Circulating Tumor DNA as a Complementary Prognostic Biomarker during CAR-T Therapy in B-Cell Non-Hodgkin Lymphomas
Abstract
:Simple Summary
Abstract
1. Introduction
Conventional Functional Imaging
2. Technical Approaches to Molecular Monitoring
2.1. Circulating Tumor DNA Quantification Techniques and Technical Considerations
2.2. Polymerase Chain Reaction-Based Methods
2.3. Next-Generation Sequencing-Based Methods
PCR-Based | NGS-Based | |||
---|---|---|---|---|
IgH | Stereotyped Mutations | IgHTS | Panel-Directed | |
Sensitivity | 10−5 | 10−5 | 10−6 | 10−6 |
Requires Primary Tumor Sample | Yes | No | Yes | No |
Track Clonal Evolution | No | No | Limited | Yes |
Track Resistance | No | No | Limited | Yes |
Genotype | No | No | No | Yes |
Benefits | Tumor-specific | Tumor-specific Universal primers | Tumor-specific Universal primers Commercially available | Broad genomic coverage Track clonal evolution Track resistance mechanisms |
Limitations | Requires primary tumor sample Requires construction of patient-specific primers No genetic information | Knowledge of target mutation required Limited genetic information | Requires primary tumor sample No genetic information | Complex bioinformatics workflow Longer turnaround time Higher cost |
3. Emerging Applications of ctDNA in the Peri-CAR-T Therapy Setting
3.1. Pre-CAR-T Therapy Risk Stratification
3.2. Prognostic Role of Tumor Mutational Burden and Evaluation of Emergent Mechanisms of Resistance
3.3. Response Assessment and Measurable Residual Disease Detection
3.4. ctDNA Concordance with Post-CAR-T Therapy PET/CT
3.5. Detection of Molecular Relapse
Study | R/R Disease | CAR-T Product | N | Disease Assessments | Timing | Plasma Volume | Sensitivity |
---|---|---|---|---|---|---|---|
Circulating tumor DNA assessments in patients with diffuse large B-cell lymphoma following CAR-T therapy [85] Hossain et al. Leukemia & Lymphoma 2019 | DLBCL | Axicabtagene ciloleucel | 6 | 1. IgHTS 2. PET/CT (MTV) | 1. Pre-CART infusion and days 0, 7, 14, 21, 28, 56, 90 2. Pre-CART infusion, day 28, and month 3 | N/A | 10−6 |
Characteristics of anti-CD19 CAR T cell infusion products associated with efficacy and toxicity in patients with large B cell lymphomas [77] Deng et al. Nature 2020 | DLBCL, tFL, PMBCL, HGBCL | Axicabtagene ciloleucel | 24 | 1. Panel-directed NGS 2. PET/CT | 1. Days 0–1, weeks 1, 2, and 4 2. Month 3 | 2 mL | N/A |
TP53-mutated circulating tumor DNA for disease monitoring in lymphoma patients after CAR T cell therapy [81] Chen et al. Diagnostics 2021 | TP53 mutated B-NHL | CD19 and CD20 CAR-T NOS | 40 | 1. ddPCR | Median follow up 3 months Mean follow up 6.35 months | Median 4.8 mL (3.5–7.0 mL) | 10−4 |
Monitoring of circulating tumor DNA Improves early relapse detection after axicabtagene ciloleucel infusion in large B-cell lymphoma: results of a prospective multi-institutional trial [67] Frank et al. Journal of Clinical Oncology 2021 | DLBCL | Axicabtagene ciloleucel | 57 | 1. IgHTS 2. PET/CT | 1. Pre-LD and days 0, 7, 14, 21, 28, 56, 90, 180, 365 2. Pre-apheresis and months 1, 3, 6, and 12 | 8.5 mL | 10−5 |
Determinants of resistance to engineered T cell therapies targeting CD19 in lymphoma [66] Sworder et al. Cancer Cell 2021 | LBCL | Axicabtagene ciloleucel | 138 | 1. Panel-directed NGS | 1. Pre-LD and days 0, 7, 28 | 2–6 mL | 10−6 |
Serial surveillance by circulating tumor DNA profiling after chimeric antigen receptor T therapy for the guidance of r/r diffuse large B cell lymphoma precise treatment [75] Zhou et al. Journal of Cancer 2021 | DLBCL | CD19 CAR-T NOS | 8 | 1. Panel-directed NGS 2. PET/CT | 1. Retrospective: initial diagnosis, at relapse, and at time of progression after CAR-T 2. Retrospective | 8–10 mL of PB | N/A |
Assessing CAR T-cell therapy response using genome-wide sequencing of cell-free DNA in patients with B-cell lymphomas [76] Goodman et al. Transplant and Cellular Therapy 2022 | HGBCL DLBCL THRLBCL | Axicabtagene ciloleucel, Tisagenlecleucel | 12 | 1. Genome-wide NGS 2. PET/CT | 1. Days −5, 0, 1, 3, 5, 7, 14, 21, 28 and every 4 to 8 weeks 2. Discretion of treating physician | N/A | N/A |
Risk assessment with low-pass whole-genome sequencing of cell-free DNA before CD19 CAR T-cell therapy for large B-cell lymphoma [65] Cherng et al. Blood 2022 | DLBCL, transformed indolent, PMBCL | Axicabtagene ciloleucel, Tisagenlecleucel | 122 | 1. Low-pass WGS 2. PET/CT | 1. Leukapheresis 2. Months 1 and 3 | 4–10 mL | N/A |
Circulating tumor DNA adds specificity to PET after axicabtagene ciloleucel in large B-cell lymphoma [72] Dean et al. Blood 2023 | LBCL | Axicabtagene ciloleucel | 72 | 1. IgHTS 2. PET/CT (MTV) | 1. Pre-LD and days 7, 14, 21, 56, 180, 270, 300, 360 2. Pre-LD and months 1 and 3 | N/A | 10−6 |
Cell-free DNA Dynamic concentration and other variables are predictors of early progression after chimeric antigen receptor T cell therapy in patients with diffuse large B cell lymphoma [78] Bastos-Oreiro et al. Transplant and Cellular Therapy 2023 | DLBCL, tFL, PMBCL | Axicabtagene ciloleucel, Tisagenlecleucel | 58 | 1. Panel-directed NGS 2. PET/CT | 1. Retrospective: Pre-apheresis and pre-LD 2. Pre-apheresis, pre-LD, and months 1 and 3 | 5–10 mL | N/A |
Dynamic monitoring of circulating tumor DNA reveals outcomes and genomic alterations in patients with relapsed or refractory large B-cell lymphoma undergoing CAR T-cell therapy [68] Zou et al. Journal of Immunotherapy Cancer 2024 | DLBCL, HGBCL, tFL | Axicabtagene ciloleucel, CNCT19 | 23 | 1. Panel-directed NGS 2. PET and/or CT | 1. Pre-LD and days 14, 28, 60, 90 and beyond 120 or at progression 2. Days 30, 90, and every three months thereafter | N/A | N/A |
Personalized monitoring of circulating tumor DNA with specific signature of trackable mutations after chimeric antigen receptor T-cell therapy in follicular lymphoma patients [84] Jimenez-Ubieta et al. Frontiers in Immunology 2023 | FL | CD19 CAR-T NOS | 10 | 1. Panel-directed NGS 2. PET/CT | 1. Pre-LD, days 7 and 28, and months 3, 6, 12, 24, 36 2. Pre-LD and days 90, 180, 365 and every 6 months | 10–20 mL of PB | 10−4 |
Study | R/R Disease | CAR-T Product | N | Disease Assessments | Timing | Plasma Volume | Sensitivity |
---|---|---|---|---|---|---|---|
Circulating tumor DNA correlation with lymphoma response and survival outcomes at multiple time points of anti-CD19 CAR T-cell therapy [69] Caimi et al. ASH Abstract 2022 | B-NHL | CD19 CAR-T NOS | 28 | 1. Panel-directed NGS 2. PET/CT | 1. Pre-LD and days 0, 30 2. Days 30 and 90 | N/A | 10−6 |
Early prediction of treatment response by circulating tumor DNA profiling in patients with diffuse large B-cell lymphoma receiving CAR T-cell therapy [70] Foerster et al. ASH Abstract 2023 | DLBCL | Axicabtagene ciloleucel, Tisagenlecleucel | 16 | 1. Panel-directed NGS 2. PET/CT | 1. Pre-LD, and days 7–10 2. Weeks 4–6 | N/A | N/A |
Early ctDNA clearance after CAR T-cell infusion predicts outcomes in patients with large B-cell lymphoma: results from ALYCANTE, a phase 2 lysa study [79] Delfau-Larue et al. EHA Abstract 2023 | LBCL | Axicabtagene ciloleucel | 62 | 1. Panel-directed NGS | 1. Leukapheresis, pre-LD, days 0 and 14, months 1, 3, 6, 9, and 12 | 2–4 mL | N/A |
Circulating tumor DNA (ctDNA) by clonoSEQ to monitoring residual disease after axicabtagene ciloleucel (axi-cel) in large B-cell lymphoma (LBCL) [86] Miles et al. ASCO Abstract 2023 | LBCL | Axicabtagene ciloleucel | N/A | 1. IgHTS | 1. 1L: Day 28, months 3 and 6 2L: Days 50, 100, 150, months 9 and 24 3L: Day 28, months 3 and 5 | N/A | 10−5 |
Circulating tumor DNA dynamics as early outcome predictors for Lisocabtagene Maraleucel as second line therapy for large B-cell lymphoma from the Phase 3 TRANSFORM [75] Stepan et al. ASH Abstract 2023 | LBCL | Lisocabtagene maraleucel | 7 | 1. Panel-directed NGS 2. PET/CT | 1. Baseline (study screening), day 0 and 15, and months 1, 2, 3, and 12 2. N/A | N/A | 10−6 |
Clinical utility of circulating tumor (ct)DNA quantity and kinetics in patients undergoing therapy for relapsed/refractory aggressive B-cell lymphoma [71] Caldwell et al. ASH Abstract 2023 | DLBCL HGBL PMBL tFL MZL | Axicabtagene ciloleucel, Tisagenlecleucel | 28 | 1. Panel-directed NGS | 1. N/A | N/A | N/A |
Post-CAR-T minimal residual disease monitoring in mantle cell lymphoma enables early relapse detection [83] Ananth et al. ASH Abstract 2023 | MCL | Brexucabtagene autoleucel | 34 | 1. IgHTS | 1. Months 1, 3, 6, and 12 | N/A | 10−6 |
4. Future Directions
4.1. STEPing beyond ctDNA
4.2. Barriers in Bringing ctDNA from Bench to Bedside
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Neelapu, S.S.; Locke, F.L.; Bartlett, N.L.; Lekakis, L.J.; Miklos, D.B.; Jacobson, C.A.; Braunschweig, I.; Oluwole, O.O.; Siddiqi, T.; Lin, Y.; et al. Axicabtagene Ciloleucel CAR T-Cell Therapy in Refractory Large B-Cell Lymphoma. N. Engl. J. Med. 2017, 377, 2531–2544. [Google Scholar] [CrossRef]
- Abramson, J.S.; Palomba, M.L.; Gordon, L.I.; Lunning, M.A.; Wang, M.; Arnason, J.; Mehta, A.; Purev, E.; Maloney, D.G.; Andreadis, C.; et al. Lisocabtagene Maraleucel for Patients with Relapsed or Refractory Large B-Cell Lymphomas (TRANSCEND NHL 001): A Multicentre Seamless Design Study. Lancet 2020, 396, 839–852. [Google Scholar] [CrossRef]
- Schuster, S.J.; Bishop, M.R.; Tam, C.S.; Waller, E.K.; Borchmann, P.; McGuirk, J.P.; Jäger, U.; Jaglowski, S.; Andreadis, C.; Westin, J.R.; et al. Tisagenlecleucel in Adult Relapsed or Refractory Diffuse Large B-Cell Lymphoma. N. Engl. J. Med. 2019, 380, 45–56. [Google Scholar] [CrossRef]
- Wang, M.; Munoz, J.; Goy, A.; Locke, F.L.; Jacobson, C.A.; Hill, B.T.; Timmerman, J.M.; Holmes, H.; Jaglowski, S.; Flinn, I.W.; et al. KTE-X19 CAR T-Cell Therapy in Relapsed or Refractory Mantle-Cell Lymphoma. N. Engl. J. Med. 2020, 382, 1331–1342. [Google Scholar] [CrossRef]
- Fowler, N.H.; Dickinson, M.; Dreyling, M.; Martinez-Lopez, J.; Kolstad, A.; Butler, J.; Ghosh, M.; Popplewell, L.; Chavez, J.C.; Bachy, E.; et al. Tisagenlecleucel in Adult Relapsed or Refractory Follicular Lymphoma: The Phase 2 ELARA Trial. Nat. Med. 2021, 28, 325–332. [Google Scholar] [CrossRef]
- Jacobson, C.A.; Chavez, J.C.; Sehgal, A.R.; William, B.M.; Munoz, J.; Salles, G.; Munshi, P.N.; Casulo, C.; Maloney, D.G.; de Vos, S.; et al. Axicabtagene Ciloleucel in Relapsed or Refractory Indolent Non-Hodgkin Lymphoma (ZUMA-5): A Single-Arm, Multicentre, Phase 2 Trial. Lancet Oncol. 2022, 23, 91–103. [Google Scholar] [CrossRef] [PubMed]
- YESCARTA (Axicabtagene Ciloleucel)|FDA. Available online: https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/yescarta-axicabtagene-ciloleucel (accessed on 6 February 2024).
- TECARTUS (Brexucabtagene Autoleucel)|FDA. Available online: https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/tecartus-brexucabtagene-autoleucel (accessed on 6 February 2024).
- BREYANZI (Lisocabtagene Maraleucel)|FDA. Available online: https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/breyanzi-lisocabtagene-maraleucel (accessed on 6 February 2024).
- KYMRIAH (Tisagenlecleucel)|FDA. Available online: https://www.fda.gov/vaccines-blood-biologics/cellular-gene-therapy-products/kymriah-tisagenlecleucel (accessed on 6 February 2024).
- Locke, F.L.; Ghobadi, A.; Jacobson, C.A.; Miklos, D.B.; Lekakis, L.J.; Oluwole, O.O.; Lin, Y.; Braunschweig, I.; Hill, B.T.; Timmerman, J.M.; et al. Long-Term Safety and Activity of Axicabtagene Ciloleucel in Refractory Large B-Cell Lymphoma (ZUMA-1): A Single-Arm, Multicentre, Phase 1-2 Trial. Lancet Oncol. 2019, 20, 31–42. [Google Scholar] [CrossRef] [PubMed]
- Herrera, A.F.; Armand, P. Minimal Residual Disease Assessment in Lymphoma: Methods and Applications. J. Clin. Oncol. 2017, 35, 3877–3887. [Google Scholar] [CrossRef]
- Kuhnl, A.; Kirkwood, A.A.; O’Reilly, M.; Sanderson, R.; Tholouli, E.; Patel, A.; Besley, C.; Iyengar, S.; Jones, C.; Latif, A.-L.; et al. Outcome of large B-cell lymphoma patients failing CD19 targeted CAR-T therapy. Hematol. Oncol. 2021, 39. [Google Scholar] [CrossRef]
- Cheson, B.D.; Fisher, R.I.; Barrington, S.F.; Cavalli, F.; Schwartz, L.H.; Zucca, E.; Lister, T.A.; Alliance, Australasian Leukaemia and Lymphoma Group; Eastern Cooperative Oncology Group; European Mantle Cell Lymphoma Consortium; et al. Recommendations for Initial Evaluation, Staging, and Response Assessment of Hodgkin and Non-Hodgkin Lymphoma: The Lugano Classification. J. Clin. Oncol. 2014, 32, 3059–3068. [Google Scholar] [CrossRef]
- Xie, M.; Wu, K.; Liu, Y.; Jiang, Q.; Xie, Y. Predictive Value of F-18 FDG PET/CT Quantization Parameters in Diffuse Large B Cell Lymphoma: A Meta-Analysis with 702 Participants. Med. Oncol. 2015, 32, 446. [Google Scholar] [CrossRef] [PubMed]
- Guo, B.; Tan, X.; Ke, Q.; Cen, H. Prognostic Value of Baseline Metabolic Tumor Volume and Total Lesion Glycolysis in Patients with Lymphoma: A Meta-Analysis. PLoS ONE 2019, 14, e0210224. [Google Scholar] [CrossRef]
- Dean, E.A.; Mhaskar, R.S.; Lu, H.; Mousa, M.S.; Krivenko, G.S.; Lazaryan, A.; Bachmeier, C.A.; Chavez, J.C.; Nishihori, T.; Davila, M.L.; et al. High Metabolic Tumor Volume Is Associated with Decreased Efficacy of Axicabtagene Ciloleucel in Large B-Cell Lymphoma. Blood Adv. 2020, 4, 3268–3276. [Google Scholar] [CrossRef]
- Rojek, A.E.; Kline, J.P.; Feinberg, N.; Appelbaum, D.E.; Pu, Y.; Derman, B.A.; Jakubowiak, A.; Kosuri, S.; Liu, H.; Nawas, M.T.; et al. Optimization of Metabolic Tumor Volume as a Prognostic Marker in CAR T-Cell Therapy for Aggressive Large B-Cell NHL. Clin. Lymphoma Myeloma Leuk. 2023, 24, 83–93. [Google Scholar] [CrossRef] [PubMed]
- Aide, N.; Hicks, R.J.; Le Tourneau, C.; Lheureux, S.; Fanti, S.; Lopci, E. FDG PET/CT for Assessing Tumour Response to Immunotherapy: Report on the EANM Symposium on Immune Modulation and Recent Review of the Literature. Eur. J. Nucl. Med. Mol. Imaging 2019, 46, 238–250. [Google Scholar] [CrossRef]
- Jain, T.; Bar, M.; Kansagra, A.J.; Chong, E.A.; Hashmi, S.K.; Neelapu, S.S.; Byrne, M.; Jacoby, E.; Lazaryan, A.; Jacobson, C.A.; et al. Use of Chimeric Antigen Receptor T Cell Therapy in Clinical Practice for Relapsed/Refractory Aggressive B Cell Non-Hodgkin Lymphoma: An Expert Panel Opinion from the American Society for Transplantation and Cellular Therapy. Biol. Blood Marrow Transplant. 2019, 25, 2305–2321. [Google Scholar] [CrossRef]
- Ruff, A.; Ballard, H.J.; Pantel, A.R.; Namoglu, E.C.; Hughes, M.E.; Nasta, S.D.; Chong, E.A.; Bagg, A.; Ruella, M.; Farwell, M.D.; et al. 18F-Fluorodeoxyglucose Positron Emission Tomography/Computed Tomography Following Chimeric Antigen Receptor T-Cell Therapy in Large B-Cell Lymphoma. Mol. Imaging Biol. 2021, 23, 818–826. [Google Scholar] [CrossRef]
- Schuster, S.J.; Svoboda, J.; Chong, E.A.; Nasta, S.D.; Mato, A.R.; Anak, Ö.; Brogdon, J.L.; Pruteanu-Malinici, I.; Bhoj, V.; Landsburg, D.; et al. Chimeric Antigen Receptor T Cells in Refractory B-Cell Lymphomas. N. Engl. J. Med. 2017, 377, 2545–2554. [Google Scholar] [CrossRef]
- Cheson, B.D.; Ansell, S.; Schwartz, L.; Gordon, L.I.; Advani, R.; Jacene, H.A.; Hoos, A.; Barrington, S.F.; Armand, P. Refinement of the Lugano Classification Lymphoma Response Criteria in the Era of Immunomodulatory Therapy. Blood 2016, 128, 2489–2496. [Google Scholar] [CrossRef] [PubMed]
- Sortais, C.; Cordeil, S.; Bourbon, E.; Idlhaj, M.; Ferrant, E.; Safar, V.; Golfier, C.; Lazareth, A.; Bouafia-Sauvy, F.; Tordo, J.; et al. Flare-up Phenomenon or Pseudoprogression after CAR T-Cell Infusion in Non-Hodgkin Aggressive Lymphomas. Leuk. Lymphoma 2023, 64, 707–711. [Google Scholar] [CrossRef]
- Danylesko, I.; Shouval, R.; Shem-Tov, N.; Yerushalmi, R.; Jacoby, E.; Besser, M.J.; Shimoni, A.; Davidson, T.; Beider, K.; Mevorach, D.; et al. Immune Imitation of Tumor Progression after Anti-CD19 Chimeric Antigen Receptor T Cells Treatment in Aggressive B-Cell Lymphoma. Bone Marrow Transplant. 2020, 56, 1134–1143. [Google Scholar] [CrossRef] [PubMed]
- Adams, H.J.A.; Nievelstein, R.A.J.; Kwee, T.C. Systematic Review and Meta-Analysis on the Prognostic Value of Complete Remission Status at FDG-PET in Hodgkin Lymphoma after Completion of First-Line Therapy. Ann. Hematol. 2016, 95, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Cheah, C.Y.; Hofman, M.S.; Dickinson, M.; Wirth, A.; Westerman, D.; Harrison, S.J.; Burbury, K.; Wolf, M.; Januszewicz, H.; Herbert, K.; et al. Limited Role for Surveillance PET–CT Scanning in Patients with Diffuse Large B-Cell Lymphoma in Complete Metabolic Remission Following Primary Therapy. Br. J. Cancer 2013, 109, 312–317. [Google Scholar] [CrossRef] [PubMed]
- Thompson, C.A.; Ghesquieres, H.; Maurer, M.J.; Cerhan, J.R.; Biron, P.; Ansell, S.M.; Chassagne-Clément, C.; Inwards, D.J.; Gargi, T.; Johnston, P.B.; et al. Utility of Routine Post-Therapy Surveillance Imaging in Diffuse Large B-Cell Lymphoma. J. Clin. Oncol. 2014, 32, 3506–3512. [Google Scholar] [CrossRef] [PubMed]
- El-Galaly, T.C.; Jakobsen, L.H.; Hutchings, M.; de Nully Brown, P.; Nilsson-Ehle, H.; Székely, E.; Mylam, K.J.; Hjalmar, V.; Johnsen, H.E.; Bøgsted, M.; et al. Routine Imaging for Diffuse Large B-Cell Lymphoma in First Complete Remission Does Not Improve Post-Treatment Survival: A Danish-Swedish Population-Based Study. J. Clin. Oncol. 2015, 33, 3993–3998. [Google Scholar] [CrossRef] [PubMed]
- Roschewski, M.; Dunleavy, K.; Pittaluga, S.; Moorhead, M.; Pepin, F.; Kong, K.; Shovlin, M.; Jaffe, E.S.; Staudt, L.M.; Lai, C.; et al. Circulating Tumour DNA and CT Monitoring in Patients with Untreated Diffuse Large B-Cell Lymphoma: A Correlative Biomarker Study. Lancet Oncol. 2015, 16, 541–549. [Google Scholar] [CrossRef] [PubMed]
- Jahr, S.; Hentze, H.; Englisch, S.; Hardt, D.; Fackelmayer, F.O.; Hesch, R.D.; Knippers, R. DNA Fragments in the Blood Plasma of Cancer Patients: Quantitations and Evidence for Their Origin from Apoptotic and Necrotic Cells. Cancer Res. 2001, 61, 1659–1665. [Google Scholar] [PubMed]
- Stroun, M.; Anker, P.; Maurice, P.; Lyautey, J.; Lederrey, C.; Beljanski, M. Neoplastic Characteristics of the DNA Found in the Plasma of Cancer Patients. Oncology 1989, 46, 318–322. [Google Scholar] [CrossRef] [PubMed]
- Lauer, E.M.; Mutter, J.; Scherer, F. Circulating Tumor DNA in B-Cell Lymphoma: Technical Advances, Clinical Applications, and Perspectives for Translational Research. Leukemia 2022, 36, 2151–2164. [Google Scholar] [CrossRef]
- Kurtz, D.M.; Green, M.R.; Bratman, S.V.; Scherer, F.; Liu, C.L.; Kunder, C.A.; Takahashi, K.; Glover, C.; Keane, C.; Kihira, S.; et al. Noninvasive Monitoring of Diffuse Large B-Cell Lymphoma by Immunoglobulin High-Throughput Sequencing. Blood 2015, 125, 3679–3687. [Google Scholar] [CrossRef]
- Roschewski, M.; Rossi, D.; Kurtz, D.M.; Alizadeh, A.A.; Wilson, W.H. Circulating Tumor DNA in Lymphoma: Principles and Future Directions. Blood Cancer Discov 2022, 3, 5–15. [Google Scholar] [CrossRef] [PubMed]
- Adams, H.J.A.; Nievelstein, R.A.J.; Kwee, T.C. Prognostic Value of Complete Remission Status at End-of-Treatment FDG-PET in R-CHOP-Treated Diffuse Large B-Cell Lymphoma: Systematic Review and Meta-Analysis. Br. J. Haematol. 2015, 170, 185–191. [Google Scholar] [CrossRef] [PubMed]
- Bohers, E.; Viailly, P.-J.; Becker, S.; Marchand, V.; Ruminy, P.; Maingonnat, C.; Bertrand, P.; Etancelin, P.; Picquenot, J.-M.; Camus, V.; et al. Non-Invasive Monitoring of Diffuse Large B-Cell Lymphoma by Cell-Free DNA High-Throughput Targeted Sequencing: Analysis of a Prospective Cohort. Blood Cancer J. 2018, 8, 74. [Google Scholar] [CrossRef] [PubMed]
- Scherer, F.; Kurtz, D.M.; Newman, A.M.; Stehr, H.; Craig, A.F.M.; Esfahani, M.S.; Lovejoy, A.F.; Chabon, J.J.; Klass, D.M.; Liu, C.L.; et al. Distinct Biological Subtypes and Patterns of Genome Evolution in Lymphoma Revealed by Circulating Tumor DNA. Sci. Transl. Med. 2016, 8, 364ra155. [Google Scholar] [CrossRef] [PubMed]
- Delfau-Larue, M.-H.; van der Gucht, A.; Dupuis, J.; Jais, J.-P.; Nel, I.; Beldi-Ferchiou, A.; Hamdane, S.; Benmaad, I.; Laboure, G.; Verret, B.; et al. Total Metabolic Tumor Volume, Circulating Tumor Cells, Cell-Free DNA: Distinct Prognostic Value in Follicular Lymphoma. Blood Adv. 2018, 2, 807–816. [Google Scholar] [CrossRef] [PubMed]
- Agarwal, R.; Chan, Y.-C.; Tam, C.S.; Hunter, T.; Vassiliadis, D.; Teh, C.E.; Thijssen, R.; Yeh, P.; Wong, S.Q.; Ftouni, S.; et al. Dynamic Molecular Monitoring Reveals That SWI-SNF Mutations Mediate Resistance to Ibrutinib plus Venetoclax in Mantle Cell Lymphoma. Nat. Med. 2019, 25, 119–129. [Google Scholar] [CrossRef] [PubMed]
- Lakhotia, R.; Melani, C.; Dunleavy, K.; Pittaluga, S.; Saba, N.; Lindenberg, L.; Mena, E.; Bergvall, E.; Lucas, A.N.; Jacob, A.; et al. Circulating Tumor DNA Predicts Therapeutic Outcome in Mantle Cell Lymphoma. Blood Adv. 2022, 6, 2667–2680. [Google Scholar] [CrossRef]
- Sarkozy, C.; Huet, S.; Carlton, V.E.H.; Fabiani, B.; Delmer, A.; Jardin, F.; Delfau-Larue, M.-H.; Hacini, M.; Ribrag, V.; Guidez, S.; et al. The Prognostic Value of Clonal Heterogeneity and Quantitative Assessment of Plasma Circulating Clonal IG-VDJ Sequences at Diagnosis in Patients with Follicular Lymphoma. Oncotarget 2017, 8, 8765–8774. [Google Scholar] [CrossRef] [PubMed]
- Newman, A.M.; Bratman, S.V.; To, J.; Wynne, J.F.; Eclov, N.C.W.; Modlin, L.A.; Liu, C.L.; Neal, J.W.; Wakelee, H.A.; Merritt, R.E.; et al. An Ultrasensitive Method for Quantitating Circulating Tumor DNA with Broad Patient Coverage. Nat. Med. 2014, 20, 548–554. [Google Scholar] [CrossRef]
- Kurtz, D.M.; Scherer, F.; Jin, M.C.; Soo, J.; Craig, A.F.M.; Esfahani, M.S.; Chabon, J.J.; Stehr, H.; Liu, C.L.; Tibshirani, R.; et al. Circulating Tumor DNA Measurements As Early Outcome Predictors in Diffuse Large B-Cell Lymphoma. J. Clin. Oncol. 2018, 36, 2845–2853. [Google Scholar] [CrossRef]
- Kurtz, D.M.; Esfahani, M.S.; Scherer, F.; Soo, J.; Jin, M.C.; Liu, C.L.; Newman, A.M.; Dührsen, U.; Hüttmann, A.; Casasnovas, O.; et al. Dynamic Risk Profiling Using Serial Tumor Biomarkers for Personalized Outcome Prediction. Cell 2019, 178, 699–713.e19. [Google Scholar] [CrossRef] [PubMed]
- Schroers-Martin, J.G.; Kurtz, D.M.; Soo, J.; Jin, M.; Scherer, F.; Craig, A.; Chabon, J.J.; Liu, C.L.; Stehr, H.; Duehrsen, U.; et al. Determinants of Circulating Tumor DNA Levels across Lymphoma Histologic Subtypes. Blood 2017, 130 (Suppl. S1), 4018. [Google Scholar]
- Rossi, D.; Kurtz, D.M.; Roschewski, M.; Cavalli, F.; Zucca, E.; Wilson, W.H. The Development of Liquid Biopsy for Research and Clinical Practice in Lymphomas: Report of the 15-ICML Workshop on CtDNA. Hematol. Oncol. 2020, 38, 34–37. [Google Scholar] [CrossRef]
- Huet, S.; Salles, G. Potential of Circulating Tumor DNA for the Management of Patients with Lymphoma. JCO Oncol. Pract. 2020, 16, 561–568. [Google Scholar] [CrossRef]
- Parackal, S.; Zou, D.; Day, R.; Black, M.; Guilford, P. Comparison of Roche Cell-Free DNA Collection Tubes® to Streck Cell-Free DNA BCT® s for Sample Stability Using Healthy Volunteers. Pract. Lab Med. 2019, 16, e00125. [Google Scholar] [CrossRef]
- Jaiswal, S.; Fontanillas, P.; Flannick, J.; Manning, A.; Grauman, P.V.; Mar, B.G.; Lindsley, R.C.; Mermel, C.H.; Burtt, N.; Chavez, A.; et al. Age-Related Clonal Hematopoiesis Associated with Adverse Outcomes. N. Engl. J. Med. 2014, 371, 2488–2498. [Google Scholar] [CrossRef] [PubMed]
- Xia, L.; Li, Z.; Zhou, B.; Tian, G.; Zeng, L.; Dai, H.; Li, X.; Liu, C.; Lu, S.; Xu, F.; et al. Statistical Analysis of Mutant Allele Frequency Level of Circulating Cell-Free DNA and Blood Cells in Healthy Individuals. Sci. Rep. 2017, 7, 7526. [Google Scholar] [CrossRef]
- Razavi, P.; Li, B.T.; Brown, D.N.; Jung, B.; Hubbell, E.; Shen, R.; Abida, W.; Juluru, K.; De Bruijn, I.; Hou, C.; et al. High-Intensity Sequencing Reveals the Sources of Plasma Circulating Cell-Free DNA Variants. Nat. Med. 2019, 25, 1928–1937. [Google Scholar] [CrossRef] [PubMed]
- Rodda, A.E.; Parker, B.J.; Spencer, A.; Corrie, S.R. Extending Circulating Tumor DNA Analysis to Ultralow Abundance Mutations: Techniques and Challenges. ACS Sens. 2018, 3, 540–560. [Google Scholar] [CrossRef]
- Kurtz, D.M.; Soo, J.; Co Ting Keh, L.; Alig, S.; Chabon, J.J.; Sworder, B.J.; Schultz, A.; Jin, M.C.; Scherer, F.; Garofalo, A.; et al. Enhanced Detection of Minimal Residual Disease by Targeted Sequencing of Phased Variants in Circulating Tumor DNA. Nat. Biotechnol. 2021, 39, 1537–1547. [Google Scholar] [CrossRef]
- Pott, C.; Brüggemann, M.; Ritgen, M.; van der Velden, V.H.J.; van Dongen, J.J.M.; Kneba, M. MRD Detection in B-Cell Non-Hodgkin Lymphomas Using Ig Gene Rearrangements and Chromosomal Translocations as Targets for Real-Time Quantitative PCR. Methods Mol. Biol. 2013, 971, 175–200. [Google Scholar] [CrossRef] [PubMed]
- Hoster, E.; Pott, C. Minimal Residual Disease in Mantle Cell Lymphoma: Insights into Biology and Impact on Treatment. Hematol. Am. Soc. Hematol. Educ. Program 2016, 2016, 437–445. [Google Scholar] [CrossRef] [PubMed]
- Heid, C.A.; Stevens, J.; Livak, K.J.; Williams, P.M. Real Time Quantitative PCR. Genome Res. 1996, 6, 986–994. [Google Scholar] [CrossRef] [PubMed]
- Hudecova, I. Digital PCR Analysis of Circulating Nucleic Acids. Clin. Biochem. 2015, 48, 948–956. [Google Scholar] [CrossRef] [PubMed]
- de Jong, D. Molecular Pathogenesis of Follicular Lymphoma: A Cross Talk of Genetic and Immunologic Factors. J. Clin. Oncol. 2005, 23, 6358–6363. [Google Scholar] [CrossRef] [PubMed]
- Lossos, I.S.; Alizadeh, A.A.; Eisen, M.B.; Chan, W.C.; Brown, P.O.; Botstein, D.; Staudt, L.M.; Levy, R. Ongoing Immunoglobulin Somatic Mutation in Germinal Center B Cell-like but Not in Activated B Cell-like Diffuse Large Cell Lymphomas. Proc. Natl. Acad. Sci. USA 2000, 97, 10209–10213. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Grubor, V.; Love, C.L.; Banerjee, A.; Richards, K.L.; Mieczkowski, P.A.; Dunphy, C.; Choi, W.; Au, W.Y.; Srivastava, G.; et al. Genetic Heterogeneity of Diffuse Large B-Cell Lymphoma. Proc. Natl. Acad. Sci. USA 2013, 110, 1398–1403. [Google Scholar] [CrossRef] [PubMed]
- Newman, A.M.; Lovejoy, A.F.; Klass, D.M.; Kurtz, D.M.; Chabon, J.J.; Scherer, F.; Stehr, H.; Liu, C.L.; Bratman, S.V.; Say, C.; et al. Integrated Digital Error Suppression for Improved Detection of Circulating Tumor DNA. Nat. Biotechnol. 2016, 34, 547–555. [Google Scholar] [CrossRef] [PubMed]
- Rossi, D.; Diop, F.; Spaccarotella, E.; Monti, S.; Zanni, M.; Rasi, S.; Deambrogi, C.; Spina, V.; Bruscaggin, A.; Favini, C.; et al. Diffuse Large B-Cell Lymphoma Genotyping on the Liquid Biopsy. Blood 2017, 129, 1947–1957. [Google Scholar] [CrossRef]
- Horgan, D.; Van den Bulcke, M.; Malapelle, U.; Troncone, G.; Normanno, N.; Capoluongo, E.D.; Prelaj, A.; Rizzari, C.; Trapani, D.; Singh, J.; et al. Tackling the Implementation Gap for the Uptake of NGS and Advanced Molecular Diagnostics into Healthcare Systems. Heliyon 2024, 10, e23914. [Google Scholar] [CrossRef]
- Cherng, H.J.J.; Herrera, A. Circulating Tumor DNA in Diffuse Large B-Cell Lymphoma: From Bench to Bedside? Curr. Treat. Options Oncol. 2024, 25, 659–678. [Google Scholar] [CrossRef] [PubMed]
- Sworder, B.J.; Kurtz, D.M.; Alig, S.K.; Frank, M.J.; Shukla, N.; Garofalo, A.; Macaulay, C.W.; Shahrokh Esfahani, M.; Olsen, M.N.; Hamilton, J.; et al. Determinants of Resistance to Engineered T Cell Therapies Targeting CD19 in Large B Cell Lymphomas. Cancer Cell 2023, 41, 210–225.e5. [Google Scholar] [CrossRef]
- Frank, M.J.; Hossain, N.M.; Bukhari, A.; Dean, E.; Spiegel, J.Y.; Claire, G.K.; Kirsch, I.; Jacob, A.P.; Mullins, C.D.; Lee, L.W.; et al. Monitoring of Circulating Tumor DNA Improves Early Relapse Detection After Axicabtagene Ciloleucel Infusion in Large B-Cell Lymphoma: Results of a Prospective Multi-Institutional Trial. J. Clin. Oncol. 2021, 39, 3034–3043. [Google Scholar] [CrossRef]
- Zou, H.; Liu, W.; Wang, X.; Wang, Y.; Wang, C.; Qiu, C.; Liu, H.; Shan, D.; Xie, T.; Huang, W.; et al. Dynamic Monitoring of Circulating Tumor DNA Reveals Outcomes and Genomic Alterations in Patients with Relapsed or Refractory Large B-Cell Lymphoma Undergoing CAR T-Cell Therapy. J. ImmunoTherapy Cancer 2024, 12, e008450. [Google Scholar] [CrossRef] [PubMed]
- Caimi, P.F.; Di Trani, M.; Ghobadi, A.; Reese, J.; Tomlinson, B.; Otegbeye, F.; Boughan, K.M.; Gallogly, M.; Metheny, L.; Cooper, B.W.; et al. Circulating Tumor DNA Correlation with Lymphoma Response and Survival Outcomes at Multiple Time Points of Anti—CD19 CAR T Cell Therapy. Blood 2022, 140, 7457–7459. [Google Scholar] [CrossRef]
- Foerster, A.K.; Kronenthaler, C.; Ranganathan, L.; Bandara, S.; Woestmann, C.; Yaung, S.; Bleul, S.; Klingler, C.; Mitschke, J.; Wehrle, J.; et al. Early Prediction of Treatment Response By Circulating Tumor DNA Profiling in Patients with Diffuse Large B-Cell Lymphoma Receiving CAR T-Cell Therapy. Blood 2023, 142, 2987. [Google Scholar] [CrossRef]
- Caldwell, I.; Yap, Y.Z.; Dowling, M.R.; Saghebi, J.; Wong, A.J.N.; Legaie, R.; Arnolda, R.; Wilson, C.; Ignacio, D.; O’Leary, N.; et al. Clinical Utility of Circulating Tumor (Ct)DNA Quantity and Kinetics in Patients Undergoing CAR T-Cell Therapy for Relapsed/Refractory Aggressive B-Cell Lymphoma. Blood 2023, 142, 7160. [Google Scholar] [CrossRef]
- Dean, E.A.; Kimmel, G.J.; Frank, M.J.; Bukhari, A.; Hossain, N.M.; Jain, M.D.; Dahiya, S.; Miklos, D.B.; Altrock, P.M.; Locke, F.L. Circulating Tumor DNA Adds Specificity to PET after Axicabtagene Ciloleucel in Large B-Cell Lymphoma. Blood Adv. 2023, 7, 4608–4618. [Google Scholar] [CrossRef]
- Nijland, M.; Seitz, A.; Terpstra, M.; van Imhoff, G.W.; Kluin, P.M.; van Meerten, T.; Atayar, Ç.; van Kempen, L.C.; Diepstra, A.; Kok, K.; et al. Mutational Evolution in Relapsed Diffuse Large B-Cell Lymphoma. Cancers 2018, 10, 459. [Google Scholar] [CrossRef]
- Hersby, D.S.; Schejbel, L.; Breinholt, M.F.; Høgdall, E.; Nørgaard, P.; Dencker, D.; Nielsen, T.H.; Pedersen, L.M.; Gang, A.O. Multi-Site Pre-Therapeutic Biopsies Demonstrate Genetic Heterogeneity in Patients with Newly Diagnosed Diffuse Large B-Cell Lymphoma. Leuk. Lymphoma 2023, 64, 1527–1535. [Google Scholar] [CrossRef]
- Zhou, L.; Zhao, H.; Shao, Y.; Chen, X.; Hong, R.; Wang, L.; Ni, F.; Nagler, A.; Hu, Y.; Huang, H. Serial Surveillance by Circulating Tumor DNA Profiling after Chimeric Antigen Receptor T Therapy for the Guidance of r/r Diffuse Large B Cell Lymphoma Precise Treatment. J. Cancer 2021, 12, 5423–5431. [Google Scholar] [CrossRef] [PubMed]
- Goodman, A.M.; Holden, K.A.; Jeong, A.-R.; Kim, L.; Fitzgerald, K.D.; Almasri, E.; McLennan, G.; Eisenberg, M.; Jahromi, A.H.; Hoh, C.; et al. Assessing CAR T-Cell Therapy Response Using Genome-Wide Sequencing of Cell-Free DNA in Patients with B-Cell Lymphomas. Transplant. Cell. Ther. 2022, 28, 30.e1–30.e7. [Google Scholar] [CrossRef] [PubMed]
- Deng, Q.; Han, G.; Puebla-Osorio, N.; Ma, M.C.J.; Strati, P.; Chasen, B.; Dai, E.; Dang, M.; Jain, N.; Yang, H.; et al. Characteristics of Anti-CD19 CAR T Cell Infusion Products Associated with Efficacy and Toxicity in Patients with Large B Cell Lymphomas. Nat. Med. 2020, 26, 1878–1887. [Google Scholar] [CrossRef] [PubMed]
- Bastos-Oreiro, M.; Sanz-Villanueva, L.; Muñiz, P.; Bailén, R.; Chicano, M.; Oarbeskoa, G.; Gómez, I.; Gutiérrez, A.; de la Iglesia, I.; Carbonell, D.; et al. Cell-Free DNA Dynamic Concentration and Other Variables Are Predictors of Early Progression after Chimeric Antigen Receptor T Cell Therapy in Patients with Diffuse Large B Cell Lymphoma. Transplant. Cell. Ther. 2023, 29, 472.e1–472.e4. [Google Scholar] [CrossRef] [PubMed]
- Delfau-Larue, M.-H.; Gomes, L.; Cartron, G.; Morschhauser, F.; Gros, F.X.; Gastinne, T.; Oberic, L.; Bachy, E.; Feugier, P.; Duléry, R.; et al. P1123 Early Ctdna Clearance after Car T-Cell Infusion Predicts Outcome in Patients with Large B-Cell Lymphoma: Results from Alycante, A Phase 2 Lysa Study. Hemasphere 2023, 7, e5262795. [Google Scholar] [CrossRef]
- Stepan, L.; Ansari, S.; Okal, A.; Dell’Aringa, J.; Thompson, E.; Crotta, A.; Chow, V.A.; Abramson, J.S.; Kamdar, M.; Chabon, J.J.; et al. Circulating Tumor DNA Dynamics as Early Outcome Predictors for Lisocabtagene Maraleucel as Second-Line Therapy for Large B-Cell Lymphoma from the Phase 3 TRANSFORM Study. Blood 2023, 142, 225. [Google Scholar] [CrossRef]
- Chen, L.; Mu, W.; Gu, J.; Xiao, M.; Huang, L.; Zheng, M.; Li, C.; Xiao, Y.; Zhou, J.; Long, X. TP53-Mutated Circulating Tumor DNA for Disease Monitoring in Lymphoma Patients after CAR T Cell Therapy. Diagnostics 2021, 11, 844. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Munoz, J.; Goy, A.; Locke, F.L.; Jacobson, C.A.; Hill, B.T.; Timmerman, J.M.; Holmes, H.; Jaglowski, S.; Flinn, I.W.; et al. Three-Year Follow-Up of KTE-X19 in Patients With Relapsed/Refractory Mantle Cell Lymphoma, Including High-Risk Subgroups, in the ZUMA-2 Study. J. Clin. Oncol. 2023, 41, 555–567. [Google Scholar] [CrossRef] [PubMed]
- Ananth, S.; Su, Y.-J.; Hamilton, M.P.; Agarwal, N.; Weng, W.-K.; Dahiya, S.; Bharadwaj, S.; Mallampet, J.; Smith, M.; Kong, K.A.; et al. Post-CAR-T Minimal Residual Disease (MRD) Monitoring in Mantle Cell Lymphoma Enables Early Relapse Detection. Blood 2023, 142, 1673. [Google Scholar] [CrossRef]
- Jiménez-Ubieto, A.; Martín-Muñoz, A.; Poza, M.; Dorado, S.; García-Ortiz, A.; Revilla, E.; Sarandeses, P.; Ruiz-Heredia, Y.; Baumann, T.; Rodríguez, A.; et al. Personalized Monitoring of Circulating Tumor DNA with a Specific Signature of Trackable Mutations after Chimeric Antigen Receptor T-Cell Therapy in Follicular Lymphoma Patients. Front. Immunol. 2023, 14, 1188818. [Google Scholar] [CrossRef]
- Hossain, N.M.; Dahiya, S.; Le, R.; Abramian, A.M.; Kong, K.A.; Muffly, L.S.; Miklos, D.B. Circulating Tumor DNA Assessment in Patients with Diffuse Large B-Cell Lymphoma Following CAR T-Cell Therapy. Leuk. Lymphoma 2019, 60, 503–506. [Google Scholar] [CrossRef] [PubMed]
- Miles, B.; Mao, D.; Vardhanabhuti, S.; To, C.A.; Schupp, M.A.; Shahani, S.; Xu, H.; Munoz, J.; Westin, J.; Shen, R.; et al. 7547 Poster Session Circulating Tumor DNA (CtDNA) by ClonoSEQ to Monitor Residual Disease after Axicabtagene Ciloleucel (Axi-Cel) in Large B-Cell Lymphoma (LBCL). J. Clin. Oncol. 2023, 41, 7547. [Google Scholar] [CrossRef]
- Febbo, P.G.; Allo, M.; Alme, E.B.; Cuyun Carter, G.; Dumanois, R.; Essig, A.; Kiernan, E.; Kubler, C.B.; Martin, N.; Popescu, M.C.; et al. Recommendations for the Equitable and Widespread Implementation of Liquid Biopsy for Cancer Care. JCO Precis. Oncol. 2024, 8, e2300382. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Monick, S.; Rosenthal, A. Circulating Tumor DNA as a Complementary Prognostic Biomarker during CAR-T Therapy in B-Cell Non-Hodgkin Lymphomas. Cancers 2024, 16, 1881. https://doi.org/10.3390/cancers16101881
Monick S, Rosenthal A. Circulating Tumor DNA as a Complementary Prognostic Biomarker during CAR-T Therapy in B-Cell Non-Hodgkin Lymphomas. Cancers. 2024; 16(10):1881. https://doi.org/10.3390/cancers16101881
Chicago/Turabian StyleMonick, Sarah, and Allison Rosenthal. 2024. "Circulating Tumor DNA as a Complementary Prognostic Biomarker during CAR-T Therapy in B-Cell Non-Hodgkin Lymphomas" Cancers 16, no. 10: 1881. https://doi.org/10.3390/cancers16101881
APA StyleMonick, S., & Rosenthal, A. (2024). Circulating Tumor DNA as a Complementary Prognostic Biomarker during CAR-T Therapy in B-Cell Non-Hodgkin Lymphomas. Cancers, 16(10), 1881. https://doi.org/10.3390/cancers16101881