The Onco-Nephrology Field: The Role of Personalized Chemotherapy to Prevent Kidney Damage
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methods
3. The Relationship between Glomerular Disease and Cancer
- the simultaneous or close diagnosis of both the malignancy and the MN;
- the remission of proteinuria in presence of successful cancer treatment and its recurrence in case of the neoplasia relapse [50].
Type of the Study | Reference | Year | Methods | Main Findings | Conclusions |
---|---|---|---|---|---|
Human study | Pedersen et al. [39] | 1996 | Evaluation of the prevalence and of the proteinuria prognostic significance in patients with lung cancer. | The presence of proteinuria was significantly more frequent in patients with lung cancer compared to controls. Patients with malignancies and proteinuria had significantly poorer survival than patients with normal urinary protein excretion. | Increased urinary protein excretion may reflect subclinical renal damage related to cancer, and it may also be an independent predictor of poor survival. |
Pedersen et al. [33] | 1998 | Estimation of the prevalence and the prognostic significance of microalbuminuria in patients with lung cancer. | Increased prevalence of microalbuminuria in patients with lung cancer. | A significant association between microalbuminuria and poor outcome in malignancies. | |
Pedersen et al. [35] | 2000 | Analysis of the frequency and the prognostic significance of microalbuminuria in breast cancer. | An advanced stage of breast cancer is associated with a high prevalence of impaired UAE. | UAE may be a prognostic marker in metastatic breast cancer. | |
Pedersen et al. [34] | 2003 | Evaluation of the association between microalbuminuria and the inflammatory biomarkers in lymphoma patients. | UAE and mediators of inflammation were related to adverse clinical features in patients with non-Hodgkin’s lymphoma. | Direct correlation between microalbuminuria and proinflammatory cytokines in malignancy. | |
Lefaucheur et al. [43] | 2006 | Analysis of the incidence and the characteristics of cancer-associated MN. | Age, smoking and the presence of glomerular leukocytic infiltrates strongly affect the likelihood of malignancy in MN patients. | Epidemiologic evidence of an increased risk of cancer in patients with MN. | |
Bjorneklett et al. [50] | 2007 | Comparison of long-term cancer risk between patients with MN and general population. | An increased long-term risk of developing cancer is observed after the diagnosis of MN. | Patients with cancer and MN had a greater mortality rate than those without cancer. | |
Jorgensen et al. [37] | 2008 | Evaluation of the association between elevated ACR and cancer incidence. | Albuminuria was associated with an enhanced cancer incidence in patients without a history of diabetes mellitus, macroalbuminuria or a previous cancer. | Increased ACR is directly correlated with an enhanced cancer incidence. | |
Hingorani et al. [38] | 2008 | Estimation of the prevalence of albuminuria in patients receiving HSCT. | Elevated ACR was associated with GVHD, bacteremia, AH and, in CKD patients, progression of renal dysfunction. On the contrary, this biomarker was not predictive of AKI. | Kidney injury after HSCT was not always clearly manifested by the changes in sCr and affected long-term outcomes. | |
Qin et al. [47] | 2011 | Estimation of the prevalence of autoantibodies against PLA2R in idiopathic MN. | Presence of anti-PLA2R in idiopatic MN patients was associated with the disease severity. | Anti-PLA2R is a sensitive biomarker for idiopathic MN. | |
Qu et al. [44] | 2012 | Comparison of the IgG subclass of immune complex deposition, clinical and pathological data between patients with cancer-related MN and idiopathic MN. | Subepithelial deposits of IgG4 were more frequent in idiopathic MN, while those of IgG1 and IgG2 were often present in cancer-associated MN. | Absence of glomerular IgG4 deposition, together with older age, severe hypoalbuminemia and high serum CRP level, could be useful clues to differentiate cancer-related MN from idiopatic MN. | |
Radice et al. [48] | 2018 | Comparison of the prevalence of anti-PLA2R antibodies between patients with idiopatic MN and various control groups, including secondary MN. | Positivity of anti-PLA2R autoantibodies in 70% of primary MN patients and in 28% of secondary MN patients. | Anti-PLA2R positivity in MN should not be a sufficient condition for abstaining from the research of a secondary cause, especially in patients with risk factors for malignancy. |
4. Chemotherapeutic Drugs and Renal Insufficiency
Type of the Study | Reference | Year | Methods | Main Findings | Conclusions |
---|---|---|---|---|---|
Human study | Stewart et al. [68] | 1997 | Evaluation of factors affecting cisplatin nephrotoxicity. | Negative association between cisplatin nephrotoxicity and serum albumin levels, potassium, body surface area, and the use of vinca—alcaloid. Positive association with use of metoclopramide. | Serum albumin, metoclopramide and phenytoin affected the nephrotoxicity by altering cisplatin uptake into the kidney. |
Robinson et al. [70] | 2010 | Time evaluation for AH and proteinuria onset in patients receiving cediranib (a VEGF receptor inhibitor). | Cediranib induced a rapid but variable rise in blood pressure and of proteinuria. | Understanding the mechanisms that regulate VEGF inhibitor-induced will permit to manage vascular tone and endothelial health. | |
Animal study | Ciarimboli et al. [65] | 2005 | Investigation of the interaction of cisplatin with hOCT2 in kidney or hOCT1 in liver through a florescent cation. | Uptake of cisplatin is mediated by hOCT2 in renal proximal tubules, explaining its organ-specific toxicity. | A combined administration of cis-platin with other substrates that compete for hOCT2 offers an effective therapeutic option to decrease its nephrotoxicity. |
Filipski et al. [66] | 2009 | Comparison of cisplatin nephrotoxicity in groups of OCT1/OCT2-deficient mice. | Oct2 polymorphism seems to give a lower risk of developing cisplatin nephrotoxicity. | Critical relevance of Oct2 in the clinical and therapeutic management of cisplatin-treated patients. |
5. Kidney Dysfunction after Hematopoietic Stem Cell Transplantation
Type of the Study | Reference | Year | Methods | Main Findings | Conclusions |
---|---|---|---|---|---|
Human study | Zager et al. [79] | 1989 | Assessment of the incidence and the risk factors of AKI following BMT. | AKI development after BMT was preceded by hepatic dysfunction, overweight, amphotericin B use, septicemia and hypotension, with a grave prognosis. | AKI, with hemodinamic genesis, was a common complication of BMT. |
Parikh et al. [80] | 2002 | Evaluation of the renal dysfunction in patients undergoing HCT | After HCT, severe nephrotoxicity was associated with sepsis, hepatic toxicity, VOD and lung toxicity | To prevent renal dysfunction, the potential nephroprotective drugs must be started soon after allogenic HCT for a 2- to 3-week period. | |
Parikh et al. [81] | 2005 | Comparison of the prevalence of ARF between myeloablative and nonmyeloablative HCT. | The incidence and the severity of ARF, which occurs after nonmyeloablative HCT, is significantly lower compared with myeloablative HCT. | Nonmyeloablative HCT might decrease ARF frequency, improving outcomes in case of advanced hematologic neoplasia. | |
Hingorani et al. [91] | 2007 | Evaluation of CKD risk factors after HCT. | The occurrence of CKD was rare, often associated with ARF and GVHD. | Prevention of GVHD could reduce the CKD incidence following HCT. | |
Pinana et al. [83] | 2009 | Evaluation of the incidence and the risk factors of ARF after reduced-intensity conditioning Allo-HSCT (Allo-RIC). | ARF was a frequent complication after Allo-RIC, with a negative impact on outcome. | ARF identification risk factors help to avoid exposure to nephrotoxic drugs during the follow-up in high-risk patients. | |
Liu et al. [82] | 2010 | Estimation of the incidence and AKI risk factors following nonmyeloablative HSCT. | AKI was common and associated with incomplete HLA-matched transplant and its complications, with poor long-term outcome. | AKI may be related to a worse outcome. | |
Hingorani et al. [95] | 2018 | Evaluation of the association between changes in e-GFR values and the all-cause mortality after HCT. | Adult HCT recipients had a greater reduction in e-GFR during the first year after the transplantation. | After the initial decline, e-GFR was stable, and its further decreases were associated with an increased risk of mortality. | |
Musial et al. [101] | 2021 | Assessment of renal function in children undergoing allogenic-HSCT due to oncological and non-oncological causes. | Children of both groups demonstrated the same risk of AKI, but oncological patients seem to be more predisposed to sustained renal injury. | The pRIFLE criteria seem to be the only one applicable to the pediatric population. | |
Augustynowicz et al. [102] | 2021 | Evaluation of AKI incidence in children undergoing AlloHSCT. | The AKI incidence in children undergoing alloHSCT It is independent of indication for this procedure, whereas eGFR values seem conditioned by previous chemotherapy in oncological patients The AKI incidence in children undergoing alloHSCT It is independent of indication for this procedure, whereas eGFR values seem conditioned by previous chemotherapy in oncological patients The AKI incidence is independent of the indication for AlloHSCT, whereas e-GFR was afflicted by the previous chemotherapy in oncological patients. | Children undergoing AlloHSCT due to oncological causes had a greater risk of kidney dysfunction within 6 months. |
6. Other Causes of AKI in Cancer Patients
7. Administration of Chemotherapeutic Drugs in CKD Patients
Type of the Study | Reference | Year | Methods | Main Findings | Conclusions |
---|---|---|---|---|---|
Animal study | Henderson et al. [110] | 1992 | Comparison between the uptake of 5-Propyl FPA and of the PAH in rat kidney slices. | 5-Propyl FPA underwent an active tubular secretion in a similar way to PAH. | 5-Propyl FPA inhibited the renal excretion of various drugs, conjugates and other endogenous organic acids. |
Leblond et al. [109] | 2002 | Evaluation of CRF effects on intestinal cytochrome P450 in rats. | Reduction of creatinine, total intestinal cytochrome P450 activity, CYP1A1 and CYP3A2 expression. | CRF was associated with a decrease in intestinal cytochrome P450 activity secondary to reduced gene expression. | |
Human study | Inker et al. [117] | 2012 | Performance comparison between two equations for the GFR estimation (one using standardized cystatin C alone and the other using cystatin C combined with standardized creatinine). | The combination of serum creatinine with serum cystatin C is more accurate than any other marker alone for the GFR estimation. | eGFR based on serum cystatin C could be used as a confirmatory test for renal function evaluation. |
Janowitz et al. [120] | 2017 | Evaluation of the most accurate published models and development of a new model to estimate the GFR. | BSA-adjusted CKD-EPI formula is the most accurate published model to estimate the GFR in patients with cancer. | The newly developed model improves GFR estimation, and it may represent a new tool for clinical management. | |
Klockl et al. [121] | 2020 | Evaluation of reliability to determine the eGFR before cisplatin therapy, omitting uCrCl measurement. | GFR estimated by CKD-EPI formula is reliable in patients with solid cancers undergoing cisplatin therapy and who have received at least one cycle of chemotherapy. | GFR allows a correct assessment of kidney function in patients with cancer undergoing cisplatin therapy. |
8. Most Common Electrolyte Disorders in Malignancy
Type of the Study | Reference | Year | Methods | Main Findings | Conclusions |
---|---|---|---|---|---|
Animal study | Heyman et al. [140] | 1993 | Evaluation of the effect of glycine infusions on the early renal uptake of cisplatin. | Kidney platinum content was markedly lower in rats who had received glycine infusion compared to control rats who had received saline-infusion. | Glycine infusions reduce early renal accumulation of cisplatin. |
Human study | Wu et al. [138] | 2005 | Evaluation of NAC chemoprotection in human tumor cell lines. | NAC blocks both the death receptor and the mitochondrial apoptotic pathways induced by cisplatin. | NAC can protect against chemotherapy side effects. |
Benoehr et al. [141] | 2005 | Assessment of the possible nephroprotective effect of theophylline during cisplatin-based chemotherapy. | Patients who had received theophylline had no GFR deterioration. | Theophylline may prevent AKI induced by cisplatin-based chemotherapy. | |
Ingles Garces et al. [128] | 2018 | Evaluation of the incidence, of the severity and of the prognosis of EAs in phase I clinical trials. | EAs (particularly hypoNa, hypoK, hypoP, hypoMg and hypoCa) are common in cancer patients and may worsen patients’ prognosis. | Careful monitoring and early treatment are proposed to avoid EAs. | |
Cheminet et al. [133] | 2018 | Evaluation of clinical characteristics and of biological abnormalities in patients with extreme hypoMg. | Extreme hypoMg is rare and is frequently associated with severe hypoCa. | Digestive disorders and drugs are the main EAs causes. |
9. Discussion
- 1-
- In the case of glomerulopathies, it is necessary to exclude the presence of cancer. Therefore, it would be useful to perform an age-related cancer screening in patients with proteinuria.
- 2-
- In subjects at high risk for cancer, in case of anti-PLA2R antibodies positivity, the secondary MN should not be totally excluded. Therefore, it would be advisable to carry out also screening for neoplastic pathologies.
- 3-
- In cancer patients treated with cisplatin, it would be of notable interest to include in the clinical routine the monitoring of Oct2 polymorphism, as the subjects carrying such polymorphism have a low risk to develop cisplatin-related AKI. For this reason, they would be the ideal candidates for such chemotherapy. At the same time, those who are at higher risk to develop cisplatin-related AKI should be treated, whenever possible, with another chemotherapeutic drug.
- 4-
- In the case of therapy based on the VEGF target, the monitoring of arterial blood pressure is of primary importance, as this parameter often represents an early marker of renal damage.
- 5-
- In the case of HSCT, it is important to monitor the renal function to prevent AKI, above all, within the first month. Specific nephroprotective treatments should be developed in addition to the standard clinical approaches.
- 6-
- To prevent HSCT-associated AKI, it should be advisable to look for preventive strategies, to perform a careful monitoring of the renal function and of the clinical conditions and to carry out standard and specific clinical treatments.
- 7-
- In pediatric patients, who underwent allogeneic HSCT, pRIFLE criteria seem to be the most effective strategy to monitor AKI.
- 8-
- The pharmacokinetics of chemotherapeutic drugs in pre-existed CKD patients are affected by impaired renal function. Therefore, the dosage of chemotherapies drugs should be tailored according to the most reliable GFR formula.
- 9-
- In order to adjust the dose of the chemotherapeutic drug in the most effective and safest way, it would be advisable to estimate the GFR with the various formulas, evaluating the possible agreement between the results obtained in order to estimate the real renal function.
- 10-
- In cancer patients often occur electrolytes imbalances; therefore, the frequent monitoring of serum electrolytes plays a pivotal role in the clinical management of these patients.
10. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
ACR | Albumin-to-creatinine ratio |
AH | Arterial hypertension |
AIN | Interstitial nephritis |
AKI | Acute kidney injury |
AKIN | Kidney injury network |
Anti-PLA2R | Anti-phospholipase A2 receptor |
BMI | Body mass index |
CG | Cockcroft–Gault |
CKD | Chronic kidney disease |
CKD-EPI | Chronic Kidney Disease Epidemiology Collaboration |
CTLA | Cytotoxic T-lymphocyte-associated protein |
DMSO | Dimethyl sulfoxide |
eCrC | Estimated creatinine clearance |
e-GFR | Estimated-Glomerular filtration rate |
FDA | Food and drug administration |
GFR | Glomerular filtration rate |
GVHD | Graft versus host disease |
HSCT | Hematopoietic stem-cell transplantation |
ICPIs | Immune checkpoint inhibitors |
IV | Intravenous |
KDIGO | Kidney Disease: Improving Global Outcome |
KDOQI | Kidney Foundation—Kidney Disease Outcome Quality Initiative |
MGRS | Monoclonal gammopathy of renal significance |
MIS | Marrow infusion syndrome |
MM | Multiple myeloma |
MN | Membranous nephropathy |
MPG | Membranoproliferative glomerulonephritis |
NCCN | National Comprehensive Cancer Network |
NSAIDs | Non-steroidal anti-inflammatory drugs |
OCT | Organic cation transporter |
PD | Programmed death |
PGNMID | Proliferative glomerulonephritis with monoclonal immunoglobulin deposits |
RAAS | Renin–angiotensin–aldosterone system |
RBCs | Red blood cells |
RCC | Renal cell carcinoma |
RI | Renal insufficiency |
RIFLE | Risk, Injury, Failure, Loss and End-Stage Kidney |
RPG | Glomerulonephritis |
sCr | Serum creatinine |
SIOG | Society of Geriatric Oncology |
THSDA7A | Anti-thrombospondin type-1 domain-containing 7A |
TLS | Tumor lysis syndrome |
TMA | Thrombotic microangiopathy |
VEGF | Vascular endothelial grow factor |
References
- Fofi, C.; Festuccia, F. Onconephrology: A New Challenge for the Nephrologist. Contrib. Nephrol. 2021, 199, 91–105. [Google Scholar] [CrossRef] [PubMed]
- Rosner, M.H.; Jhaveri, K.D.; McMahon, B.A.; Perazella, M.A. Onconephrology: The intersections between the kidney and cancer. CA Cancer J. Clin. 2021, 71, 47–77. [Google Scholar] [CrossRef] [PubMed]
- de Francisco, A.L.M.; Macia, M.; Alonso, F.; Garcia, P.; Gutierrez, E.; Quintana, L.F.; Quiroga, B.; Torregrosa, I. Onco-Nephrology: Cancer, chemotherapy and kidney. Nefrologia (Engl. Ed.) 2019, 39, 473–481. [Google Scholar] [CrossRef]
- Launay-Vacher, V.; Janus, N.; Deray, G. Renal insufficiency and cancer treatments. ESMO Open 2016, 1, e000091. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Launay-Vacher, V.; Oudard, S.; Janus, N.; Gligorov, J.; Pourrat, X.; Rixe, O.; Morere, J.F.; Beuzeboc, P.; Deray, G.; Renal, I.; et al. Prevalence of Renal Insufficiency in cancer patients and implications for anticancer drug management: The renal insufficiency and anticancer medications (IRMA) study. Cancer 2007, 110, 1376–1384. [Google Scholar] [CrossRef] [PubMed]
- Janus, N.; Oudard, S.; Beuzeboc, P.; Gligorov, J.; Ray-Coquard, I.; Morere, J.; Spano, J.; Pourrat, X.; Deray, G.; Launay-Vacher, V. Prevalence of renal insufficiency in cancer patients: Data from the IRMA-2 study. J. Clin. Oncol. 2009, 27, 9559. [Google Scholar] [CrossRef]
- Rosner, M.H.; Perazella, M.A. Acute kidney injury in the patient with cancer. Kidney Res. Clin. Pract. 2019, 38, 295–308. [Google Scholar] [CrossRef] [Green Version]
- Janus, N.; Launay-Vacher, V.; Byloos, E.; Machiels, J.P.; Duck, L.; Kerger, J.; Wynendaele, W.; Canon, J.L.; Lybaert, W.; Nortier, J.; et al. Cancer and renal insufficiency results of the BIRMA study. Br. J. Cancer 2010, 103, 1815–1821. [Google Scholar] [CrossRef]
- Capasso, A.; Benigni, A.; Capitanio, U.; Danesh, F.R.; Di Marzo, V.; Gesualdo, L.; Grandaliano, G.; Jaimes, E.A.; Malyszko, J.; Perazella, M.A.; et al. Summary of the International Conference on Onco-Nephrology: An emerging field in medicine. Kidney Int. 2019, 96, 555–567. [Google Scholar] [CrossRef]
- Rosner, M.H.; Perazella, M.A. Acute Kidney Injury in Patients with Cancer. N. Engl. J. Med. 2017, 376, 1770–1781. [Google Scholar] [CrossRef]
- Christiansen, C.F.; Johansen, M.B.; Langeberg, W.J.; Fryzek, J.P.; Sorensen, H.T. Incidence of acute kidney injury in cancer patients: A Danish population-based cohort study. Eur. J. Intern. Med. 2011, 22, 399–406. [Google Scholar] [CrossRef]
- Bellomo, R.; Ronco, C.; Kellum, J.A.; Mehta, R.L.; Palevsky, P.; Acute Dialysis Quality Initiative, w. Acute renal failure—Definition, outcome measures, animal models, fluid therapy and information technology needs: The Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit. Care 2004, 8, R204–R212. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoste, E.A.; Clermont, G.; Kersten, A.; Venkataraman, R.; Angus, D.C.; De Bacquer, D.; Kellum, J.A. RIFLE criteria for acute kidney injury are associated with hospital mortality in critically ill patients: A cohort analysis. Crit. Care 2006, 10, R73. [Google Scholar] [CrossRef] [Green Version]
- Kitchlu, A.; McArthur, E.; Amir, E.; Booth, C.M.; Sutradhar, R.; Majeed, H.; Nash, D.M.; Silver, S.A.; Garg, A.X.; Chan, C.T.; et al. Acute Kidney Injury in Patients Receiving Systemic Treatment for Cancer: A Population-Based Cohort Study. J. Natl. Cancer Inst. 2019, 111, 727–736. [Google Scholar] [CrossRef] [PubMed]
- Manenti, G.; Ciccio, C.; Squillaci, E.; Strigari, L.; Calabria, F.; Danieli, R.; Schillaci, O.; Simonetti, G. Role of combined DWIBS/3D-CE-T1w whole-body MRI in tumor staging: Comparison with PET-CT. Eur. J. Radiol. 2012, 81, 1917–1925. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lameire, N.; Van Biesen, W.; Vanholder, R. Acute renal problems in the critically ill cancer patient. Curr. Opin. Crit. Care 2008, 14, 635–646. [Google Scholar] [CrossRef]
- Salahudeen, A.K.; Doshi, S.M.; Pawar, T.; Nowshad, G.; Lahoti, A.; Shah, P. Incidence rate, clinical correlates, and outcomes of AKI in patients admitted to a comprehensive cancer center. Clin. J. Am. Soc. Nephrol. 2013, 8, 347–354. [Google Scholar] [CrossRef] [Green Version]
- Meraz-Munoz, A.; Langote, A.; Jhaveri, K.; Izzedine, H.; Gudsoorkar, P. Acute Kidney Injury in the Patient with Cancer. Diagnostics 2021, 11, 611. [Google Scholar] [CrossRef]
- Hu, M.; Wang, Q.; Liu, B.; Ma, Q.; Zhang, T.; Huang, T.; Lv, Z.; Wang, R. Chronic Kidney Disease and Cancer: Inter-Relationships and Mechanisms. Front. Cell Dev. Biol. 2022, 10, 868715. [Google Scholar] [CrossRef]
- Dessi, M.; Noce, A.; Agnoli, A.; De Angelis, S.; Fuiano, L.; Tozzo, C.; Taccone-Gallucci, M.; Fuiano, G.; Federici, G. The usefulness of the prognostic inflammatory and nutritional index (PINI) in a haemodialysis population. Nutr. Metab. Cardiovasc. Dis. 2009, 19, 811–815. [Google Scholar] [CrossRef]
- Noce, A.; Bocedi, A.; Campo, M.; Marrone, G.; Di Lauro, M.; Cattani, G.; Di Daniele, N.; Romani, A. A Pilot Study of a Natural Food Supplement as New Possible Therapeutic Approach in Chronic Kidney Disease Patients. Pharmaceuticals 2020, 13, 148. [Google Scholar] [CrossRef] [PubMed]
- Tinti, F.; Lai, S.; Noce, A.; Rotondi, S.; Marrone, G.; Mazzaferro, S.; Di Daniele, N.; Mitterhofer, A.P. Chronic Kidney Disease as a Systemic Inflammatory Syndrome: Update on Mechanisms Involved and Potential Treatment. Life 2021, 11, 419. [Google Scholar] [CrossRef] [PubMed]
- Di Renzo, L.; Noce, A.; De Angelis, S.; Miani, N.; Di Daniele, N.; Tozzo, C.; De Lorenzo, A. Anti-inflammatory effects of combined treatment with acetyl salicylic acid and atorvastatin in haemodialysis patients affected by Normal Weight Obese syndrome. Pharmacol. Res. 2008, 57, 93–99. [Google Scholar] [CrossRef] [PubMed]
- Noce, A.; Rovella, V.; Marrone, G.; Cattani, G.; Zingaretti, V.; Limongi, D.; D’Agostini, C.; Sorge, R.; Casasco, M.; Di Daniele, N.; et al. Hemodialysis biomarkers: Total advanced glycation end products (AGEs) against oxidized human serum albumin (HSAox). Acta Diabetol. 2019, 56, 1323–1331. [Google Scholar] [CrossRef]
- Noce, A.; Marrone, G.; Di Daniele, F.; Ottaviani, E.; Wilson Jones, G.; Bernini, R.; Romani, A.; Rovella, V. Impact of Gut Microbiota Composition on Onset and Progression of Chronic Non-Communicable Diseases. Nutrients 2019, 11, 1073. [Google Scholar] [CrossRef] [Green Version]
- Noce, A.; Marchetti, M.; Marrone, G.; Di Renzo, L.; Di Lauro, M.; Di Daniele, F.; Albanese, M.; Di Daniele, N.; De Lorenzo, A. Link between gut microbiota dysbiosis and chronic kidney disease. Eur. Rev. Med. Pharmacol. Sci. 2022, 26, 2057–2074. [Google Scholar] [CrossRef]
- Noce, A.; Tarantino, A.; Tsague Djoutsop, C.; Vasili, E.; De Lorenzo, A.; Di Daniele, N. Gut Microbioma Population: An Indicator Really Sensible to Any Change in Age, Diet, Metabolic Syndrome, and Life-Style. Mediat. Inflamm. 2014, 2014, e901308. [Google Scholar]
- Merra, G.; Noce, A.; Marrone, G.; Cintoni, M.; Tarsitano, M.G.; Capacci, A.; De Lorenzo, A. Influence of Mediterranean Diet on Human Gut Microbiota. Nutrients 2020, 13, 7. [Google Scholar] [CrossRef]
- Marks, A.; Macleod, C.; McAteer, A.; Murchie, P.; Fluck, N.; Smith, W.C.; Prescott, G.J.; Clark, L.E.; Ali, T.; Black, C. Chronic kidney disease, a useful trigger for proactive primary care? Mortality results from a large U.K. cohort. Fam. Pract. 2013, 30, 282–289. [Google Scholar] [CrossRef] [Green Version]
- Ciorcan, M.; Chisavu, L.; Mihaescu, A.; Gadalean, F.; Bob, F.R.; Negru, S.; Schiller, O.M.; Grosu, I.D.; Marc, L.; Chisavu, F.; et al. Chronic kidney disease in cancer patients, the analysis of a large oncology database from Eastern Europe. PLoS ONE 2022, 17, e0265930. [Google Scholar] [CrossRef]
- Karalliedde, J.; Viberti, G. Microalbuminuria and cardiovascular risk. Am. J. Hypertens. 2004, 17, 986–993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sarnak, M.J.; Levey, A.S.; Schoolwerth, A.C.; Coresh, J.; Culleton, B.; Hamm, L.L.; McCullough, P.A.; Kasiske, B.L.; Kelepouris, E.; Klag, M.J.; et al. Kidney disease as a risk factor for development of cardiovascular disease: A statement from the American Heart Association Councils on Kidney in Cardiovascular Disease, High Blood Pressure Research, Clinical Cardiology, and Epidemiology and Prevention. Circulation 2003, 108, 2154–2169. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, L.M.; Milman, N. Microalbuminuria in patients with lung cancer. Eur. J. Cancer 1998, 34, 76–80. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, L.M.; Sorensen, P.G. Mediators of inflammation correlate with microalbuminuria in patients with non-Hodgkin’s lymphoma. Br. J. Haematol. 2003, 121, 275–279. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, L.M.; Sorensen, P.G. Increased urinary albumin excretion rate in breast cancer patients. Acta Oncol. 2000, 39, 145–149. [Google Scholar] [CrossRef]
- Mogensen, C.E.; Vestbo, E.; Poulsen, P.L.; Christiansen, C.; Damsgaard, E.M.; Eiskjaer, H.; Froland, A.; Hansen, K.W.; Nielsen, S.; Pedersen, M.M. Microalbuminuria and potential confounders. A review and some observations on variability of urinary albumin excretion. Diabetes Care 1995, 18, 572–581. [Google Scholar] [CrossRef]
- Jorgensen, L.; Heuch, I.; Jenssen, T.; Jacobsen, B.K. Association of albuminuria and cancer incidence. J. Am. Soc. Nephrol. 2008, 19, 992–998. [Google Scholar] [CrossRef] [Green Version]
- Hingorani, S.R.; Seidel, K.; Lindner, A.; Aneja, T.; Schoch, G.; McDonald, G. Albuminuria in hematopoietic cell transplantation patients: Prevalence, clinical associations, and impact on survival. Biol. Blood Marrow Transplant. 2008, 14, 1365–1372. [Google Scholar] [CrossRef] [Green Version]
- Pedersen, L.M.; Milman, N. Prevalence and prognostic significance of proteinuria in patients with lung cancer. Acta Oncol. 1996, 35, 691–695. [Google Scholar] [CrossRef]
- Plaisier, E.; Ronco, P. Screening for Cancer in Patients with Glomerular Diseases. Clin. J. Am. Soc. Nephrol. 2020, 15, 886–888. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.C.; Yamauchi, H.; Hopper, J., Jr. The association of cancer and the nephrotic syndrome. Ann. Intern. Med. 1966, 64, 41–51. [Google Scholar] [CrossRef] [PubMed]
- Ronco, P.M. Paraneoplastic glomerulopathies: New insights into an old entity. Kidney Int. 1999, 56, 355–377. [Google Scholar] [CrossRef] [Green Version]
- Lefaucheur, C.; Stengel, B.; Nochy, D.; Martel, P.; Hill, G.S.; Jacquot, C.; Rossert, J.; Group, G.-P.S. Membranous nephropathy and cancer: Epidemiologic evidence and determinants of high-risk cancer association. Kidney Int. 2006, 70, 1510–1517. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Qu, Z.; Liu, G.; Li, J.; Wu, L.H.; Tan, Y.; Zheng, X.; Ao, J.; Zhao, M.H. Absence of glomerular IgG4 deposition in patients with membranous nephropathy may indicate malignancy. Nephrol. Dial. Transplant. 2012, 27, 1931–1937. [Google Scholar] [CrossRef] [Green Version]
- Bacchetta, J.; Juillard, L.; Cochat, P.; Droz, J.P. Paraneoplastic glomerular diseases and malignancies. Crit. Rev. Oncol. Hematol. 2009, 70, 39–58. [Google Scholar] [CrossRef] [PubMed]
- Seitz-Polski, B.; Lambeau, G.; Esnault, V. Membranous nephropathy: Pathophysiology and natural history. Nephrol. Ther. 2017, 13 (Suppl. S1), S75–S81. [Google Scholar] [CrossRef]
- Qin, W.; Beck, L.H., Jr.; Zeng, C.; Chen, Z.; Li, S.; Zuo, K.; Salant, D.J.; Liu, Z. Anti-phospholipase A2 receptor antibody in membranous nephropathy. J. Am. Soc. Nephrol. 2011, 22, 1137–1143. [Google Scholar] [CrossRef] [Green Version]
- Radice, A.; Pieruzzi, F.; Trezzi, B.; Ghiggeri, G.; Napodano, P.; D’Amico, M.; Stellato, T.; Brugnano, R.; Ravera, F.; Rolla, D.; et al. Diagnostic specificity of autoantibodies to M-type phospholipase A2 receptor (PLA2R) in differentiating idiopathic membranous nephropathy (IMN) from secondary forms and other glomerular diseases. J. Nephrol. 2018, 31, 271–278. [Google Scholar] [CrossRef]
- Baker, L.W.; Jimenez-Lopez, J.; Geiger, X.J.; Aslam, N. Malignancy-Associated Membranous Nephropathy with Positive Anti-PLA2R Autoantibodies: Coincidence or Connection. Case Rep. Nephrol. Dial. 2021, 11, 334–339. [Google Scholar] [CrossRef] [PubMed]
- Bjorneklett, R.; Vikse, B.E.; Svarstad, E.; Aasarod, K.; Bostad, L.; Langmark, F.; Iversen, B.M. Long-term risk of cancer in membranous nephropathy patients. Am. J. Kidney Dis. 2007, 50, 396–403. [Google Scholar] [CrossRef] [Green Version]
- Perazella, M.A.; Shirali, A.C. Nephrotoxicity of Cancer Immunotherapies: Past, Present and Future. J. Am. Soc. Nephrol. 2018, 29, 2039–2052. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Baldeo, C.; Ali, R.; Hritani, A.; Poenariu, A. ANCA-Negative Pauci-Immune Crescentic Glomerulonephritis Linked with Non-Small Cell Carcinoma of the Lung. Case Rep. Nephrol. Dial. 2015, 5, 168–172. [Google Scholar] [CrossRef]
- Ahmed, M.; Solangi, K.; Abbi, R.; Adler, S. Nephrotic syndrome, renal failure, and renal malignancy: An unusual tumor-associated glomerulonephritis. J. Am. Soc. Nephrol. 1997, 8, 848–852. [Google Scholar] [CrossRef]
- Mustonen, J.; Pasternack, A.; Helin, H. IgA mesangial nephropathy in neoplastic diseases. Contrib. Nephrol. 1984, 40, 283–291. [Google Scholar] [CrossRef]
- Magyarlaki, T.; Kiss, B.; Buzogany, I.; Fazekas, A.; Sukosd, F.; Nagy, J. Renal cell carcinoma and paraneoplastic IgA nephropathy. Nephron 1999, 82, 127–130. [Google Scholar] [CrossRef] [PubMed]
- Lepori, N.F.; Floris, M.; Angioi, A.; Trevisani, F.; Aresu, S.; Cabiddu, G.; Pani, A. Tossicità renale da farmaci antineoplastici. G. Ital. Di Nefrol. 2020, S77, 38. [Google Scholar]
- Porta, C.; Cosmai, L.; Gallieni, M.; Pedrazzoli, P.; Malberti, F. Renal effects of targeted anticancer therapies. Nat. Rev. Nephrol. 2015, 11, 354–370. [Google Scholar] [CrossRef]
- Perazella, M.A. Onco-nephrology: Renal toxicities of chemotherapeutic agents. Clin. J. Am. Soc. Nephrol. 2012, 7, 1713–1721. [Google Scholar] [CrossRef] [Green Version]
- Cosmai, L.; Porta, C.; Foramitti, M.; Perrone, V.; Mollica, L.; Gallieni, M.; Capasso, G. Preventive strategies for acute kidney injury in cancer patients. Clin. Kidney J. 2021, 14, 70–83. [Google Scholar] [CrossRef]
- Perazella, M.A. Renal vulnerability to drug toxicity. Clin. J. Am. Soc. Nephrol. 2009, 4, 1275–1283. [Google Scholar] [CrossRef] [Green Version]
- Zagaria, M.A.E. Vigilance Regarding Drug-Induced Acute Kidney Injury in Ambulatory Older Adults. US Pharm. 2020, 45, 32–35. [Google Scholar]
- Kwiatkowska, E.; Domanski, L.; Dziedziejko, V.; Kajdy, A.; Stefanska, K.; Kwiatkowski, S. The Mechanism of Drug Nephrotoxicity and the Methods for Preventing Kidney Damage. Int. J. Mol. Sci. 2021, 22, 6109. [Google Scholar] [CrossRef] [PubMed]
- Lameire, N. Nephrotoxicity of recent anti-cancer agents. Clin. Kidney J. 2014, 7, 11–22. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bitran, J.D.; Desser, R.K.; Billings, A.A.; Kozloff, M.F.; Shapiro, C.M. Acute nephrotoxicity following cis-dichlorodiammine-platinum. Cancer 1982, 49, 1784–1788. [Google Scholar] [CrossRef] [PubMed]
- Ciarimboli, G.; Ludwig, T.; Lang, D.; Pavenstadt, H.; Koepsell, H.; Piechota, H.J.; Haier, J.; Jaehde, U.; Zisowsky, J.; Schlatter, E. Cisplatin nephrotoxicity is critically mediated via the human organic cation transporter 2. Am. J. Pathol. 2005, 167, 1477–1484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Filipski, K.K.; Mathijssen, R.H.; Mikkelsen, T.S.; Schinkel, A.H.; Sparreboom, A. Contribution of organic cation transporter 2 (OCT2) to cisplatin-induced nephrotoxicity. Clin. Pharmacol. Ther. 2009, 86, 396–402. [Google Scholar] [CrossRef] [PubMed]
- Perazella, M.A.; Moeckel, G.W. Nephrotoxicity from chemotherapeutic agents: Clinical manifestations, pathobiology, and prevention/therapy. Semin. Nephrol. 2010, 30, 570–581. [Google Scholar] [CrossRef]
- Stewart, D.J.; Dulberg, C.S.; Mikhael, N.Z.; Redmond, M.D.; Montpetit, V.A.; Goel, R. Association of cisplatin nephrotoxicity with patient characteristics and cisplatin administration methods. Cancer Chemother. Pharmacol. 1997, 40, 293–308. [Google Scholar] [CrossRef]
- Gurevich, F.; Perazella, M.A. Renal effects of anti-angiogenesis therapy: Update for the internist. Am. J. Med. 2009, 122, 322–328. [Google Scholar] [CrossRef]
- Robinson, E.S.; Matulonis, U.A.; Ivy, P.; Berlin, S.T.; Tyburski, K.; Penson, R.T.; Humphreys, B.D. Rapid development of hypertension and proteinuria with cediranib, an oral vascular endothelial growth factor receptor inhibitor. Clin. J. Am. Soc. Nephrol. 2010, 5, 477–483. [Google Scholar] [CrossRef] [Green Version]
- Dine, J.; Gordon, R.; Shames, Y.; Kasler, M.K.; Barton-Burke, M. Immune Checkpoint Inhibitors: An Innovation in Immunotherapy for the Treatment and Management of Patients with Cancer. Asia-Pac. J. Oncol. Nurs. 2017, 4, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Kitchlu, A.; Jhaveri, K.D.; Wadhwani, S.; Deshpande, P.; Harel, Z.; Kishibe, T.; Henriksen, K.; Wanchoo, R. A Systematic Review of Immune Checkpoint Inhibitor-Associated Glomerular Disease. Kidney Int. Rep. 2021, 6, 66–77. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, A. CAR-T Cell Therapy. Int. J. Mol. Sci. 2020, 21, 4303. [Google Scholar] [CrossRef]
- June, C.H.; O’Connor, R.S.; Kawalekar, O.U.; Ghassemi, S.; Milone, M.C. CAR T cell immunotherapy for human cancer. Science 2018, 359, 1361–1365. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Jhaveri, K.D.; Rosner, M.H. Chimeric Antigen Receptor T Cell Therapy and the Kidney: What the Nephrologist Needs to Know. Clin. J. Am. Soc. Nephrol. 2018, 13, 796–798. [Google Scholar] [CrossRef] [Green Version]
- Malyszko, J.; Tesarova, P.; Capasso, G.; Capasso, A. The link between kidney disease and cancer: Complications and treatment. Lancet 2020, 396, 277–287. [Google Scholar] [CrossRef]
- Renaghan, A.D.; Jaimes, E.A.; Malyszko, J.; Perazella, M.A.; Sprangers, B.; Rosner, M.H. Acute Kidney Injury and CKD Associated with Hematopoietic Stem Cell Transplantation. Clin. J. Am. Soc. Nephrol. 2020, 15, 289–297. [Google Scholar] [CrossRef]
- Parikh, C.R.; Coca, S.G. Acute renal failure in hematopoietic cell transplantation. Kidney Int. 2006, 69, 430–435. [Google Scholar] [CrossRef] [Green Version]
- Zager, R.A.; O’Quigley, J.; Zager, B.K.; Alpers, C.E.; Shulman, H.M.; Gamelin, L.M.; Stewart, P.; Thomas, E.D. Acute renal failure following bone marrow transplantation: A retrospective study of 272 patients. Am. J. Kidney Dis. 1989, 13, 210–216. [Google Scholar] [CrossRef]
- Parikh, C.R.; McSweeney, P.A.; Korular, D.; Ecder, T.; Merouani, A.; Taylor, J.; Slat-Vasquez, V.; Shpall, E.J.; Jones, R.B.; Bearman, S.I.; et al. Renal dysfunction in allogeneic hematopoietic cell transplantation. Kidney Int. 2002, 62, 566–573. [Google Scholar] [CrossRef] [Green Version]
- Parikh, C.R.; Schrier, R.W.; Storer, B.; Diaconescu, R.; Sorror, M.L.; Maris, M.B.; Maloney, D.G.; McSweeney, P.; Storb, R.; Sandmaier, B.M. Comparison of ARF after myeloablative and nonmyeloablative hematopoietic cell transplantation. Am. J. Kidney Dis. 2005, 45, 502–509. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Li, Y.F.; Liu, B.C.; Ding, J.H.; Chen, B.A.; Xu, W.L.; Qian, J. A multicenter, retrospective study of acute kidney injury in adult patients with nonmyeloablative hematopoietic SCT. Bone Marrow Transplant. 2010, 45, 153–158. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pinana, J.L.; Valcarcel, D.; Martino, R.; Barba, P.; Moreno, E.; Sureda, A.; Vega, M.; Delgado, J.; Briones, J.; Brunet, S.; et al. Study of kidney function impairment after reduced-intensity conditioning allogeneic hematopoietic stem cell transplantation. A single-center experience. Biol. Blood Marrow Transplant. 2009, 15, 21–29. [Google Scholar] [CrossRef] [Green Version]
- Hingorani, S. Renal Complications of Hematopoietic-Cell Transplantation. N. Engl. J. Med. 2016, 374, 2256–2267. [Google Scholar] [CrossRef] [Green Version]
- Kogon, A.; Hingorani, S. Acute kidney injury in hematopoietic cell transplantation. Semin. Nephrol. 2010, 30, 615–626. [Google Scholar] [CrossRef] [Green Version]
- Perazella, M.A. Pharmacology behind Common Drug Nephrotoxicities. Clin. J. Am. Soc. Nephrol. 2018, 13, 1897–1908. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Corbacioglu, S.; Jabbour, E.J.; Mohty, M. Risk Factors for Development of and Progression of Hepatic Veno-Occlusive Disease/Sinusoidal Obstruction Syndrome. Biol. Blood Marrow Transplant. 2019, 25, 1271–1280. [Google Scholar] [CrossRef] [Green Version]
- Coppell, J.A.; Richardson, P.G.; Soiffer, R.; Martin, P.L.; Kernan, N.A.; Chen, A.; Guinan, E.; Vogelsang, G.; Krishnan, A.; Giralt, S.; et al. Hepatic veno-occlusive disease following stem cell transplantation: Incidence, clinical course, and outcome. Biol. Blood Marrow Transplant. 2010, 16, 157–168. [Google Scholar] [CrossRef] [Green Version]
- Zager, R.A. Acute renal failure in the setting of bone marrow transplantation. Kidney Int. 1994, 46, 1443–1458. [Google Scholar] [CrossRef] [Green Version]
- Wanchoo, R.; Bayer, R.L.; Bassil, C.; Jhaveri, K.D. Emerging Concepts in Hematopoietic Stem Cell Transplantation-Associated Renal Thrombotic Microangiopathy and Prospects for New Treatments. Am. J. Kidney Dis. 2018, 72, 857–865. [Google Scholar] [CrossRef]
- Hingorani, S.; Guthrie, K.A.; Schoch, G.; Weiss, N.S.; McDonald, G.B. Chronic kidney disease in long-term survivors of hematopoietic cell transplant. Bone Marrow Transplant. 2007, 39, 223–229. [Google Scholar] [CrossRef] [PubMed]
- Kal, H.B.; van Kempen-Harteveld, M.L. Renal dysfunction after total body irradiation: Dose-effect relationship. Int. J. Radiat. Oncol. Biol. Phys. 2006, 65, 1228–1232. [Google Scholar] [CrossRef]
- Ellis, M.J.; Parikh, C.R.; Inrig, J.K.; Kanbay, M.; Patel, U.D. Chronic kidney disease after hematopoietic cell transplantation: A systematic review. Am. J. Transplant. 2008, 8, 2378–2390. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cohen, E.P.; Drobyski, W.R.; Moulder, J.E. Significant increase in end-stage renal disease after hematopoietic stem cell transplantation. Bone Marrow Transplant. 2007, 39, 571–572. [Google Scholar] [CrossRef]
- Hingorani, S.; Pao, E.; Stevenson, P.; Schoch, G.; Laskin, B.L.; Gooley, T.; McDonald, G.B. Changes in Glomerular Filtration Rate and Impact on Long-Term Survival among Adults after Hematopoietic Cell Transplantation: A Prospective Cohort Study. Clin. J. Am. Soc. Nephrol. 2018, 13, 866–873. [Google Scholar] [CrossRef] [Green Version]
- Singh, N.; McNeely, J.; Parikh, S.; Bhinder, A.; Rovin, B.H.; Shidham, G. Kidney complications of hematopoietic stem cell transplantation. Am. J. Kidney Dis. 2013, 61, 809–821. [Google Scholar] [CrossRef] [PubMed]
- Humphreys, B.D.; Soiffer, R.J.; Magee, C.C. Renal failure associated with cancer and its treatment: An update. J. Am. Soc. Nephrol. 2005, 16, 151–161. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Chen, H.; Chen, J.; Han, M.; Huang, H.; Lai, Y.; Liu, D.; Liu, Q.; Liu, T.; Jiang, M.; et al. The consensus on indications, conditioning regimen, and donor selection of allogeneic hematopoietic cell transplantation for hematological diseases in China-recommendations from the Chinese Society of Hematology. J. Hematol. Oncol. 2018, 11, 33. [Google Scholar] [CrossRef]
- Sureda, A.; Bader, P.; Cesaro, S.; Dreger, P.; Duarte, R.F.; Dufour, C.; Falkenburg, J.H.; Farge-Bancel, D.; Gennery, A.; Kroger, N.; et al. Indications for allo- and auto-SCT for haematological diseases, solid tumours and immune disorders: Current practice in Europe, 2015. Bone Marrow Transplant. 2015, 50, 1037–1056. [Google Scholar] [CrossRef] [Green Version]
- Ando, M. An Overview of Kidney Disease Following Hematopoietic Cell Transplantation. Intern. Med. 2018, 57, 1503–1508. [Google Scholar] [CrossRef] [Green Version]
- Musial, K.; Kalwak, K.; Zwolinska, D. The Impact of Allogeneic Hematopoietic Stem Cell Transplantation on Kidney Function in Children-A Single Center Experience. J. Clin. Med. 2021, 10, 1113. [Google Scholar] [CrossRef] [PubMed]
- Augustynowicz, M.; Kalwak, K.; Zwolinska, D.; Musial, K. The incidence of acute kidney injury in children undergoing allogenic hematopoietic stem cell transplantation: A pilot study. Adv. Clin. Exp. Med. 2021, 30, 87–92. [Google Scholar] [CrossRef] [PubMed]
- Khwaja, A. KDIGO clinical practice guidelines for acute kidney injury. Nephron. Clin. Pract. 2012, 120, c179–c184. [Google Scholar] [CrossRef] [PubMed]
- Sutherland, S.M.; Byrnes, J.J.; Kothari, M.; Longhurst, C.A.; Dutta, S.; Garcia, P.; Goldstein, S.L. AKI in hospitalized children: Comparing the pRIFLE, AKIN, and KDIGO definitions. Clin. J. Am. Soc. Nephrol. 2015, 10, 554–561. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Augustynowicz, M.; Bargenda-Lange, A.; Kalwak, K.; Zwolinska, D.; Musial, K. Markers of acute kidney injury in children undergoing hematopoietic stem cell transplantation. Adv. Clin. Exp. Med. 2019, 28, 1111–1118. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lommatzsch, S.E.; Bellizzi, A.M.; Cathro, H.P.; Rosner, M.H. Acute renal failure caused by renal infiltration by hematolymphoid malignancy. Ann. Diagn. Pathol. 2006, 10, 230–234. [Google Scholar] [CrossRef] [PubMed]
- Mirrakhimov, A.E.; Voore, P.; Khan, M.; Ali, A.M. Tumor lysis syndrome: A clinical review. World J. Crit. Care Med. 2015, 4, 130–138. [Google Scholar] [CrossRef]
- Alakel, N.; Middeke, J.M.; Schetelig, J.; Bornhauser, M. Prevention and treatment of tumor lysis syndrome, and the efficacy and role of rasburicase. Onco Targets Ther. 2017, 10, 597–605. [Google Scholar] [CrossRef] [Green Version]
- Leblond, F.A.; Petrucci, M.; Dube, P.; Bernier, G.; Bonnardeaux, A.; Pichette, V. Downregulation of intestinal cytochrome p450 in chronic renal failure. J. Am. Soc. Nephrol. 2002, 13, 1579–1585. [Google Scholar] [CrossRef] [Green Version]
- Henderson, S.J.; Lindup, W.E. Renal organic acid transport: Uptake by rat kidney slices of a furan dicarboxylic acid which inhibits plasma protein binding of acidic ligands in uremia. J. Pharmacol. Exp. Ther. 1992, 263, 54–60. [Google Scholar]
- Dreisbach, A.W. The influence of chronic renal failure on drug metabolism and transport. Clin. Pharmacol. Ther. 2009, 86, 553–556. [Google Scholar] [CrossRef] [PubMed]
- Kosmas, C.; Kallistratos, M.S.; Kopterides, P.; Syrios, J.; Skopelitis, H.; Mylonakis, N.; Karabelis, A.; Tsavaris, N. Cardiotoxicity of fluoropyrimidines in different schedules of administration: A prospective study. J. Cancer. Res. Clin. Oncol. 2008, 134, 75–82. [Google Scholar] [CrossRef] [PubMed]
- Kashani, K.; Rosner, M.H.; Ostermann, M. Creatinine: From physiology to clinical application. Eur. J. Intern. Med. 2020, 72, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Casal, M.A.; Nolin, T.D.; Beumer, J.H. Estimation of Kidney Function in Oncology: Implications for Anticancer Drug Selection and Dosing. Clin. J. Am. Soc. Nephrol. 2019, 14, 587–595. [Google Scholar] [CrossRef] [Green Version]
- Hudson, J.Q.; Nolin, T.D. Pragmatic Use of Kidney Function Estimates for Drug Dosing: The Tide Is Turning. Adv. Chronic. Kidney Dis. 2018, 25, 14–20. [Google Scholar] [CrossRef] [Green Version]
- Launay-Vacher, V.; Chatelut, E.; Lichtman, S.M.; Wildiers, H.; Steer, C.; Aapro, M.; International Society of Geriatric, O. Renal insufficiency in elderly cancer patients: International Society of Geriatric Oncology clinical practice recommendations. Ann. Oncol. 2007, 18, 1314–1321. [Google Scholar] [CrossRef]
- Inker, L.A.; Schmid, C.H.; Tighiouart, H.; Eckfeldt, J.H.; Feldman, H.I.; Greene, T.; Kusek, J.W.; Manzi, J.; Van Lente, F.; Zhang, Y.L.; et al. Estimating glomerular filtration rate from serum creatinine and cystatin C. N. Engl. J. Med. 2012, 367, 20–29. [Google Scholar] [CrossRef] [Green Version]
- Barreto, J.N.; McClanahan, A.L.; Rule, A.D.; Thompson, C.A.; Frazee, E. Incorporating Cystatin C to Predict Methotrexate Elimination in Patients with CNS Lymphoma and Suspicious Renal Function. Case Rep. Hematol. 2018, 2018, 7169897. [Google Scholar] [CrossRef] [Green Version]
- Levey, A.S.; Bosch, J.P.; Lewis, J.B.; Greene, T.; Rogers, N.; Roth, D. A more accurate method to estimate glomerular filtration rate from serum creatinine: A new prediction equation. Modification of Diet in Renal Disease Study Group. Ann. Intern. Med. 1999, 130, 461–470. [Google Scholar] [CrossRef]
- Janowitz, T.; Williams, E.H.; Marshall, A.; Ainsworth, N.; Thomas, P.B.; Sammut, S.J.; Shepherd, S.; White, J.; Mark, P.B.; Lynch, A.G.; et al. New Model for Estimating Glomerular Filtration Rate in Patients With Cancer. J. Clin. Oncol. 2017, 35, 2798–2805. [Google Scholar] [CrossRef] [Green Version]
- Klockl, M.C.; Kasparek, A.K.; Riedl, J.M.; Moik, F.; Mollnar, S.; Stotz, M.; Szkandera, J.; Terbuch, A.; Gerger, A.; Niedrist, T.; et al. Estimation versus measurement of the glomerular filtration rate for kidney function assessment in patients with cancer undergoing cisplatin-based chemotherapy. Sci. Rep. 2020, 10, 11219. [Google Scholar] [CrossRef] [PubMed]
- Dotan, E.; Walter, L.C.; Browner, I.S.; Clifton, K.; Cohen, H.J.; Extermann, M.; Gross, C.; Gupta, S.; Hollis, G.; Hubbard, J.; et al. NCCN Guidelines(R) Insights: Older Adult Oncology, Version 1.2021. J. Natl. Compr. Canc. Netw. 2021, 19, 1006–1019. [Google Scholar] [CrossRef]
- Coccia, P.F.; Pappo, A.S.; Beaupin, L.; Borges, V.F.; Borinstein, S.C.; Chugh, R.; Dinner, S.; Folbrecht, J.; Frazier, A.L.; Goldsby, R.; et al. Adolescent and Young Adult Oncology, Version 2.2018, NCCN Clinical Practice Guidelines in Oncology. J. Natl. Compr. Cancer Netw. 2018, 16, 66–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lichtman, S.M.; Wildiers, H.; Launay-Vacher, V.; Steer, C.; Chatelut, E.; Aapro, M. International Society of Geriatric Oncology (SIOG) recommendations for the adjustment of dosing in elderly cancer patients with renal insufficiency. Eur. J. Cancer 2007, 43, 14–34. [Google Scholar] [CrossRef]
- Sprangers, B.; Abudayyeh, A.; Latcha, S.; Perazella, M.A.; Jhaveri, K.D. How to determine kidney function in cancer patients? Eur. J. Cancer 2020, 132, 141–149. [Google Scholar] [CrossRef] [PubMed]
- McMahon, B.A.; Rosner, M.H. GFR Measurement and Chemotherapy Dosing in Patients with Kidney Disease and Cancer. Kidney360 2020, 1, 141–150. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Dorshow, R.B.; Bugaj, J.E. Next tier in vitro and in vivo nonclinical studies further elucidating the safety and toxicity profile of MB-102, a novel fluorescent tracer agent for measurement of glomerular filtration rate. Regul. Toxicol. Pharmacol. 2019, 107, 104417. [Google Scholar] [CrossRef]
- Ingles Garces, A.H.; Ang, J.E.; Ameratunga, M.; Chenard-Poirier, M.; Dolling, D.; Diamantis, N.; Seeramreddi, S.; Sundar, R.; de Bono, J.; Lopez, J.; et al. A study of 1088 consecutive cases of electrolyte abnormalities in oncology phase I trials. Eur. J. Cancer 2018, 104, 32–38. [Google Scholar] [CrossRef] [Green Version]
- Rosner, M.H.; Dalkin, A.C. Electrolyte disorders associated with cancer. Adv. Chronic. Kidney Dis. 2014, 21, 7–17. [Google Scholar] [CrossRef] [Green Version]
- Liamis, G.; Filippatos, T.D.; Elisaf, M.S. Electrolyte disorders associated with the use of anticancer drugs. Eur. J. Pharmacol. 2016, 777, 78–87. [Google Scholar] [CrossRef]
- Lacy, M.Q.; Gertz, M.A. Acquired Fanconi’s syndrome associated with monoclonal gammopathies. Hematol. Oncol. Clin. N. Am. 1999, 13, 1273–1280. [Google Scholar] [CrossRef]
- Criscuolo, M.; Fianchi, L.; Dragonetti, G.; Pagano, L. Tumor lysis syndrome: Review of pathogenesis, risk factors and management of a medical emergency. Expert Rev. Hematol. 2016, 9, 197–208. [Google Scholar] [CrossRef]
- Cheminet, G.; Clain, G.; Jannot, A.S.; Ranque, B.; Passeron, A.; Michon, A.; De Luna, G.; Diehl, J.L.; Oudard, S.; Cellier, C.; et al. Extreme hypomagnesemia: Characteristics of 119 consecutive inpatients. Intern. Emerg. Med. 2018, 13, 1201–1209. [Google Scholar] [CrossRef] [PubMed]
- Sengupta, P.; Basu, S.; Soni, S.; Pandey, A.; Roy, B.; Oh, M.S.; Chin, K.T.; Paraskar, A.S.; Sarangi, S.; Connor, Y.; et al. Cholesterol-tethered platinum II-based supramolecular nanoparticle increases antitumor efficacy and reduces nephrotoxicity. Proc. Natl. Acad. Sci. USA 2012, 109, 11294–11299. [Google Scholar] [CrossRef] [Green Version]
- Crona, D.J.; Faso, A.; Nishijima, T.F.; McGraw, K.A.; Galsky, M.D.; Milowsky, M.I. A Systematic Review of Strategies to Prevent Cisplatin-Induced Nephrotoxicity. Oncologist 2017, 22, 609–619. [Google Scholar] [CrossRef] [Green Version]
- Hensley, M.L.; Hagerty, K.L.; Kewalramani, T.; Green, D.M.; Meropol, N.J.; Wasserman, T.H.; Cohen, G.I.; Emami, B.; Gradishar, W.J.; Mitchell, R.B.; et al. American Society of Clinical Oncology 2008 clinical practice guideline update: Use of chemotherapy and radiation therapy protectants. J. Clin. Oncol. 2009, 27, 127–145. [Google Scholar] [CrossRef]
- Noce, A.; Marrone, G.; Ottaviani, E.; Guerriero, C.; Di Daniele, F.; Pietroboni Zaitseva, A.; Di Daniele, N. Uremic Sarcopenia and Its Possible Nutritional Approach. Nutrients 2021, 13, 147. [Google Scholar] [CrossRef]
- Capizzi, R.L. Amifostine reduces the incidence of cumulative nephrotoxicity from cisplatin: Laboratory and clinical aspects. Semin. Oncol. 1999, 26, 72–81. [Google Scholar]
- Wu, Y.J.; Muldoon, L.L.; Neuwelt, E.A. The chemoprotective agent N-acetylcysteine blocks cisplatin-induced apoptosis through caspase signaling pathway. J. Pharmacol. Exp. Ther. 2005, 312, 424–431. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ries, F.; Klastersky, J. Nephrotoxicity induced by cancer chemotherapy with special emphasis on cisplatin toxicity. Am. J. Kidney Dis. 1986, 8, 368–379. [Google Scholar] [CrossRef] [PubMed]
- Heyman, S.N.; Spokes, K.; Egorin, M.J.; Epstein, F.H. Glycine reduces early renal parenchymal uptake of cisplatin. Kidney Int. 1993, 43, 1226–1228. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benoehr, P.; Krueth, P.; Bokemeyer, C.; Grenz, A.; Osswald, H.; Hartmann, J.T. Nephroprotection by theophylline in patients with cisplatin chemotherapy: A randomized, single-blinded, placebo-controlled trial. J. Am. Soc. Nephrol. 2005, 16, 452–458. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noce, A.; Marrone, G.; Di Lauro, M.; Mitterhofer, A.P.; Ceravolo, M.J.; Di Daniele, N.; Manenti, G.; De Lorenzo, A. The Onco-Nephrology Field: The Role of Personalized Chemotherapy to Prevent Kidney Damage. Cancers 2023, 15, 2254. https://doi.org/10.3390/cancers15082254
Noce A, Marrone G, Di Lauro M, Mitterhofer AP, Ceravolo MJ, Di Daniele N, Manenti G, De Lorenzo A. The Onco-Nephrology Field: The Role of Personalized Chemotherapy to Prevent Kidney Damage. Cancers. 2023; 15(8):2254. https://doi.org/10.3390/cancers15082254
Chicago/Turabian StyleNoce, Annalisa, Giulia Marrone, Manuela Di Lauro, Anna Paola Mitterhofer, Maria Josè Ceravolo, Nicola Di Daniele, Guglielmo Manenti, and Antonino De Lorenzo. 2023. "The Onco-Nephrology Field: The Role of Personalized Chemotherapy to Prevent Kidney Damage" Cancers 15, no. 8: 2254. https://doi.org/10.3390/cancers15082254
APA StyleNoce, A., Marrone, G., Di Lauro, M., Mitterhofer, A. P., Ceravolo, M. J., Di Daniele, N., Manenti, G., & De Lorenzo, A. (2023). The Onco-Nephrology Field: The Role of Personalized Chemotherapy to Prevent Kidney Damage. Cancers, 15(8), 2254. https://doi.org/10.3390/cancers15082254