Symptomatic Patients with Hyperleukocytic FLT3-ITD Mutated Acute Myeloid Leukemia Might Benefit from Leukapheresis
Abstract
:Simple Summary
Abstract
1. Introduction
Author/Year |
Early
Mortality |
Overall
Survival | CR Rate | No. of Patients |
---|---|---|---|---|
Cuttner et al., 1983 [6] | - | ↔ | ↑ | LA: 22 |
Porcu et al., 1997 [7] | 27% | ↔ | - | LA: 48 |
Thiebaut et al., 2000 [8] | comparable to today | - | - | LA: 53 |
Giles et al., 2001 [9] | ↓ | ↔ (↓) | (↑) | Total: 146; LA: 71 |
Tan et al., 2005 [10] | 57% | - | - | LA: 14 |
Chang et al., 2007 [11] | ↔ | (↓) | - | LA: 75 |
Bug et al., 2007 [12] | ↓ | ↔ | ↔ | Total: 53; LA: 23 |
De Santis et al., 2011 [13] | 47% | - | - | LA: 15 |
Pastore et al., 2014 [2] | ↔ | ↔ | ↔ | Total: 52; LA: 20 |
Berber et al., 2015 [14] | ↔ | ↔ | - | LA: 31 |
Kuo et al., 2015 [15] | ↔ (if symptomatic ↑) | ↔ | - | Total: 88; LA: 41 |
Malkan and Ozcebe, 2017 [16] | ↔ (↑) | - | - | Total: 28; LA: 10 |
Nan et al., 2017 [17] | ↓↓ | ↔ | - | Total: 52; LA: 26 |
Choi et al., 2018 [18] | ↔ | ↔ | - | Total: 44; LA: 22 |
Rinaldi et al., 2021 [19] | ↔ (40%) | - | - | LA: 38 |
Blum and Porcu, 2007 [20] Review | -divergent results- | LA: 141 | ||
Ganzel et al., 2012 [21] Review | divergent results | ↔ | - | Total: 386; LA: 246 |
Ali et al., 2016 [22] Review | divergent results | ↔ | - | - |
Shallis et al., 2020 [23] Review | - | ↔ | - | Total: 219; LA: 32 |
Stahl et al., 2020 [24] Review | ↔ (↓) | ↔ (↑) | ↔ | Total: 779; LA: 113 |
Rinaldi et al., 2022 [25] Review | ↔ | ↔ | - | Total: 1407; LA: 317 |
Summary of 21 trials: | ↔ (↓) | ↔ | (↔) |
2. Methods
2.1. Trial Population and Design
2.2. Genetic Analysis
2.3. Leukapheresis Procedure
2.4. Statistical Methods
3. Results
3.1. Cytoreductive Performance of Leukapheresis and Chemotherapy
3.2. Patient Characteristics
3.3. Outcome after Cytoreduction/Leukapheresis
3.4. Prognostic Factors for Early Death: FLT3 Mutational Status
3.5. Univariate and Multivariate Analysis of 14-Day Survival
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kantarjian, H.; Kadia, T.; DiNardo, C.; Daver, N.; Borthakur, G.; Jabbour, E.; Garcia-Manero, G.; Konopleva, M. Acute myeloid leukemia: Current progress and future directions. Blood Cancer J. 2021, 11, 41. [Google Scholar] [CrossRef] [PubMed]
- Pastore, F.; Pastore, A.; Wittmann, G.; Hiddemann, W.; Spiekermann, K. The role of therapeutic leukapheresis in hyperleukocytotic AML. PLoS ONE 2014, 9, e95062. [Google Scholar] [CrossRef] [PubMed]
- Pastore, F.; Pastore, A.; Rothenberg-Thurley, M.; Metzeler, K.H.; Ksienzyk, B.; Schneider, S.; Bohlander, S.K.; Braess, J.; Sauerland, M.C.; Gorlich, D.; et al. Molecular profiling of patients with cytogenetically normal acute myeloid leukemia and hyperleukocytosis. Cancer 2022, 128, 4213–4222. [Google Scholar] [CrossRef] [PubMed]
- Bewersdorf, J.P.; Zeidan, A.M. Hyperleukocytosis and Leukostasis in Acute Myeloid Leukemia: Can a Better Understanding of the Underlying Molecular Pathophysiology Lead to Novel Treatments? Cells 2020, 9, 2310. [Google Scholar] [CrossRef] [PubMed]
- Tien, F.M.; Hou, H.A.; Tsai, C.H.; Tang, J.L.; Chen, C.Y.; Kuo, Y.Y.; Li, C.C.; Lin, C.T.; Yao, M.; Huang, S.Y.; et al. Hyperleukocytosis is associated with distinct genetic alterations and is an independent poor-risk factor in de novo acute myeloid leukemia patients. Eur. J. Haematol. 2018, 101, 86–94. [Google Scholar] [CrossRef] [PubMed]
- Cuttner, J.; Holland, J.F.; Norton, L.; Ambinder, E.; Button, G.; Meyer, R.J. Therapeutic leukapheresis for hyperleukocytosis in acute myelocytic leukemia. Med. Pediatr. Oncol. 1983, 11, 76–78. [Google Scholar] [CrossRef] [PubMed]
- Porcu, P.; Danielson, C.F.; Orazi, A.; Heerema, N.A.; Gabig, T.G.; McCarthy, L.J. Therapeutic leukapheresis in hyperleucocytic leukaemias: Lack of correlation between degree of cytoreduction and early mortality rate. Br. J. Haematol. 1997, 98, 433–436. [Google Scholar] [CrossRef]
- Thiebaut, A.; Thomas, X.; Belhabri, A.; Anglaret, B.; Archimbaud, E. Impact of pre-induction therapy leukapheresis on treatment outcome in adult acute myelogenous leukemia presenting with hyperleukocytosis. Ann. Hematol. 2000, 79, 501–506. [Google Scholar] [CrossRef]
- Giles, F.J.; Shen, Y.; Kantarjian, H.M.; Korbling, M.J.; O’Brien, S.; Anderlini, P.; Donato, M.; Pierce, S.; Keating, M.J.; Freireich, E.J.; et al. Leukapheresis reduces early mortality in patients with acute myeloid leukemia with high white cell counts but does not improve long- term survival. Leuk. Lymphoma 2001, 42, 67–73. [Google Scholar] [CrossRef]
- Tan, D.; Hwang, W.; Goh, Y.T. Therapeutic leukapheresis in hyperleukocytic leukaemias—The experience of a tertiary institution in Singapore. Ann. Acad. Med. Singap. 2005, 34, 229–234. [Google Scholar] [CrossRef]
- Chang, M.C.; Chen, T.Y.; Tang, J.L.; Lan, Y.J.; Chao, T.Y.; Chiu, C.F.; Ho, H.T. Leukapheresis and cranial irradiation in patients with hyperleukocytic acute myeloid leukemia: No impact on early mortality and intracranial hemorrhage. Am. J. Hematol. 2007, 82, 976–980. [Google Scholar] [CrossRef] [PubMed]
- Bug, G.; Anargyrou, K.; Tonn, T.; Bialleck, H.; Seifried, E.; Hoelzer, D.; Ottmann, O.G. Impact of leukapheresis on early death rate in adult acute myeloid leukemia presenting with hyperleukocytosis. Transfusion 2007, 47, 1843–1850. [Google Scholar] [CrossRef] [PubMed]
- De Santis, G.C.; de Oliveira, L.C.; Romano, L.G.; Almeida Prado Bde, P., Jr.; Simoes, B.P.; Rego, E.M.; Covas, D.T.; Falcao, R.P. Therapeutic leukapheresis in patients with leukostasis secondary to acute myelogenous leukemia. J. Clin. Apher. 2011, 26, 181–185. [Google Scholar] [CrossRef] [PubMed]
- Berber, I.; Kuku, I.; Erkurt, M.A.; Kaya, E.; Bag, H.G.; Nizam, I.; Koroglu, M.; Ozgul, M.; Bazna, S. Leukapheresis in acute myeloid leukemia patients with hyperleukocytosis: A single center experience. Transfus. Apher. Sci. 2015, 53, 185–190. [Google Scholar] [CrossRef] [PubMed]
- Kuo, K.H.M.; Callum, J.L.; Panzarella, T.; Jacks, L.M.; Brandwein, J.; Crump, M.; Curtis, J.E.; Gupta, V.; Lipton, J.H.; Minden, M.D.; et al. A retrospective observational study of leucoreductive strategies to manage patients with acute myeloid leukaemia presenting with hyperleucocytosis. Br. J. Haematol. 2015, 168, 384–394. [Google Scholar] [CrossRef] [PubMed]
- Malkan, U.Y.; Ozcebe, O.I. Leukapheresis do not improve early death rates in acute myeloid leukemia patients with hyperleukocytosis. Transfus. Apher. Sci. 2017, 56, 880–882. [Google Scholar] [CrossRef] [PubMed]
- Nan, X.; Qin, Q.; Gentille, C.; Ensor, J.; Leveque, C.; Pingali, S.R.; Phan, A.T.; Rice, L.; Iyer, S. Leukapheresis reduces 4-week mortality in acute myeloid leukemia patients with hyperleukocytosis—A retrospective study from a tertiary center. Leuk. Lymphoma 2017, 58, 2110–2117. [Google Scholar] [CrossRef]
- Choi, M.H.; Choe, Y.H.; Park, Y.; Nah, H.; Kim, S.; Jeong, S.H.; Kim, H.O. The effect of therapeutic leukapheresis on early complications and outcomes in patients with acute leukemia and hyperleukocytosis: A propensity score-matched study. Transfusion 2018, 58, 208–216. [Google Scholar] [CrossRef]
- Rinaldi, I.; Sari, R.M.; Tedhy, V.U.; Winston, K. Leukapheresis Does Not Improve Early Survival Outcome of Acute Myeloid Leukemia with Leukostasis Patients—A Dual-Center Retrospective Cohort Study. J. Blood Med. 2021, 12, 623–633. [Google Scholar] [CrossRef]
- Blum, W.; Porcu, P. Therapeutic apheresis in hyperleukocytosis and hyperviscosity syndrome. Semin. Thromb. Hemost. 2007, 33, 350–354. [Google Scholar] [CrossRef]
- Ganzel, C.; Becker, J.; Mintz, P.D.; Lazarus, H.M.; Rowe, J.M. Hyperleukocytosis, leukostasis and leukapheresis: Practice management. Blood Rev. 2012, 26, 117–122. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.M.; Mirrakhimov, A.E.; Abboud, C.N.; Cashen, A.F. Leukostasis in adult acute hyperleukocytic leukemia: A clinician’s digest. Hematol. Oncol. 2016, 34, 69–78. [Google Scholar] [CrossRef] [PubMed]
- Shallis, R.M.; Stahl, M.; Bewersdorf, J.P.; Hendrickson, J.E.; Zeidan, A.M. Leukocytapheresis for patients with acute myeloid leukemia presenting with hyperleukocytosis and leukostasis: A contemporary appraisal of outcomes and benefits. Expert Rev. Hematol. 2020, 13, 489–499. [Google Scholar] [CrossRef] [PubMed]
- Stahl, M.; Shallis, R.M.; Wei, W.; Montesinos, P.; Lengline, E.; Neukirchen, J.; Bhatt, V.R.; Sekeres, M.A.; Fathi, A.T.; Konig, H.; et al. Management of hyperleukocytosis and impact of leukapheresis among patients with acute myeloid leukemia (AML) on short- and long-term clinical outcomes: A large, retrospective, multicenter, international study. Leukemia 2020, 34, 3149–3160. [Google Scholar] [CrossRef] [PubMed]
- Rinaldi, I.; Sutandyo, N.; Winston, K. Comparison of early mortality between leukapheresis and non-leukapheresis in adult acute myeloid leukemia patients with hyperleukocytosis: A systematic review and meta-analysis. Hematology 2022, 27, 141–149. [Google Scholar] [CrossRef] [PubMed]
- Arber, D.A.; Orazi, A.; Hasserjian, R.P.; Borowitz, M.J.; Calvo, K.R.; Kvasnicka, H.M.; Wang, S.A.; Bagg, A.; Barbui, T.; Branford, S.; et al. International Consensus Classification of Myeloid Neoplasms and Acute Leukemias: Integrating morphologic, clinical, and genomic data. Blood 2022, 140, 1200–1228. [Google Scholar] [CrossRef] [PubMed]
- Cerrano, M.; Chevret, S.; Raffoux, E.; Rabian, F.; Sebert, M.; Valade, S.; Itzykson, R.; Lemiale, V.; Ades, L.; Boissel, N.; et al. Benefits of dexamethasone on early outcomes in patients with acute myeloid leukemia with hyperleukocytosis: A propensity score matched analysis. Ann. Hematol. 2023, 102, 761–768. [Google Scholar] [CrossRef]
- Kuo, K.H.M.; Callum, J.; Brandwein, J.; Crump, M.; Curtis, J.E.; Gupta, V.; Lipton, J.H.; Pantalony, D.; Schimmer, A.; Schuh, A.; et al. Management of Hyperleukocytosis in Acute Myelogenous Leukemia Using Hydroxyurea Rather Than Leukopheresis. Blood 2006, 108, 2007. [Google Scholar] [CrossRef]
- Röllig, C.; Ehninger, G. How I treat hyperleukocytosis in acute myeloid leukemia. Blood 2015, 125, 3246–3252. [Google Scholar] [CrossRef]
- Luft, T.; Benner, A.; Terzer, T.; Jodele, S.; Dandoy, C.E.; Storb, R.; Kordelas, L.; Beelen, D.; Gooley, T.; Sandmaier, B.M.; et al. EASIX and mortality after allogeneic stem cell transplantation. Bone Marrow Transplant. 2020, 55, 553–561. [Google Scholar] [CrossRef]
- Cuttner, J.; Conjalka, M.S.; Reilly, M.; Goldberg, J.; Reisman, A.; Meyer, R.J.; Holland, J.F. Association of monocytic leukemia in patients with extreme leukocytosis. Am. J. Med. 1980, 69, 555–558. [Google Scholar] [CrossRef] [PubMed]
- Schlenk, R.F.; Benner, A.; Krauter, J.; Buchner, T.; Sauerland, C.; Ehninger, G.; Schaich, M.; Mohr, B.; Niederwieser, D.; Krahl, R.; et al. Individual patient data-based meta-analysis of patients aged 16 to 60 years with core binding factor acute myeloid leukemia: A survey of the German Acute Myeloid Leukemia Intergroup. J. Clin. Oncol. 2004, 22, 3741–3750. [Google Scholar] [CrossRef] [PubMed]
- Talami, A.; Bettelli, F.; Pioli, V.; Giusti, D.; Gilioli, A.; Colasante, C.; Galassi, L.; Giubbolini, R.; Catellani, H.; Donatelli, F.; et al. How to Improve Prognostication in Acute Myeloid Leukemia with CBFB-MYH11 Fusion Transcript: Focus on the Role of Molecular Measurable Residual Disease (MRD) Monitoring. Biomedicines 2021, 9, 953. [Google Scholar] [CrossRef] [PubMed]
- Sritana, N.; Auewarakul, C.U. KIT and FLT3 receptor tyrosine kinase mutations in acute myeloid leukemia with favorable cytogenetics: Two novel mutations and selective occurrence in leukemia subtypes and age groups. Exp. Mol. Pathol. 2008, 85, 227–231. [Google Scholar] [CrossRef]
- Novotny, J.R.; Muller-Beissenhirtz, H.; Herget-Rosenthal, S.; Kribben, A.; Duhrsen, U. Grading of symptoms in hyperleukocytic leukaemia: A clinical model for the role of different blast types and promyelocytes in the development of leukostasis syndrome. Eur. J. Haematol. 2005, 74, 501–510. [Google Scholar] [CrossRef]
Patient no. | Age | Sex | Molecular (and cyto)Genetic Features of AML | Symptoms | No. of LA Sessions | Use of Hydroxyurea | Use of Cytarabine | WBC Count Pre-LA (per nL) | WBC Count Post-1st LA (per nL) | WBC Count Reduction | Prothrombin Ratio | Antithrombin III Levels | Serum Creatinine (in mg/dL) | Serum Lactate Dehydrogenase (in U/L) | EASIX Score | Thrombocytes (per nL) pre-LA | Hemoglobin (in g/dL) pre-LA | Survival (days) | Cause of Death |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
#1 | 45 | m | FLT3-ITD (high ratio) | Visual disturbances | 2 | no | yes | 272.8 | 134.5 | 50.7% | 80.0% | 103.9% | 1.00 | 2400 | 19.2 | 125 | 9.7 | 296 | relapse + sepsis |
#2 | 75 | f | Trisomy 8, monosomy 22 | Somnolence, anisocoria | 3 | yes | no | 394.1 | 209.3 | 46.9% | 44.9% | 92.5% | 4.78 | 1834 | 94.3 | 93 | 6.9 | 10 | leukostasis |
#3 | 52 | m | NPM1, FLT3-ITD (high ratio) | Dyspnea, somnolence | 2 | yes | yes | 194.0 | 95.3 | 50.9% | 45.2% | n/a | 0.89 | 3388 | 28.2 | 107 | 7.1 | 384 | relapse |
#4 | 59 | f | NPM1, FLT3-ITD (high ratio) | Cephalgia | 2 | no | yes | 219.0 | 82.8 | 62.2% | 48.9% | 102.9% | 0.48 | 2874 | 11.7 | 118 | 10.0 | 185 | relapse with leukostasis + steroid-refractory GvHD |
#5 | 52 | f | NPM1, FLT3-ITD (high ratio) | DIC, cephalgia | 3 | yes | yes | 191.2 | 103.8 | 45.7% | 56.5% | 111.1% | 0.60 | 574 | 6.6 | 52 | 9.9 | 506 | sepsis after relapse |
#6 | 42 | m | FLT3-ITD (high ratio), biallelic CEBPA | Acute kidney failure d/t leukostasis | 2 | yes | no | 213.9 | 98.2 | 54.1% | 69.4% | n/a | 1.78 | 1883 | 139.7 | 24 | 8.7 | 2360 (cens.) | alive at time of analysis |
#7 | 47 | f | NPM1, FLT3-ITD (high ratio) | Dyspnea, severe ischemic leg pain | 1 | yes | yes | 210.7 | 105.6 | 49.9% | 69.4% | n/a | 0.61 | 1328 | 23.8 | 34 | 8.7 | 2241 (cens.) | alive at time of analysis |
#8 | 66 | m | NPM1, FLT3-ITD (high ratio) | Dyspnea | 2 | yes | yes | 249,1 | 97.9 | 60.7% | 50.0% | 78.0% | 1.00 | 658 | 34.6 | 19 | 10.4 | 65 | intestinal perforation d/t neutropenic colitis |
#9 | 56 | f | NPM1, FLT3-ITD (low ratio), trisomy 8 | Dyspnea | 3 | no | yes | 174.0 | 153.0 | 12.1% | 62.2% | n/a | 0.91 | 1908 | 21.2 | 82 | 7.9 | 437 | relapse |
#10 | 78 | m | FLT3-ITD (high ratio) | Dyspnea, respiratory failure | 3 | no | yes | 586.1 | 472.1 | 19.5% | 45.1% | n/a | 4.38 | 2817 | 77.1 | 160 | 8.3 | 620 (lost to f/u) | n/a |
#11 | 64 | m | inv(16), FLT3-TKD | Dyspnea, respiratory failure | 2 | yes | no | 231.7 | 135.3 | 41.6% | 78.9% | n/a | 1.16 | 1332 | 37.7 | 41 | 11.5 | 5 | pneumocystis jirovecii-pneumonia + leukostasis |
#12 | 80 | m | FLT3-ITD (low ratio) | Dyspnea, agitation | 3 | yes | no | 321.2 | 206.5 | 35.7% | 56.3% | n/a | 2.03 | 2109 | 57.1 | 75 | 7.0 | 22 | progressive leukemia |
#13 | 67 | m | FLT3 wt | Respiratory failure | 2 | no | yes | 396.6 | 310.9 | 21.6% | 31.2% | n/a | 5.77 | 2652 | 259.4 | 59 | 6.4 | 1 | septic shock + leukostasis |
#14 | 79 | m | NPM1, ASXL1, TET2 | Dyspnea, respiratory failure | 3 | no | yes | 192.7 | 97.5 | 49.4% | 49.6% | n/a | 2.26 | 1316 | 52.2 | 57 | 9.8 | 6 | pneumonia |
#15 | 75 | f | NPM1, trisomy 8 | Paresthesia, visual disturbances, vertigo, DIC | 1 | yes | yes | 147.6 | 72.8 | 50.7% | 36.8% | 83.5% | 3.43 | 2104 | 97.5 | 74 | 8.2 | 3 | sepsis after relapse |
#16 | 62 | f | NPM1, FLT3-ITD (high ratio) | Dyspnea, somnolence | 3 | no | yes | 180.1 | 95.1 | 47.2% | 44.9% | n/a | 0.86 | 3025 | 63.5 | 41 | 7.8 | 5 | cerebral hemorrhage |
#17 | 39 | f | NPM1, FLT3-ITD | Dyspnea, tinnitus | 2 | no | yes | 115.3 | 69.2 | 40.0% | 69.4% | 102.3% | 0.65 | 1144 | 20.7 | 36 | 9.9 | 358 (cens.) | alive at time of analysis |
#18 | 62 | f | RUNX1, TET2 | Dyspnea, respiratory failure | 1 | yes | yes | 170.2 | 113.6 | 33.3% | 48.7% | 69.5% | 3.35 | 561 | 48.2 | 39 | 7.8 | 349 | relapse |
#19 | 45 | f | NPM1, FLT3-ITD | Visual disturbances, cephalgia | 1 | yes | yes | 117.7 | 71.8 | 39.0% | 61.9% | 94.8% | 0.73 | 1388 | 21.6 | 47 | 10.4 | 356 (cens.) | alive at time of analysis |
#20 | 18 | m | t(10;11) | Dyspnea, respiratory failure | 1 | no | yes | 146.2 | 73.0 | 50.1% | 33.3% | 51.5% | 2.81 | 1146 | 29.5 | 109 | 5.8 | 4 | leukostasis |
Characteristics | Leukapheresis Cohort (n = 20) | p Value |
---|---|---|
Age (years) | 58 (18–80) | |
| 62.9 (39–80) 55.7 (18–79) | (ITD vs. wt) = 0.3529 |
Average leukapheresis sessions/patient | 2.1 (1–3) | |
Non-favorable risk AML | 17 (85%) | |
| 13 (65%) | |
Clinical symptoms of leukostasis | 20 (100%) | |
| 12 (60%) | |
| 10 (50%) | |
Cytoreductive agent | 20 (100%) | |
| 13 (65%) | |
| 17 (85%) | |
| 7 (35%) | |
Average leukocyte count pre-treatment (per nanoliter) | 236.2 (115.3–586.1) | |
| 199.1 (51.6–586.1) 205.3 (86.4–396.6) | (ITD vs. wt) = 0.8679 |
Leukocyte count after leukapheresis treatment (per nanoliter) | 123.7 (14.7–472.1) | |
| 139.9 (69.2–472.1) 92.1 (47.5–288.7) | |
Relative leukocyte count reduction (percent) | 41.5 (4.0–71.6) | |
| 43.1 (12.1–62.2) 57.8 (27.2–92.4) | |
EASIX pre-treatment | 57.2 (6.6–259.4) | |
| 88.4 (29.5–259.4) 40.4 (6.6–139.7) | (ITD vs. wt) = 0.2767 |
| ||
Median OS (days) | 194 (1–2379) | |
| 437 (5–2379) 5 (1–203) | (ITD vs. wt) = 0.0001 |
14-day survival (percent) | 65 | |
| 92.3 14.3 |
Patient no. | Age | Sex | Molecular (and cyto)Genetic Features of AML | Symptoms | Use of Hydroxyurea | Use of Cytarabine | WBC Count Pre-Treatment (per nL) | WBC Count Post 48 h of Treatment (per nL) | WBC Count Reduction | Prothrombin Ratio | Antithrombin III Levels | Serum Creatinine (in mg/dL) | Serum Lactate Dehydrogenase (in U/L) | EASIX Score | Thrombocytes (per nL) pre-Treatment | Hemoglobin (in g/dL) pre-Treatment | Survival (days) | Cause of Death |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
#1 | 80 | m | RUNX1::RUNX1T1 | Respiratory failure | no | yes | 120.4 | 97.0 | 19.4 | 56% | 62% | 1.34 | 1100 | 43.4 | 34 | 7.4 | 11 | Leukostasis |
#2 | 72 | m | NPM1 | No clinical symptoms | yes | no | 140.7 | 86.9 | 38.2 | 66% | n/a | 0.88 | 1000 | 4.8 | 183 | 7.3 | 83 (lost to f/u) | n/a |
#3 | 45 | f | NPM1, FLT3-ITD (low ratio) | No clinical symptoms | yes | no | 219.8 | 80.7 | 63.3 | 47% | n/a | 0.85 | 1252 | 35.5 | 30 | 8.5 | 1950 | Diffuse alveolar hemorrhage + sepsis + severe gastrointestinal GvHD |
#4 | 68 | m | SF3B1 | No clinical symptoms | yes | no | 148.4 | 119.3 | 19.6 | 75% | n/a | 1.22 | 3071 | 44.6 | 84 | 8.8 | 510 (cens.) | Alive at time of analysis |
#5 | 48 | m | NPM1, FLT3-ITD (high ratio) | No clinical symptoms | yes | yes | 109.5 | 81.51 | 25.6 | 75% | 105,7 | 1.05 | 1257 | 13.5 | 98 | 14.0 | 902 (cens.) | Alive at time of analysis |
#6 | 64 | m | FLT3-ITD, CEBPA | Dyspnea | yes | yes | 226.3 | 208.6 | 7.8 | 54% | n/a | 0.90 | 1446 | 5.6 | 234 | 11.2 | 566 | Relapse + gastrointestinal hemorrhage |
#7 | 44 | f | TET2, WT1, KRAS | No clinical symptoms | yes | no | 161.6 | n/a | n/a | 111% | n/a | 0.58 | 1894 | 5.9 | 187 | 6.0 | 412 | Relapse |
#8 | 76 | f | NRAS, TET2, KIT | Respiratory failure | yes | yes | 409.0 | 287.9 | 29.6 | 76% | 96% | 2.29 | 1433 | 88.7 | 37 | 5.5 | 197 | Relapse |
#9 | 30 | f | complex aberrant karyotype | No clinical symptoms | (only prednisone) | 170.5 | 101.0 | 40.8 | 77% | 88% | 0.55 | 1694 | 21.7 | 43 | 7.5 | 2865 (cens.) | Alive at time of analysis | |
#10 | 53 | f | trisomy 13, IDH1 | No clinical symptoms | no | yes | 104.6 | 130.5 | −24.8 | 88% | n/a | 0.83 | 480 | 11.1 | 36 | 9.6 | 582 (cens.) | Alive at time of analysis |
Characteristics | Non-Leukapheresis Cohort (n = 10) | p Value (Compared to LA Cohort) |
---|---|---|
Age (years) | 58 (30–80) | 0.5390 |
Non-favorable risk AML | 7 (70%) | |
| 3 (30%) | |
Clinical symptoms of leukostasis | 3 (30%) | |
| 3 (100%) | |
| none | |
Cytoreductive agent | 10 (100%) | |
| 5 (50%) | |
| 6 (60%) | |
| 2 (20%) | |
| 1 (10%) | |
Average leukocyte count pre-treatment (per nanoliter) | 181.1 (104.6–409.0) | 0.5965 |
| 179.3 (104.6–409.0) 185.2 (109.5–226.3) | (ITD vs. wt) = 0.9312 |
Leukocyte count after 48 h of cytoreductive treatment (per nanoliter) | 132.6 (80.9–287.9) | |
Relative leukocyte count reduction (percent) | 24.4 (−24.8–63.9) | 0.0096 |
EASIX pre-treatment
| 27.5 (4.8–88.7) 18.2 (5.6–35.5) 31.4 (4.8–88.7) | 0.1390 |
0.9999 0.1367 (ITD vs. wt) = 0.9999 | ||
Median OS (days) | 412 (11–2865) | |
| 1258 (566–1950) 197 (11–2865) | (ITD vs. wt) = 0.1088 |
14-day survival (percent) | 90 |
14-Day Survival | |||
---|---|---|---|
Variable | p Value (Univariate Analysis) | Odds Ratio (CI 95%; Multivariate Analysis) | p Value (Multivariate Analysis) |
Age (≥60 vs. <60 years) | 0.057 | 0.12 (0.002–2.17) | 0.1900 |
FLT3-ITD (mut vs. wt) | 0.007 | 19.02 (1.48–682.6) | 0.0424 |
Relative WBC count reduction ≥50% after first leukapheresis (yes vs. no) | 1.000 | 0.85 (0.024–27.90) | 0.9169 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Farid, K.M.N.; Sauer, T.; Schmitt, M.; Müller-Tidow, C.; Schmitt, A. Symptomatic Patients with Hyperleukocytic FLT3-ITD Mutated Acute Myeloid Leukemia Might Benefit from Leukapheresis. Cancers 2024, 16, 58. https://doi.org/10.3390/cancers16010058
Farid KMN, Sauer T, Schmitt M, Müller-Tidow C, Schmitt A. Symptomatic Patients with Hyperleukocytic FLT3-ITD Mutated Acute Myeloid Leukemia Might Benefit from Leukapheresis. Cancers. 2024; 16(1):58. https://doi.org/10.3390/cancers16010058
Chicago/Turabian StyleFarid, Kiavasch Mohammad Nejad, Tim Sauer, Michael Schmitt, Carsten Müller-Tidow, and Anita Schmitt. 2024. "Symptomatic Patients with Hyperleukocytic FLT3-ITD Mutated Acute Myeloid Leukemia Might Benefit from Leukapheresis" Cancers 16, no. 1: 58. https://doi.org/10.3390/cancers16010058
APA StyleFarid, K. M. N., Sauer, T., Schmitt, M., Müller-Tidow, C., & Schmitt, A. (2024). Symptomatic Patients with Hyperleukocytic FLT3-ITD Mutated Acute Myeloid Leukemia Might Benefit from Leukapheresis. Cancers, 16(1), 58. https://doi.org/10.3390/cancers16010058