Expression and Localization of Ferritin-Heavy Chain Predicts Recurrence for Breast Cancer Patients with a BRCA1/2 Mutation
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Tissue Microarray Generation
2.3. Immunohistochemical Staining
2.4. Manual and Automated Scoring
2.5. Statistical Analysis
3. Results
3.1. Clinicopathological Variables
3.2. Survival Analysis
3.3. Immune Cells
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Knovich, M.A.; Storey, J.A.; Coffman, L.G.; Torti, S.V.; Torti, F.M. Ferritin for the clinician. Blood Rev. 2009, 23, 95–104. [Google Scholar] [CrossRef] [PubMed]
- Andrews, N.C.; Schmidt, P.J. Iron homeostasis. Annu. Rev. Physiol. 2007, 69, 69–85. [Google Scholar] [CrossRef] [PubMed]
- Lu, B.; Chen, X.B.; Ying, M.D.; He, Q.J.; Cao, J.; Yang, B. The Role of Ferroptosis in Cancer Development and Treatment Response. Front. Pharmacol. 2017, 8, 992. [Google Scholar] [CrossRef]
- Nie, Q.; Hu, Y.; Yu, X.; Li, X.; Fang, X. Induction and application of ferroptosis in cancer therapy. Cancer Cell Int. 2022, 22, 12. [Google Scholar] [CrossRef] [PubMed]
- Arosio, P.; Adelman, T.G.; Drysdale, J.W. On ferritin heterogeneity. Further evidence for heteropolymers. J. Biol. Chem. 1978, 253, 4451–4458. [Google Scholar] [CrossRef] [PubMed]
- Weinstein, R.E.; Bond, B.H.; Silberberg, B.K. Tissue ferritin concentration in carcinoma of the breast. Cancer 1982, 50, 2406–2409. [Google Scholar] [CrossRef] [PubMed]
- Elliott, R.L.; Elliott, M.C.; Wang, F.; Head, J.F. Breast carcinoma and the role of iron metabolism. A cytochemical, tissue culture, and ultrastructural study. Ann. N. Y. Acad. Sci. 1993, 698, 159–166. [Google Scholar] [CrossRef] [PubMed]
- Jezequel, P.; Campion, L.; Spyratos, F.; Loussouarn, D.; Campone, M.; Guerin-Charbonnel, C.; Joalland, M.-P.; André, J.; Descotes, F.; Grenot, C.; et al. Validation of tumor-associated macrophage ferritin light chain as a prognostic biomarker in node-negative breast cancer tumors: A multicentric 2004 national PHRC study. Int. J. Cancer 2012, 131, 426–437. [Google Scholar] [CrossRef]
- Liu, N.Q.; Stingl, C.; Look, M.P.; Smid, M.; Braakman, R.B.; De Marchi, T.; Sieuwerts, A.M.; Span, P.N.; Sweep, F.C.G.J.; Linderholm, B.K.; et al. Comparative proteome analysis revealing an 11-protein signature for aggressive triple-negative breast cancer. J. Natl. Cancer Inst. 2014, 106, djt376. [Google Scholar] [CrossRef]
- Shpyleva, S.I.; Tryndyak, V.P.; Kovalchuk, O.; Starlard-Davenport, A.; Chekhun, V.F.; Beland, F.A.; Pogribny, I.P. Role of ferritin alterations in human breast cancer cells. Breast Cancer Res. Treat. 2011, 126, 63–71. [Google Scholar] [CrossRef]
- Liu, N.Q.; De Marchi, T.; Timmermans, A.M.; Beekhof, R.; Trapman-Jansen, A.M.; Foekens, R.; Look, M.P.; van Deurzen, C.H.M.; Span, P.N.; Sweep, F.C.G.J.; et al. Ferritin heavy chain in triple negative breast cancer: A favorable prognostic marker that relates to a cluster of differentiation 8 positive (CD8+) effector T-cell response. Mol. Cell. Proteom. 2014, 13, 1814–1827. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Luo, C.; Mines, M.; Zhang, J.; Fan, G.H. Chemokine CXCL12 induces binding of ferritin heavy chain to the chemokine receptor CXCR4, alters CXCR4 signaling, and induces phosphorylation and nuclear translocation of ferritin heavy chain. J. Biol. Chem. 2006, 281, 37616–37627. [Google Scholar] [CrossRef] [PubMed]
- Luker, K.E.; Lewin, S.A.; Mihalko, L.A.; Schmidt, B.T.; Winkler, J.S.; Coggins, N.L.; Thomas, D.G.; Luker, G.D. Scavenging of CXCL12 by CXCR7 promotes tumor growth and metastasis of CXCR4-positive breast cancer cells. Oncogene 2012, 31, 4750–4758. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.H.; Jin, X.; Malladi, S.; Zou, Y.; Wen, Y.H.; Brogi, E.; Smid, M.; Foekens, J.A.; Massagué, J. Selection of bone metastasis seeds by mesenchymal signals in the primary tumor stroma. Cell 2013, 154, 1060–1073. [Google Scholar] [CrossRef] [PubMed]
- Kuchenbaecker, K.B.; Hopper, J.L.; Barnes, D.R.; Phillips, K.A.; Mooij, T.M.; Roos-Blom, M.J.; Jervis, S.; van Leeuwen, F.E.; Milne, R.L.; Andrieu, N.; et al. Risks of Breast, Ovarian, and Con-tralateral Breast Cancer for BRCA1 and BRCA2 Mutation Carriers. JAMA 2017, 317, 2402–2416. [Google Scholar] [CrossRef] [PubMed]
- Antoniou, A.; Pharoah, P.D.; Narod, S.; Risch, H.A.; Eyfjord, J.E.; Hopper, J.L.; Loman, N.; Olsson, H.; Johannsson, O.; Borg, A.; et al. Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case Series unselected for family history: A combined analysis of 22 studies. Am. J. Hum. Genet. 2003, 72, 1117–1130. [Google Scholar] [CrossRef] [PubMed]
- Mavaddat, N.; Barrowdale, D.; Andrulis, I.L.; Domchek, S.M.; Eccles, D.; Nevanlinna, H.; Ramus, S.J.; Spurdle, A.; Robson, M.; Sherman, M.; et al. Pathology of breast and ovarian cancers among BRCA1 and BRCA2 mutation carriers: Results from the Consortium of Investigators of Modifiers of BRCA1/2 (CIMBA). Cancer Epidemiol. Biomarkers Prev. 2012, 21, 134–147. [Google Scholar] [CrossRef] [PubMed]
- Roy, R.; Chun, J.; Powell, S.N. BRCA1 and BRCA2: Different roles in a common pathway of genome protection. Nat. Rev. Cancer 2011, 12, 68–78. [Google Scholar] [CrossRef]
- Farmer, H.; McCabe, N.; Lord, C.J.; Tutt, A.N.; Johnson, D.A.; Richardson, T.B.; Santarosa, M.; Dillon, K.J.; Hickson, I.; Knights, C.; et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 2005, 434, 917–921. [Google Scholar] [CrossRef]
- Robson, M.; Im, S.A.; Senkus, E.; Xu, B.; Domchek, S.M.; Masuda, N.; Delaloge, S.; Li, W.; Tung, N.; Armstrong, A.; et al. Olaparib for Metastatic Breast Cancer in Patients with a Germline BRCA Mutation. N. Engl. J. Med. 2017, 377, 523–533. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, J.; Liu, X.; Feng, L.; Gong, Z.; Koppula, P.; Sirohi, K.; Li, X.; Wei, Y.; Lee, H.; et al. BAP1 links metabolic regulation of ferroptosis to tumour suppression. Nat. Cell Biol. 2018, 20, 1181–1192. [Google Scholar] [CrossRef] [PubMed]
- Hong, T.; Lei, G.; Chen, X.; Li, H.; Zhang, X.; Wu, N.; Zhao, Y.; Zhang, Y.; Wang, J. PARP inhibition promotes ferroptosis via repressing SLC7A11 and syn-ergizes with ferroptosis inducers in BRCA-proficient ovarian cancer. Redox Biol. 2021, 42, 101928. [Google Scholar] [CrossRef] [PubMed]
- Kong, Y.; Akatsuka, S.; Motooka, Y.; Zheng, H.; Cheng, Z.; Shiraki, Y.; Mashimo, T.; Imaoka, T.; Toyokuni, S. BRCA1 haploinsufficiency promotes chromosomal amplification under Fenton reaction-based carcinogenesis through ferroptosis-resistance. Redox Biol. 2022, 54, 102356. [Google Scholar] [CrossRef] [PubMed]
- Azzato, E.M.; Greenberg, D.; Shah, M.; Blows, F.; Driver, K.E.; Caporaso, N.E.; Pharoah, P.D.P. Prevalent cases in observational studies of cancer survival: Do they bias hazard ratio estimates? Br. J. Cancer 2009, 100, 1806–1811. [Google Scholar] [CrossRef]
All Mutation Carriers | BRCA1 Mutation Carriers | BRCA2 Mutation Carriers | p-Value | |
---|---|---|---|---|
Total number | 222 | 178 (80.2%) | 44 (19.8%) | |
Median follow-up time (range) in years | 9.2 (0.1–18.1) | 9.7 (0.1–18.1) | 8.3 (0.1–15.2) | |
Year of diagnosis | 0.053 | |||
<2000 | 102 | 88 (86.3%) | 14 (13.7%) | |
≥2000 | 120 | 90 (75.0%) | 30 (25.0%) | |
Age at diagnosis (in years) | 0.23 | |||
≤35 | 69 | 60 (87.0%) | 9 (13.0%) | |
36–50 | 124 | 96 (77.4%) | 28 (22.6%) | |
>50 | 29 | 22 (75.9%) | 7 (24.1%) | |
Menopausal status | 0.12 | |||
Premenopausal | 164 | 129 (78.7%) | 35 (21.3%) | |
Postmenopausal | 29 | 27 (93.1%) | 2 (6.9%) | |
Tumor size | 0.72 | |||
pT1 | 124 | 101 (81.5%) | 23 (18.5%) | |
pT2-4 + Unknown | 98 | 77 (78.6%) | 21 (21.4%) | |
Nodal status | 0.019 | |||
Negative | 152 | 129 (84.9%) | 23 (15.1%) | |
Positive | 67 | 47 (70.1%) | 20 (29.9%) | |
Tumor grade | <0.001 | |||
Good/Moderate | 35 | 21 (60.0%) | 14 (40.0%) | |
Poor | 157 | 135 (86.0%) | 22 (14.0%) | |
Tumor histology | <0.001 | |||
NST | 141 | 109 (77.3%) | 32 (22.7%) | |
Medullary | 45 | 43 (95.6%) | 2 (4.4%) | |
Other | 23 | 13 (56.5%) | 10 (43.5%) | |
ER status | <0.001 | |||
Negative | 159 | 147 (92.5%) | 12 (7.5%) | |
Positive | 63 | 31 (49.2%) | 32 (50.8%) | |
PR status | <0.001 | |||
Negative | 176 | 161 (91.5%) | 15 (8.5%) | |
Positive | 46 | 17 (37.0%) | 29 (63.0%) | |
HER2 status | 1 | |||
Negative | 214 | 171 (80.0%) | 43 (20.0%) | |
Positive | 8 | 7 (87.5%) | 1 (12.5%) | |
Surgery | 1 | |||
Lumpectomy | 118 | 95 (80.5%) | 23 (19.5%) | |
Mastectomy | 103 | 82 (79.6%) | 21 (20.4%) | |
Adjuvant systemic therapy | 0.87 | |||
No | 73 | 58 (79.5%) | 15 (20.5%) | |
Yes | 148 | 119 (80.4%) | 29 (19.6%) |
Variables | All Mutation Carriers | p-Value | BRCA1 Mutation Carriers | p-Value | BRCA2 Mutation Carriers | p-Value | |||
---|---|---|---|---|---|---|---|---|---|
cFTH1 ≤ 75% | cFTH1 > 75% | cFTH1 ≤ 75% | cFTH1 > 75% | cFTH1 ≤ 75% | cFTH1 > 75% | ||||
Total number | 106 (49.3%) | 109 (50.7%) | 88 (50.9%) | 85 (49.1%) | 18 (42.9%) | 24 (57.1%) | |||
Median follow-up time (range) in years | 9.1 (0.1–17.3) | 9.5 (0.4–18.1) | 9.7 (0.1–17.3) | 10.0 (0.4–18.1) | 8.1 (0.1–12.6) | 9.2 (2.5–15.2) | |||
Year of diagnosis | 0.033 | 0.028 | 0.74 | ||||||
<2000 | 41 (41.0%) | 59 (59.0%) | 36 (41.9%) | 50 (58.1%) | 5 (35.7%) | 9 (64.3%) | |||
≥2000 | 65 (56.5%) | 50 (43.5%) | 52 (59.8%) | 35 (40.2%) | 13 (46.4%) | 15 (53.6%) | |||
Age at diagnosis (in years) | 0.47 | 0.52 | 0.24 | ||||||
≤35 | 36 (54.5%) | 30 (45.5%) | 33 (56.9%) | 25 (43.1%) | 3 (37.5%) | 5 (62.5%) | |||
36–50 | 58 (48.3%) | 62 (51.7%) | 44 (47.3%) | 49 (52.7%) | 14 (51.9%) | 13 (48.1%) | |||
>50 | 12 (41.4%) | 17 (58.6%) | 11 (50.0%) | 11 (50.0%) | 1 (14.3%) | 6 (85.7%) | |||
Menopausal status | 1 | 0.96 | 0.50 | ||||||
Premenopausal | 74 (46.8%) | 84 (53.2%) | 59 (47.2%) | 66 (52.8%) | 15 (45.5%) | 18 (54.5%) | |||
Postmenopausal | 13 (46.4%) | 15 (53.6%) | 13 (50.0%) | 13 (50.0%) | 0 (0%) | 2 (100%) | |||
Tumor size | 0.52 | 0.84 | 0.50 | ||||||
pT1 | 62 (51.7%) | 58 (48.3%) | 51 (52.0%) | 47 (48.0%) | 11 (50.0%) | 11 (50.0%) | |||
pT2-4 + Unknown | 44 (46.3%) | 51 (53.7%) | 37 (49.3%) | 38 (50.7%) | 7 (35.0%) | 13 (65.0%) | |||
Nodal status | 0.31 | 0.32 | 1 | ||||||
Negative | 76 (51.7%) | 71 (48.3%) | 67 (53.6%) | 58 (46.4%) | 9 (40.9%) | 13 (59.1%) | |||
Positive | 28 (43.1%) | 37 (56.9%) | 20 (43.5%) | 26 (56.5%) | 8 (42.1%) | 11 (57.9%) | |||
Tumor grade | 0.33 | 0.86 | 0.075 | ||||||
Good/Moderate | 20 (60.1%) | 13 (39.4%) | 12 (57.1%) | 9 (42.9%) | 8 (66.7%) | 4 (33.3%) | |||
Poor | 75 (49.3%) | 77 (50.7%) | 68 (52.3%) | 62 (47.7%) | 7 (31.8%) | 15 (68.2%) | |||
Tumor histology | 0.86 | 0.96 | 0.53 | ||||||
NST | 65 (48.1%) | 70 (51.9%) | 52 (50.0%) | 52 (50.0%) | 13 (41.9%) | 18 (58.1%) | |||
Medullary | 22 (48.9%) | 23 (51.1%) | 22 (51.2%) | 21 (48.8%) | 0 (0%) | 2 (100%) | |||
Other | 12 (54.5%) | 10 (45.5%) | 7 (53.8%) | 6 (46.2%) | 5 (55.6%) | 4 (44.4%) | |||
ER status | 0.24 | 0.77 | <0.001 | ||||||
Negative | 71 (46.4%) | 82 (53.6%) | 71 (50.0%) | 71 (50.0%) | 0 (0%) | 11 (100%) | |||
Positive | 35 (56.5%) | 27 (43.5%) | 17 (54.8%) | 14 (45.2%) | 18 (58.1%) | 13 (41.9%) | |||
PR status | 0.44 | 0.66 | 0.057 | ||||||
Negative | 81 (47.6%) | 89 (52.4%) | 78 (50.0%) | 78 (50.0%) | 3 (21.4%) | 11 (78.6%) | |||
Positive | 25 (55.6%) | 20 (44.4%) | 10 (58.8%) | 7 (41.2%) | 15 (53.6%) | 13 (46.4%) | |||
HER2 status | 0.49 | 1 | 0.43 | ||||||
Negative | 101 (48.8%) | 106 (51.2%) | 84 (50.6%) | 82 (49.4%) | 17 (41.5%) | 24 (58.5%) | |||
Positive | 5 (62.5%) | 3 (37.5%) | 4 (57.1%) | 3 (42.9%) | 1 (100%) | 0 (0%) | |||
Surgery | 0.69 | 0.87 | 0.82 | ||||||
Lumpectomy | 54 (47.4%) | 60 (52.6%) | 45 (49.5%) | 46 (50.5%) | 9 (39.1%) | 14 (60.9%) | |||
Mastectomy | 51 (51.0%) | 49 (49.0%) | 42 (51.9%) | 39 (48.1%) | 9(47.4%) | 10 (52.6%) | |||
Adjuvant systemic therapy | 0.21 | 0.12 | 0.96 | ||||||
No | 31 (42.5%) | 42 (57.5%) | 24 (41.4%) | 34 (58.6%) | 7 (46.7%) | 8 (53.3%) | |||
Yes | 74 (52.5%) | 67 (47.5%) | 63 (55.3%) | 51 (44.7%) | 11 (40.7%) | 16 (59.3%) |
Variables | All Mutation Carriers | p-Value | BRCA1 Mutation Carriers | p-Value | BRCA2 Mutation Carriers | p-Value | |||
---|---|---|---|---|---|---|---|---|---|
nFTH1 ≤ 1% | nFTH1 > 1% | nFTH1 ≤ 1% | nFTH1 > 1% | nFTH1 ≤ 1% | nFTH1 > 1% | ||||
Total number | 76 (34.2%) | 146 (65.8%) | 65 (36.5%) | 113 (63.5%) | 11 (25.0%) | 33 (75.0%) | |||
Median follow-up time (range) in years | 9.9 (0.1–16.7) | 9.1 (0.1–18.1) | 9.7 (0.1–16.7) | 9.7 (0.1–18.1) | 10.4 (0.1–12.8) | 8.2 (0.5–15.2) | |||
Year of diagnosis | 0.87 | 1 | 0.72 | ||||||
<2000 | 36 (35.3%) | 66 (64.7%) | 32 (36.4%) | 56 (63.6%) | 4 (28.6%) | 10 (71.4%) | |||
≥2000 | 40 (33.3%) | 80 (66.7%) | 33 (36.7%) | 57 (63.3%) | 7 (23.3%) | 23 (76.7%) | |||
Age at diagnosis (in years) | 0.18 | 0.24 | 0.53 | ||||||
≤35 | 20 (29.0%) | 49 (71.0%) | 18 (30.0%) | 42 (70.0%) | 2 (22.2%) | 7 (77.8%) | |||
36–50 | 42 (33.9%) | 82 (66.1%) | 36 (37.5%) | 60 (62.5%) | 6 (21.4%) | 22 (78.6%) | |||
>50 | 14 (48.2%) | 15 (51.7%) | 11 (50.0%) | 11 (50.0%) | 3 (42.9%) | 4 (57.1%) | |||
Menopausal status | 0.75 | 1 | 0.39 | ||||||
Premenopausal | 54 (32.9%) | 110 (67.1%) | 47 (36.4%) | 82 (63.6%) | 7 (20.0%) | 28 (80.0%) | |||
Postmenopausal | 11 (37.9%) | 18 (62.1%) | 10 (37.0%) | 17 (63.0%) | 1 (50.0%) | 1 (50.0%) | |||
Tumor size | 0.26 | 0.045 | 0.17 | ||||||
pT1 | 38 (30.6%) | 86 (69.4%) | 30 (29.7%) | 71 (70.3%) | 8 (34.8%) | 15 (65.2%) | |||
pT2-4 + Unknown | 38 (38.8%) | 60 (61.2%) | 35 (45.5%) | 42 (54.5%) | 3 (14.3%) | 18 (85.7%) | |||
Nodal status | 0.40 | 1 | 0.18 | ||||||
Negative | 56 (36.8%) | 96 (63.2%) | 48 (37.2%) | 81 (62.8%) | 8 (34.8%) | 15 (65.2%) | |||
Positive | 20 (29.9%) | 47 (70.1%) | 17 (36.2%) | 30 (63.8%) | 3 (15.0%) | 17 (85.0%) | |||
Tumor grade | 0.015 | 0.056 | 0.25 | ||||||
Good/Moderate | 6 (17.1%) | 29 (82.9%) | 4 (19.0%) | 17 (81.0%) | 2 (14.3%) | 12 (85.7%) | |||
Poor | 64 (40.8%) | 93 (59.2%) | 56 (41.5%) | 79 (58.5%) | 8 (36.4%) | 14 (63.6%) | |||
Tumor histology | 0.074 | 0.15 | 0.55 | ||||||
NST | 45 (31.9%) | 96 (68.1%) | 38 (34.9%) | 71 (65.1%) | 7 (21.9%) | 25 (78.1%) | |||
Medullary | 22 (48.9%) | 23 (51.1%) | 21 (48.8%) | 22 (51.2%) | 1 (50.0%) | 1 (50.0%) | |||
Other | 6 (26.1%) | 17 (73.9%) | 3 (23.1%) | 10 (76.9%) | 3 (30.0%) | 7 (70.0%) | |||
ER status | 0.002 | 0.12 | 0.004 | ||||||
Negative | 65 (40.9%) | 94 (59.1%) | 58 (39.5%) | 89 (60.5%) | 7 (58.3%) | 5 (41.7%) | |||
Positive | 11 (17.5%) | 52 (82.5%) | 7 (22.6%) | 24 (77.4%) | 4 (12.5%) | 28 (87.5%) | |||
PR status | 0.029 | 0.11 | 0.47 | ||||||
Negative | 67 (38.1%) | 109 (61.9%) | 62 (38.5%) | 99 (61.5%) | 5 (33.3%) | 10 (66.7%) | |||
Positive | 9 (19.6%) | 37 (80.4%) | 3 (17.6%) | 14 (82.4%) | 6 (20.7%) | 23 (79.3%) | |||
HER2 status | 0.053 | 0.049 | 1 | ||||||
Negative | 76 (35.5%) | 138 (64.5%) | 65 (38.0%) | 106 (62.0%) | 11 (25.6%) | 32 (74.4%) | |||
Positive | 0 (0%) | 8 (100%) | 0 (0%) | 7 (100%) | 0 (0%) | 1 (100%) | |||
Surgery | 1 | 0.90 | 0.49 | ||||||
Lumpectomy | 41 (34.7%) | 77 (65.3%) | 34 (35.8%) | 61 (64.2%) | 7 (30.4%) | 16 (69.6%) | |||
Mastectomy | 35 (34.0%) | 68 (66.0%) | 31 (37.8%) | 51 (62.2%) | 4 (19.0%) | 17 (81.0%) | |||
Adjuvant systemic therapy | 0.28 | 0.054 | 0.14 | ||||||
No | 21 (28.8%) | 52 (71.2%) | 15 (25.9%) | 43 (74.1%) | 6 (40.0%) | 9 (60.0%) | |||
Yes | 55 (37.2%) | 93 (62.8%) | 50 (42.0%) | 69 (58.0%) | 5 (17.2%) | 24 (82.8%) |
FTH1 Localization | Survival Endpoint | Analysis | All Mutation Carriers | BRCA1 Mutation Carriers | BRCA2 Mutation Carriers |
---|---|---|---|---|---|
Cytoplasmic | DFS | Univariable | N = 166, E = 66, HR = 1.17, 95% CI = 0.72–1.90, p = 0.53 | N = 131, E = 52, HR = 1.22, 95% CI = 0.70–2.11, p = 0.48 | N = 35, E = 14, HR = 0.99, 95% CI = 0.33–2.98, p = 0.99 |
MFS | Univariable | N = 170, E = 32, HR = 1.10, 95% CI = 0.55–2.21, p = 0.79 | N = 134, E = 25, HR = 1.10, 95% CI = 0.50–2.41, p = 0.82 | N = 36, E = 7, HR = 1.05, 95% CI = 0.23–4.76, p = 0.95 | |
OS | Univariable | N = 206, E = 49, HR = 1.09, 95% CI = 0.62–1.91, p = 0.78 | N = 167, E = 40, HR = 1.03, 95% CI = 0.55–1.93, p = 0.93 | N = 39, E = 9, HR = 1.47, 95% CI = 0.37–5.93, p = 0.59 | |
BCSS | Univariable | N = 200, E = 36, HR = 1.17, 95% CI = 0.61–2.25, p = 0.64 | N = 162, E = 29, HR = 1.24, 95% CI = 0.60–2.57, p = 0.57 | N = 38, E = 7, HR = 0.98, 95% CI = 0.22–4.40, p = 0.97 | |
Nuclear | DFS | Univariable | N = 172, E = 67, HR = 2.32, 95% CI = 1.29–4.20, p = 0.005 | N = 135, E = 52, HR = 2.29, 95% CI = 1.20–4.39, p = 0.012 | N = 37, E = 15, HR = 3.59, 95% CI = 0.79–16.24, p = 0.097 |
Multivariable a | N = 172, E = 67, HR = 2.71, 95% CI = 1.49–4.92, p = 0.001 | N = 135, E = 52, HR = 3.02, 95% CI = 1.54–5.91, p = 0.001 | |||
MFS | Univariable | N = 176, E = 33, HR = 2.94, 95% CI = 1.21–7.12, p = 0.017 | N = 138, E = 25, HR = 3.14, 95% CI = 1.18–8.39, p = 0.022 | N = 38, E = 8, HR = 2.91, 95% CI = 0.35–23.98, p = 0.32 | |
Multivariable b | N = 174, E = 33, HR = 3.54, 95% CI = 1.45–8.66, p = 0.006 | N = 137, E = 25, HR = 4.47, 95% CI = 1.62–12.3, p = 0.004 | |||
OS | Univariable | N = 213, E = 50, HR = 1.40, 95% CI = 0.75–2.61, p = 0.28 | N = 172, E = 41, HR = 1.52, 95% CI = 0.77–3.00, p = 0.23 | N = 41, E = 9, HR = 0.94, 95% CI = 0.19–4.71, p = 0.94 | |
BCSS | Univariable | N = 207, E = 37, HR = 1.38, 95% CI = 0.68–2.80, p = 0.37 | N = 167, E = 30, HR = 1.42, 95% CI = 0.66–3.04, p = 0.37 | N = 40, E = 7, HR = 1.53, 95% CI = 0.18–13.22, p = 0.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu, S.; Timmermans, A.M.; Heemskerk-Gerritsen, B.A.M.; Trapman-Jansen, A.M.A.C.; Broeren-Foekens, R.; Prager-van der Smissen, W.J.C.; El Hassnaoui, H.; van Tienhoven, T.; Bes-Stobbe, C.K.; Westenend, P.J.; et al. Expression and Localization of Ferritin-Heavy Chain Predicts Recurrence for Breast Cancer Patients with a BRCA1/2 Mutation. Cancers 2024, 16, 28. https://doi.org/10.3390/cancers16010028
Qu S, Timmermans AM, Heemskerk-Gerritsen BAM, Trapman-Jansen AMAC, Broeren-Foekens R, Prager-van der Smissen WJC, El Hassnaoui H, van Tienhoven T, Bes-Stobbe CK, Westenend PJ, et al. Expression and Localization of Ferritin-Heavy Chain Predicts Recurrence for Breast Cancer Patients with a BRCA1/2 Mutation. Cancers. 2024; 16(1):28. https://doi.org/10.3390/cancers16010028
Chicago/Turabian StyleQu, Shuoying, A. Mieke Timmermans, Bernadette A. M. Heemskerk-Gerritsen, Anita M. A. C. Trapman-Jansen, Renée Broeren-Foekens, Wendy J. C. Prager-van der Smissen, Hoesna El Hassnaoui, Tim van Tienhoven, Claudia K. Bes-Stobbe, Pieter J. Westenend, and et al. 2024. "Expression and Localization of Ferritin-Heavy Chain Predicts Recurrence for Breast Cancer Patients with a BRCA1/2 Mutation" Cancers 16, no. 1: 28. https://doi.org/10.3390/cancers16010028
APA StyleQu, S., Timmermans, A. M., Heemskerk-Gerritsen, B. A. M., Trapman-Jansen, A. M. A. C., Broeren-Foekens, R., Prager-van der Smissen, W. J. C., El Hassnaoui, H., van Tienhoven, T., Bes-Stobbe, C. K., Westenend, P. J., van Deurzen, C. H. M., Martens, J. W. M., Hooning, M. J., & Hollestelle, A. (2024). Expression and Localization of Ferritin-Heavy Chain Predicts Recurrence for Breast Cancer Patients with a BRCA1/2 Mutation. Cancers, 16(1), 28. https://doi.org/10.3390/cancers16010028