, L.; Zschabitz, S.; Burotto, M.; Mahammedi, H.; Gravis, G.; et al. Nivolumab plus rucaparib for metastatic castration-resistant prostate cancer: Results from the phase 2 CheckMate 9KD trial. J. Immunother. Cancer 2022, 10, e004761. [Google Scholar] [CrossRef]
- Bilusic, M.; Madan, R.A.; Gulley, J.L. Immunotherapy of Prostate Cancer: Facts and Hopes. Clin. Cancer Res. 2017, 23, 6764–6770. [Google Scholar] [CrossRef] [Green Version]
- Seifert, R.; Alberts, I.L.; Afshar-Oromieh, A.; Rahbar, K. Prostate Cancer Theranostics: PSMA Targeted Therapy. PET Clin. 2021, 16, 391–396. [Google Scholar] [CrossRef] [PubMed]
- Congregado, B.; Rivero, I.; Osman, I.; Saez, C.; Medina Lopez, R. PARP Inhibitors: A New Horizon for Patients with Prostate Cancer. Biomedicines 2022, 10, 1416. [Google Scholar] [CrossRef] [PubMed]
- Karimaa, M.; Riikonen, R.; Kettunen, H.; Taavitsainen, P.; Ramela, M.; Chrusciel, M.; Karlsson, S.; Rummakko, P.; Simola, O.; Wohlfahrt, G.; et al. First-in-Class Small Molecule to Inhibit CYP11A1 and Steroid Hormone Biosynthesis. Mol. Cancer Ther. 2022, 21, 1765–1776. [Google Scholar] [CrossRef]
- Chen, H.K.; Su, P.J.; Wang, Y.L.; Chang, K.C.; Su, Y.L.; Chang, P.H.; Kuan, F.C.; Hsieh, C.H.; Kuo, Y.C.; Sheng, T.W.; et al. Long-term use and risk of major adverse cardiac events: Comparing enzalutamide and abiraterone in chemotherapy-naive patients with metastatic castration-resistant prostate cancer. Int. J. Cancer 2023, 152, 1191–1201. [Google Scholar] [CrossRef]
- Kumar, A.; Reddy, A.; Sekar, A. Enzalutamide induced non-ischemic cardiomyopathy. A case report and review of literature on anti-androgen therapy-related cardiovascular events. Cardiooncology 2023, 9, 9. [Google Scholar] [CrossRef] [PubMed]
- Pencina, K.M.; Burnett, A.L.; Storer, T.W.; Guo, W.; Li, Z.; Kibel, A.S.; Huang, G.; Blouin, M.; Berry, D.L.; Basaria, S.; et al. A Selective Androgen Receptor Modulator (OPK-88004) in Prostate Cancer Survivors: A Randomized Trial. J. Clin. Endocrinol. Metab. 2021, 106, 2171–2186. [Google Scholar] [CrossRef]
- Bogemann, M.; Shore, N.D.; Smith, M.R.; Tammela, T.L.J.; Ulys, A.; Vjaters, E.; Polyakov, S.; Jievaltas, M.; Luz, M.; Alekseev, B.; et al. Efficacy and Safety of Darolutamide in Patients with Nonmetastatic Castration-resistant Prostate Cancer Stratified by Prostate-specific Antigen Doubling Time: Planned Subgroup Analysis of the Phase 3 ARAMIS Trial. Eur. Urol. 2022, 83, 212–221. [Google Scholar] [CrossRef] [PubMed]
- MacLean, C.M.; Godsafe, Z.; Soto-Forte, P.; Larsen, F. Pharmacokinetic, Safety, and Pharmacodynamic Properties of Teverelix Trifluoroacetate, a Novel Gonadotropin-Releasing Hormone Antagonist, in Healthy Adult Subjects. Clin. Pharmacol. Drug. Dev. 2022, 11, 257–269. [Google Scholar] [CrossRef]
- Tamihardja, J.; Schortmann, M.; Lawrenz, I.; Weick, S.; Bratengeier, K.; Flentje, M.; Guckenberger, M.; Polat, B. Moderately hypofractionated radiotherapy for localized prostate cancer: Updated long-term outcome and toxicity analysis. Strahlenther. Onkol. 2021, 197, 124–132. [Google Scholar] [CrossRef] [PubMed]
- Duan, R.; Du, W.; Guo, W. EZH2: A novel target for cancer treatment. J. Hematol. Oncol. 2020, 13, 104. [Google Scholar] [CrossRef] [PubMed]
- Bahl, A.; Rajappa, S.; Rawal, S.; Bakshi, G.; Murthy, V.; Patil, K. A review of clinical evidence to assess differences in efficacy and safety of luteinizing hormone-releasing hormone (LHRH) agonist (goserelin) and LHRH antagonist (degarelix). Indian. J. Cancer 2022, 59, S160–S174. [Google Scholar]
- Marech, I.; Patruno, R.; Zizzo, N.; Gadaleta, C.; Introna, M.; Zito, A.F.; Gadaleta, C.D.; Ranieri, G. Masitinib (AB1010), from canine tumor model to human clinical development: Where we are? Crit. Rev. Oncol. Hematol. 2014, 91, 98–111. [Google Scholar] [CrossRef]
- Ding, X.; Sharko, A.C.; McDermott, M.S.J.; Schools, G.P.; Chumanevich, A.; Ji, H.; Li, J.; Zhang, L.; Mack, Z.T.; Sikirzhytski, V.; et al. Inhibition of CDK8/19 Mediator kinase potentiates HER2-targeting drugs and bypasses resistance to these agents in vitro and in vivo. Proc. Natl. Acad. Sci. USA 2022, 119, e2201073119. [Google Scholar] [CrossRef]
- Markowski, M.C.; Tutrone, R.; Pieczonka, C.; Barnette, K.G.; Getzenberg, R.H.; Rodriguez, D.; Steiner, M.S.; Saltzstein, D.R.; Eisenberger, M.A.; Antonarakis, E.S. A Phase Ib/II Study of Sabizabulin, a Novel Oral Cytoskeleton Disruptor, in Men with Metastatic Castration-resistant Prostate Cancer with Progression on an Androgen Receptor-targeting Agent. Clin. Cancer Res. 2022, 28, 2789–2795. [Google Scholar] [CrossRef]
- Mitsogiannis, I.; Tzelves, L.; Dellis, A.; Issa, H.; Papatsoris, A.; Moussa, M. Prostate cancer immunotherapy. Expert. Opin. Biol. Ther. 2022, 22, 577–590. [Google Scholar] [CrossRef] [PubMed]
- Rudolph, J.; Crawford, J.J.; Hoeflich, K.P.; Chernoff, J. p21-activated kinase inhibitors. Enzymes 2013, 34 Pt B, 157–180. [Google Scholar] [CrossRef]
Compound | PAK1 Inhibition IC50 | Mechanism of Action | Reference/Patent |
---|---|---|---|
K-252a | 2.5 nM | ATP-competitive | [214] |
KTD606 | 4.0 nM | ATP-competitive | [215] |
CEP1347 | 2.5 nM | ATP-competitive | [215] |
Staurosporine | 0.75 nM | ATP-competitive | [216] |
Λ-FL172 | 130 nM | ATP-competitive | [227] |
R-1 | 83 nM | ATP-competitive | [232] |
II-11 | 1.6 nM | ATP-competitive | WO 2013026914 A1. 2013 |
8 PF-3758309 | 14 nM | ATP-competitive | [217] |
FRAX597 | 7.7 nM | ATP-competitive | [220] |
FRAX486 | 8.3 nM | ATP-competitive | [222] |
G-5555 | 3.7 nM | ATP-competitive | [223] |
PAK inhibitor 12 | 65 nM | ATP-competitive | [213] |
PAK inhibitor 13 | 5 nM | ATP-competitive | [233] |
PAK inhibitor 14 | 5 nM | ATP-competitive | [234] |
PAK inhibitor 15 | 288 nM | ATP-competitive | [235] |
G-9791 | Ki = 26 nM | ATP-competitive | [46] |
PAK inhibitor 17 | 0.73 µM | ATP-competitive | [236] |
OSU-03012 | 1.03 µM | ATP-competitive | [224] |
AK963 | ---- | ATP-competitive | [225] |
ZMF-10 | 194 nM | ATP-competitive | [226] |
IPA-3 | 2.5 µM | Allosteric | [230] |
NVS-PAK1-1 | 4.0 nM | Allosteric | [231] |
NVS-PAK1-C | 2.5 nM | Allosteric | [231] |
2-Mc-1,4-NHQ | 0.75 nM | Allosteric | [237] |
Drug/Trial ID/Company | Mechanism(s) of Action | Advantage(s) and Disadvantage(s) | Reference |
---|---|---|---|
PD1 Integrated Anti-PSMA CART (NCT04768608) | Immunotherapy that specifically directs activated T-cells to PSMA-positive PCa cells by blocking PD1. | Whereas specificity and targeted approach are an added advantage, patients also undergo leukapheresis by receiving cyclophosphamide and fludarabine, which may have side effects. Another disadvantage is that immunotherapy is less effective for PCa. | [273] |
ES414 (NCT02262910) | Immunotherapy by a humanized bispecific antibody, designed to treat mCRPC by T-cell cytotoxicity against PCa cells. | Although highly specific, its poor efficacy on PCa is a concern. | [274] |
PD-L1 (NCT03179410) | Immunotherapy by targeting the ligands that bind to PD1 on T-cells. | PD-L1 antibodies are highly specific, but their efficacy on PCa is poor. | [275] |
Nivolumab (NCT03040791) | Immunotherapy by specifically targeting PD1 in T-cells to prevent ligand binding, | Although highly specific in targeting T-cells, the same concerns of anti-PD-L1 and ES414 apply. Risks of developing lung, intestinal, and kidney injury are also reported. | [276] |
ProstAtak (NCT01436968) | Immunotherapy + radiation therapy for patients with intermediate-high risk localized PCa. ProstAtak stimulates a cancer vaccine effect. | ProstAtak is hypothesized to improve the clinical outcome for patients with localized PCa. Its efficacy on mPCa is unclear. | [277] |
177Lu-PSMA-617 (PLUVICTO; NCT04509557) | Selectively seeks out, attaches to PSMA on the PCa cell surface, and specifically delivers radiation to destroy PCa cells. | Whereas targeted delivery is an advantage, there are concerns about radiation exposure, bone marrow toxicity, blood cancers, kidney, liver, and hormonal gland risks, and infertility. | [278] |
Rubraca (Rucaparib) and Lynparza (Olaparib) | Inhibit Poly ADP-ribose polymerase (PARP), which repairs single-strand breaks in the DNA resulting in increased double-stranded breaks and PCa cell death. | PARP inhibitors may develop bone marrow toxicity, lower the blood cell count, anemia, infection, venous thromboembolism (VTE), easy bruising/bleeding, myelodysplastic syndrome, and Acute Myeloid Leukemia. | [279] |
AC0176 (Accutar Biotechnology) | An investigational orally bioavailable molecule targeting AR (phase-I study). | Although the side effects are currently unknown, targeting AR signaling will likely affect the quality of life of the patients. | [280] |
Enzalutamide + Relacorilant (NCT03674814) | Enzalutamide, A specific AR inhibitor + Relacorilant, a Selective Glucocorticoid Receptor Modulator | Both drugs have serious side effects, which may have compounding effects when combined. E.g., cardiac toxicity has been reported. | [281,282] |
LY2452473 (NCT02499497) | Selective AR Modulators | AR signaling will likely affect the quality of life of the patients. Other already-known side effects of androgen therapies are expected. | [283] |
Darolutamide (Orion) | Oral AR antagonist | Side effects similar to other androgen therapies are expected. | [284] |
ODM-208 (Orion/Merck) | A specific inhibitor of CYP11A1, an enzyme involved in androgen synthesis. | Side effects similar to other androgen therapies are expected. | [280] |
EPI-7386 (Essa Pharma) | Specifically targets a specific AR variant (AR-V7), which does not respond to standard anti-androgen therapies. | Specifically designed to target mCRPC that expresses AR-V7. Although the side effects are not yet reported, adverse reactions similar to other androgen therapies are expected. | [20] |
Teverelix TFA (ANTEV) | Specifically inhibits GnRH, in turn, reducing androgen synthesis | Side effects similar to other androgen therapies affecting the quality of life are expected. | [285] |
IG-VMAT (NCT02934685) | Hypofractionated Image-guided Volumetric Modulated Arc Radiotherapy | Although highly efficacious, treatment is only for localized PCa, and not effective for mPCa | [286] |
PF-06821497 (Pfizer) | A specific inhibitor of EZH2 (Enhancer of zeste homolog 2), a histone-lysine N-methyltransferase enzyme, resulting in transcriptional repression. | Several side effects such as anemia, myeloid suppression, hypercholesterolemia, electrolyte imbalance, shortness of breath, diarrhea, and hemorrhage have been reported. | [287] |
LY01005 (NCT04563936) | Goserelin (LY01005) stops the production of testosterone and inhibits the growth of PCa cells. | Side effects are very similar to other androgen therapies. | [288] |
Masitinib + Docetaxel (AB Science) | Masitinib is a tyrosine kinase inhibitor that specifically targets innate immune cells. The idea is to combine immunotherapy with a standard chemotherapy | Less efficacy of immunotherapy and the already known side-effects of taxanes are major concerns. | [289] |
CAN-2409 (Candel Therapeutics) | Oncolytic viral immunotherapy kills PCa cells through rapid viral replication. | Immunotherapy in general is less effective in treating PCa. The efficacy and side effect data is pending. | Unpublished |
SNX631 (Senex Biology) | A specific inhibitor of CDK8/19, which is expressed in advanced PCa. | SNX631 is currently being investigated for efficacy on PCa, and any potential side effects. | [290] |
Sabizabulin (VERU-111) | Vinca alkaloid-like tubulin disruptor to suppress PCa cell proliferation. | While the efficacy and side effects are currently being investigated, targeting tubulin by taxanes and vinca-alkaloids has demonstrated serious adverse reactions. | [291] |
SSL-IPA-3 or MTX-101 (MetasTx) | A highly specific allosteric inhibitor of group-I PAKs in a liposomal formulation modulates actin dynamics in cancer cells to suppress EMT. | A better safety profile is expected compared to the existing PCa therapies and is anticipated to provide high specificity and superior efficacy in preventing and treating mPCa without affecting the hormones. | [194,196] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Somanath, P.R.; Chernoff, J.; Cummings, B.S.; Prasad, S.M.; Homan, H.D. Targeting P21-Activated Kinase-1 for Metastatic Prostate Cancer. Cancers 2023, 15, 2236. https://doi.org/10.3390/cancers15082236
Somanath PR, Chernoff J, Cummings BS, Prasad SM, Homan HD. Targeting P21-Activated Kinase-1 for Metastatic Prostate Cancer. Cancers. 2023; 15(8):2236. https://doi.org/10.3390/cancers15082236
Chicago/Turabian StyleSomanath, Payaningal R., Jonathan Chernoff, Brian S. Cummings, Sandip M. Prasad, and Harvey D. Homan. 2023. "Targeting P21-Activated Kinase-1 for Metastatic Prostate Cancer" Cancers 15, no. 8: 2236. https://doi.org/10.3390/cancers15082236
APA StyleSomanath, P. R., Chernoff, J., Cummings, B. S., Prasad, S. M., & Homan, H. D. (2023). Targeting P21-Activated Kinase-1 for Metastatic Prostate Cancer. Cancers, 15(8), 2236. https://doi.org/10.3390/cancers15082236