Langerhans Cells in Sentinel Lymph Nodes from Melanoma Patients
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Data Sources and Search Strategy
2.2. Study Selection
3. Results
4. Discussion
4.1. Melanoma and Sentinel Lymph Node
4.2. Peripheral Resident Langerhans Cells
4.3. Langerhans Cells in Sentinel Lymph Node
4.3.1. Langerhans Cells in Melanoma Sentinel Lymph Node Are Functionally Defective
4.3.2. Langerhans Cells in Melanoma Sentinel Lymph Node Are Immature
4.3.3. Langerhans Cells Activation State in Melanoma Sentinel Lymph Node Is Affected by Breslow Thickness and Excision Interval
4.4. The Enzyme Indoleamine 2,3-Dioxygenase (IDO)
4.4.1. Dendritic Cells and the Enzyme Indoleamine 2,3-Dioxygenase (IDO)
4.4.2. Melanoma Cells and the Enzyme Indoleamine 2,3-Dioxygenase (IDO)
4.4.3. Langerhans Cells and the Enzyme Indoleamine 2,3-Dioxygenase (IDO)
4.4.4. Melanoma-Induced IDO-KYN-AhR Interactions on Langerhans Cells Promote a Vicious Cycle Sustaining Immune Tolerance
4.5. Sentinel Lymph Node Langerhans Cells Are Not Irreversibly Impaired by Melanoma Cells
4.6. Langerhans Cells and Immunotherapy: Future Directions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Banchereau, J.; Steinman, R.M. Dendritic cells and the control of immunity. Nature 1998, 392, 245–252. [Google Scholar] [CrossRef] [PubMed]
- Ronchese, F.; Hilligan, K.L.; Mayer, J.U. Dendritic cells and the skin environment. Curr. Opin. Immunol. 2020, 64, 56–62. [Google Scholar] [CrossRef] [PubMed]
- Romani, N.; Clausen, B.E.; Stoitzner, P. Langerhans cells and more: Langerin-expressing dendritic cell subsets in the skin. Immunol. Rev. 2010, 234, 120–141. [Google Scholar] [CrossRef] [PubMed]
- Stoitzner, P.; Green, L.K.; Jung, J.Y.; Price, K.M.; Tripp, C.H.; Malissen, B.; Kissenpfennig, A.; Hermans, I.F.; Ronchese, F. Tumor immunotherapy by epicutaneous immunization requires langerhans cells. J. Immunol. 2008, 180, 1991–1998. [Google Scholar] [CrossRef] [PubMed]
- Schreiber, R.D.; Old, L.J.; Smyth, M.J. Cancer immunoediting: Integrating immunity’s roles in cancer suppression and promotion. Science 2011, 331, 1565–1570. [Google Scholar] [CrossRef] [PubMed]
- Wilson, N.S.; El-Sukkari, D.; Villadangos, J.A. Dendritic cells constitutively present self antigens in their immature state in vivo and regulate antigen presentation by controlling the rates of MHC class II synthesis and endocytosis. Blood 2004, 103, 2187–2195. [Google Scholar] [CrossRef] [PubMed]
- Von Bubnoff, D.; Scheler, M.; Wilms, H.; Fimmers, R.; Bieber, T. Identification of IDO-positive and IDO-negative human dendritic cells after activation by various proinflammatory stimuli. J. Immunol. 2011, 186, 6701–6709. [Google Scholar] [CrossRef] [PubMed]
- Munn, D.H.; Sharma, M.D.; Lee, J.R.; Jhaver, K.G.; Johnson, T.S.; Keskin, D.B.; Marshall, B.; Chandler, P.; Antonia, S.J.; Burgess, R.; et al. Potential regulatory function of human dendritic cells expressing indoleamine 2,3-dioxygenase. Science 2002, 297, 1867–1870. [Google Scholar] [CrossRef]
- Munn, D.H.; Mellor, A.L. Indoleamine 2,3-dioxygenase and tumor-induced tolerance. J. Clin. Investig. 2007, 117, 1147–1154. [Google Scholar] [CrossRef]
- Essner, R.; Kojima, M. Dendritic cell function in sentinel nodes. Oncology (Williston Park) 2002, 16, 27–31. [Google Scholar]
- Palucka, K.; Banchereau, J. Cancer immunotherapy via dendritic cells. Nat. Rev. Cancer 2012, 12, 265–277. [Google Scholar] [CrossRef] [PubMed]
- Moher, D.; Liberati, A.; Tetzlaff, J.; Altman, D.G.; Group, P. Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Med. 2009, 6, e1000097. [Google Scholar] [CrossRef] [PubMed]
- Gerlini, G.; Di Gennaro, P.; Pimpinelli, N.; Sestini, S.; Borgognoni, L. Tolerogenic IDO1(+)CD83(-) Langerhans cells in Sentinel Lymph Nodes of Patients with Melanoma. Int. J. Mol. Sci. 2022, 23, 3441. [Google Scholar] [CrossRef] [PubMed]
- Tajpara, P.; Schuster, C.; Schon, E.; Kienzl, P.; Vierhapper, M.; Mildner, M.; Elbe-Burger, A. Epicutaneous administration of the pattern recognition receptor agonist polyinosinic-polycytidylic acid activates the MDA5/MAVS pathway in Langerhans cells. FASEB J. 2018, 32, 4132–4144. [Google Scholar] [CrossRef] [PubMed]
- Romoli, M.R.; Di Gennaro, P.; Gerlini, G.; Sestini, S.; Brandani, P.; Ferrone, S.; Borgognoni, L. High Antigen Processing Machinery component expression in Langerhans cells from melanoma patients’ sentinel lymph nodes. Cell Immunol. 2017, 320, 29–37. [Google Scholar] [CrossRef] [PubMed]
- Koch, S.; Stroisch, T.J.; Vorac, J.; Herrmann, N.; Leib, N.; Schnautz, S.; Kirins, H.; Forster, I.; Weighardt, H.; Bieber, T. AhR mediates an anti-inflammatory feedback mechanism in human Langerhans cells involving FcepsilonRI and IDO. Allergy 2017, 72, 1686–1693. [Google Scholar] [CrossRef] [PubMed]
- Chung, D.J.; Carvajal, R.D.; Postow, M.A.; Sharma, S.; Pronschinske, K.B.; Shyer, J.A.; Singh-Kandah, S.; Dickson, M.A.; D’Angelo, S.P.; Wolchok, J.D.; et al. Langerhans-type dendritic cells electroporated with TRP-2 mRNA stimulate cellular immunity against melanoma: Results of a phase I vaccine trial. Oncoimmunology 2017, 7, e1372081. [Google Scholar] [CrossRef] [PubMed]
- Gerlini, G.; Sestini, S.; Di Gennaro, P.; Urso, C.; Pimpinelli, N.; Borgognoni, L. Dendritic cells recruitment in melanoma metastasis treated by electrochemotherapy. Clin. Exp. Metastasis 2013, 30, 37–45. [Google Scholar] [CrossRef] [PubMed]
- van den Hout, M.F.; Koster, B.D.; Sluijter, B.J.; van Leeuwen, P.A.; Meijer, S.; van den Tol, M.P.; van den Eertwegh, A.J.; Scheper, R.J.; van de Ven, R.; de Gruijl, T.D. Response: Breslow thickness and excision interval affect the activation state of Langerhans cells in melanoma sentinel lymph nodes. Blood 2012, 119, 4809–4810. [Google Scholar] [CrossRef]
- Gerlini, G.; Di Gennaro, P.; Mariotti, G.; Urso, C.; Chiarugi, A.; Caporale, R.; Pimpinelli, N.; Borgognoni, L. Human Langerhans cells are immature in melanoma sentinel lymph nodes. Blood 2012, 119, 4807–4808, author reply 4809–4810. [Google Scholar] [CrossRef]
- van de Ven, R.; van den Hout, M.F.; Lindenberg, J.J.; Sluijter, B.J.; van Leeuwen, P.A.; Lougheed, S.M.; Meijer, S.; van den Tol, M.P.; Scheper, R.J.; de Gruijl, T.D. Characterization of four conventional dendritic cell subsets in human skin-draining lymph nodes in relation to T-cell activation. Blood 2011, 118, 2502–2510. [Google Scholar] [CrossRef]
- Romano, E.; Rossi, M.; Ratzinger, G.; de Cos, M.A.; Chung, D.J.; Panageas, K.S.; Wolchok, J.D.; Houghton, A.N.; Chapman, P.B.; Heller, G.; et al. Peptide-loaded Langerhans cells, despite increased IL15 secretion and T-cell activation in vitro, elicit antitumor T-cell responses comparable to peptide-loaded monocyte-derived dendritic cells in vivo. Clin. Cancer Res. 2011, 17, 1984–1997. [Google Scholar] [CrossRef] [PubMed]
- Cao, T.; Ueno, H.; Glaser, C.; Fay, J.W.; Palucka, A.K.; Banchereau, J. Both Langerhans cells and interstitial DC cross-present melanoma antigens and efficiently activate antigen-specific CTL. Eur. J. Immunol. 2007, 37, 2657–2667. [Google Scholar] [CrossRef]
- Fay, J.W.; Palucka, A.K.; Paczesny, S.; Dhodapkar, M.; Johnston, D.A.; Burkeholder, S.; Ueno, H.; Banchereau, J. Long-term outcomes in patients with metastatic melanoma vaccinated with melanoma peptide-pulsed CD34(+) progenitor-derived dendritic cells. Cancer Immunol. Immunother. 2006, 55, 1209–1218. [Google Scholar] [CrossRef] [PubMed]
- Bennaceur, K.; Popa, I.; Portoukalian, J.; Berthier-Vergnes, O.; Peguet-Navarro, J. Melanoma-derived gangliosides impair migratory and antigen-presenting function of human epidermal Langerhans cells and induce their apoptosis. Int. Immunol. 2006, 18, 879–886. [Google Scholar] [CrossRef] [PubMed]
- von Bubnoff, D.; Bausinger, H.; Matz, H.; Koch, S.; Hacker, G.; Takikawa, O.; Bieber, T.; Hanau, D.; de la Salle, H. Human epidermal langerhans cells express the immunoregulatory enzyme indoleamine 2,3-dioxygenase. J. Investig. Dermatol. 2004, 123, 298–304. [Google Scholar] [CrossRef]
- Welch, H.G.; Mazer, B.L.; Adamson, A.S. The Rapid Rise in Cutaneous Melanoma Diagnoses. N. Engl. J. Med. 2021, 384, 72–79. [Google Scholar] [CrossRef]
- Cochran, A.J.; Huang, R.R.; Lee, J.; Itakura, E.; Leong, S.P.; Essner, R. Tumour-induced immune modulation of sentinel lymph nodes. Nat. Rev. Immunol. 2006, 6, 659–670. [Google Scholar] [CrossRef]
- Shurin, G.V.; Shurin, M.R.; Bykovskaia, S.; Shogan, J.; Lotze, M.T.; Barksdale, E.M., Jr. Neuroblastoma-derived gangliosides inhibit dendritic cell generation and function. Cancer Res. 2001, 61, 363–369. [Google Scholar]
- Wong, S.L.; Faries, M.B.; Kennedy, E.B.; Agarwala, S.S.; Akhurst, T.J.; Ariyan, C.; Balch, C.M.; Berman, B.S.; Cochran, A.; Delman, K.A.; et al. Sentinel Lymph Node Biopsy and Management of Regional Lymph Nodes in Melanoma: American Society of Clinical Oncology and Society of Surgical Oncology Clinical Practice Guideline Update. J. Clin. Oncol. 2018, 36, 399–413. [Google Scholar] [CrossRef]
- Gerlini, G.; Tun-Kyi, A.; Dudli, C.; Burg, G.; Pimpinelli, N.; Nestle, F.O. Metastatic melanoma secreted IL-10 down-regulates CD1 molecules on dendritic cells in metastatic tumor lesions. Am. J. Pathol. 2004, 165, 1853–1863. [Google Scholar] [CrossRef] [PubMed]
- Polak, M.E.; Borthwick, N.J.; Gabriel, F.G.; Johnson, P.; Higgins, B.; Hurren, J.; McCormick, D.; Jager, M.J.; Cree, I.A. Mechanisms of local immunosuppression in cutaneous melanoma. Br. J. Cancer 2007, 96, 1879–1887. [Google Scholar] [CrossRef] [PubMed]
- Angel, C.E.; Chen, C.J.; Horlacher, O.C.; Winkler, S.; John, T.; Browning, J.; MacGregor, D.; Cebon, J.; Dunbar, P.R. Distinctive localization of antigen-presenting cells in human lymph nodes. Blood 2009, 113, 1257–1267. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Torisu-Itakara, H.; Cochran, A.J.; Kadison, A.; Huynh, Y.; Morton, D.L.; Essner, R. Quantitative analysis of melanoma-induced cytokine-mediated immunosuppression in melanoma sentinel nodes. Clin. Cancer Res. 2005, 11, 107–112. [Google Scholar] [CrossRef] [PubMed]
- Morton, D.L. Lymphatic mapping and sentinel lymphadenectomy for melanoma: Past, present, and future. Ann. Surg. Oncol. 2001, 8, 22S–28S. [Google Scholar] [PubMed]
- Lipson, E.J.; Drake, C.G. Ipilimumab: An anti-CTLA-4 antibody for metastatic melanoma. Clin. Cancer Res. 2011, 17, 6958–6962. [Google Scholar] [CrossRef] [PubMed]
- Hodi, F.S.; O’Day, S.J.; McDermott, D.F.; Weber, R.W.; Sosman, J.A.; Haanen, J.B.; Gonzalez, R.; Robert, C.; Schadendorf, D.; Hassel, J.C.; et al. Improved survival with ipilimumab in patients with metastatic melanoma. N. Engl. J. Med. 2010, 363, 711–723. [Google Scholar] [CrossRef] [PubMed]
- Carlino, M.S.; Larkin, J.; Long, G.V. Immune checkpoint inhibitors in melanoma. Lancet 2021, 398, 1002–1014. [Google Scholar] [CrossRef] [PubMed]
- Lesterhuis, W.J.; Aarntzen, E.H.; De Vries, I.J.; Schuurhuis, D.H.; Figdor, C.G.; Adema, G.J.; Punt, C.J. Dendritic cell vaccines in melanoma: From promise to proof? Crit. Rev. Oncol. Hematol. 2008, 66, 118–134. [Google Scholar] [CrossRef]
- Whiteside, T.L.; Odoux, C. Dendritic cell biology and cancer therapy. Cancer Immunol. Immunother. 2004, 53, 240–248. [Google Scholar] [CrossRef]
- Stoitzner, P.; Schaffenrath, S.; Tripp, C.H.; Reider, D.; Komenda, K.; Del Frari, B.; Djedovic, G.; Ebner, S.; Romani, N. Human skin dendritic cells can be targeted in situ by intradermal injection of antibodies against lectin receptors. Exp. Dermatol. 2014, 23, 909–915. [Google Scholar] [CrossRef] [PubMed]
- Gerlini, G.; Urso, C.; Mariotti, G.; Di Gennaro, P.; Palli, D.; Brandani, P.; Salvadori, A.; Pimpinelli, N.; Reali, U.M.; Borgognoni, L. Plasmacytoid dendritic cells represent a major dendritic cell subset in sentinel lymph nodes of melanoma patients and accumulate in metastatic nodes. Clin. Immunol. 2007, 125, 184–193. [Google Scholar] [CrossRef] [PubMed]
- Vuylsteke, R.J.; van Leeuwen, P.A.; Meijer, S.; Wijnands, P.G.; Statius Muller, M.G.; Busch, D.H.; Scheper, R.J.; de Gruijl, T.D. Sampling tumor-draining lymph nodes for phenotypic and functional analysis of dendritic cells and T cells. Am. J. Pathol. 2002, 161, 19–26. [Google Scholar] [CrossRef] [PubMed]
- Elliott, B.; Cook, M.G.; John, R.J.; Powell, B.W.; Pandha, H.; Dalgleish, A.G. Successful live cell harvest from bisected sentinel lymph nodes research report. J. Immunol. Methods 2004, 291, 71–78. [Google Scholar] [CrossRef] [PubMed]
- Steinman, R.M.; Turley, S.; Mellman, I.; Inaba, K. The induction of tolerance by dendritic cells that have captured apoptotic cells. J. Exp. Med. 2000, 191, 411–416. [Google Scholar] [CrossRef] [PubMed]
- Hawiger, D.; Inaba, K.; Dorsett, Y.; Guo, M.; Mahnke, K.; Rivera, M.; Ravetch, J.V.; Steinman, R.M.; Nussenzweig, M.C. Dendritic cells induce peripheral T cell unresponsiveness under steady state conditions in vivo. J. Exp. Med. 2001, 194, 769–779. [Google Scholar] [CrossRef]
- Ito, M.; Minamiya, Y.; Kawai, H.; Saito, S.; Saito, H.; Nakagawa, T.; Imai, K.; Hirokawa, M.; Ogawa, J. Tumor-derived TGFbeta-1 induces dendritic cell apoptosis in the sentinel lymph node. J. Immunol. 2006, 176, 5637–5643. [Google Scholar] [CrossRef] [PubMed]
- Itakura, E.; Huang, R.R.; Wen, D.R.; Paul, E.; Wunsch, P.H.; Cochran, A.J. IL-10 expression by primary tumor cells correlates with melanoma progression from radial to vertical growth phase and development of metastatic competence. Mod. Pathol. 2011, 24, 801–809. [Google Scholar] [CrossRef]
- Munn, D.H.; Mellor, A.L. Indoleamine 2,3 dioxygenase and metabolic control of immune responses. Trends Immunol. 2013, 34, 137–143. [Google Scholar] [CrossRef]
- Jacobs, J.F.; Nierkens, S.; Figdor, C.G.; de Vries, I.J.; Adema, G.J. Regulatory T cells in melanoma: The final hurdle towards effective immunotherapy? Lancet Oncol. 2012, 13, e32–e42. [Google Scholar] [CrossRef]
- Jandus, C.; Speiser, D.; Romero, P. Recent advances and hurdles in melanoma immunotherapy. Pigment. Cell Melanoma Res. 2009, 22, 711–723. [Google Scholar] [CrossRef] [PubMed]
- Di Gennaro, P.; Romoli, M.R.; Gerlini, G.; D’Amico, M.; Brandani, P.; Pimpinelli, N.; Borgognoni, L. IDO and CD83 expression in human epidermal Langerhans cells. J. Dermatol. Sci. 2014, 73, 172–174. [Google Scholar] [CrossRef]
- Gerlini, G.; Di Gennaro, P.; Mariotti, G.; Urso, C.; Chiarugi, A.; Pimpinelli, N.; Borgognoni, L. Indoleamine 2,3-dioxygenase+ cells correspond to the BDCA2+ plasmacytoid dendritic cells in human melanoma sentinel nodes. J. Investig. Dermatol. 2010, 130, 898–901. [Google Scholar] [CrossRef] [PubMed]
- Speeckaert, R.; Vermaelen, K.; van Geel, N.; Autier, P.; Lambert, J.; Haspeslagh, M.; van Gele, M.; Thielemans, K.; Neyns, B.; Roche, N.; et al. Indoleamine 2,3-dioxygenase, a new prognostic marker in sentinel lymph nodes of melanoma patients. Eur. J. Cancer 2012, 48, 2004–2011. [Google Scholar] [CrossRef] [PubMed]
- Munn, D.H.; Mellor, A.L. IDO in the Tumor Microenvironment: Inflammation, Counter-Regulation, and Tolerance. Trends Immunol. 2016, 37, 193–207. [Google Scholar] [CrossRef] [PubMed]
- Prendergast, G.C.; Mondal, A.; Dey, S.; Laury-Kleintop, L.D.; Muller, A.J. Inflammatory Reprogramming with IDO1 Inhibitors: Turning Immunologically Unresponsive ’Cold’ Tumors ’Hot’. Trends Cancer 2018, 4, 38–58. [Google Scholar] [CrossRef] [PubMed]
- Brody, J.R.; Costantino, C.L.; Berger, A.C.; Sato, T.; Lisanti, M.P.; Yeo, C.J.; Emmons, R.V.; Witkiewicz, A.K. Expression of indoleamine 2,3-dioxygenase in metastatic malignant melanoma recruits regulatory T cells to avoid immune detection and affects survival. Cell Cycle 2009, 8, 1930–1934. [Google Scholar] [CrossRef]
- Rubel, F.; Kern, J.S.; Technau-Hafsi, K.; Uhrich, S.; Thoma, K.; Hacker, G.; von Bubnoff, N.; Meiss, F.; von Bubnoff, D. Indoleamine 2,3-Dioxygenase Expression in Primary Cutaneous Melanoma Correlates with Breslow Thickness and Is of Significant Prognostic Value for Progression-Free Survival. J. Investig. Dermatol. 2018, 138, 679–687. [Google Scholar] [CrossRef] [PubMed]
- van den Hout, M.F.; Sluijter, B.J.; Santegoets, S.J.; van Leeuwen, P.A.; van den Tol, M.P.; van den Eertwegh, A.J.; Scheper, R.J.; de Gruijl, T.D. Local delivery of CpG-B and GM-CSF induces concerted activation of effector and regulatory T cells in the human melanoma sentinel lymph node. Cancer Immunol. Immunother. 2016, 65, 405–415. [Google Scholar] [CrossRef]
- Sluijter, B.J.; van den Hout, M.F.; Koster, B.D.; van Leeuwen, P.A.; Schneiders, F.L.; van de Ven, R.; Molenkamp, B.G.; Vosslamber, S.; Verweij, C.L.; van den Tol, M.P.; et al. Arming the Melanoma Sentinel Lymph Node through Local Administration of CpG-B and GM-CSF: Recruitment and Activation of BDCA3/CD141(+) Dendritic Cells and Enhanced Cross-Presentation. Cancer Immunol. Res. 2015, 3, 495–505. [Google Scholar] [CrossRef]
- Vuylsteke, R.J.; Molenkamp, B.G.; van Leeuwen, P.A.; Meijer, S.; Wijnands, P.G.; Haanen, J.B.; Scheper, R.J.; de Gruijl, T.D. Tumor-specific CD8+ T cell reactivity in the sentinel lymph node of GM-CSF-treated stage I melanoma patients is associated with high myeloid dendritic cell content. Clin. Cancer Res. 2006, 12, 2826–2833. [Google Scholar] [CrossRef] [PubMed]
- Molenkamp, B.G.; van Leeuwen, P.A.; van den Eertwegh, A.J.; Sluijter, B.J.; Scheper, R.J.; Meijer, S.; de Gruijl, T.D. Immunomodulation of the melanoma sentinel lymph node: A novel adjuvant therapeutic option. Immunobiology 2006, 211, 651–661. [Google Scholar] [CrossRef] [PubMed]
- Cochran, A.J.; Morton, D.L.; Stern, S.; Lana, A.M.; Essner, R.; Wen, D.R. Sentinel lymph nodes show profound downregulation of antigen-presenting cells of the paracortex: Implications for tumor biology and treatment. Mod. Pathol. 2001, 14, 604–608. [Google Scholar] [CrossRef] [PubMed]
- Katsenelson, N.S.; Shurin, G.V.; Bykovskaia, S.N.; Shogan, J.; Shurin, M.R. Human small cell lung carcinoma and carcinoid tumor regulate dendritic cell maturation and function. Mod. Pathol. 2001, 14, 40–45. [Google Scholar] [CrossRef]
- Steinman, R.M. Dendritic cells in vivo: A key target for a new vaccine science. Immunity 2008, 29, 319–324. [Google Scholar] [CrossRef] [PubMed]
- Barratt-Boyes, S.M.; Figdor, C.G. Current issues in delivering DCs for immunotherapy. Cytotherapy 2004, 6, 105–110. [Google Scholar] [CrossRef] [PubMed]
- Figdor, C.G.; de Vries, I.J.; Lesterhuis, W.J.; Melief, C.J. Dendritic cell immunotherapy: Mapping the way. Nat. Med. 2004, 10, 475–480. [Google Scholar] [CrossRef]
- de Vries, I.J.; Adema, G.J.; Punt, C.J.; Figdor, C.G. Phenotypical and functional characterization of clinical-grade dendritic cells. Methods Mol. Med. 2005, 109, 113–126. [Google Scholar] [CrossRef]
Reference | Article Type | Objective of the Study | Results |
---|---|---|---|
Gerlini et al., 2022 [13] | Research article | To investigate SLN LCs characteristics in patients with melanoma by immunohistochemical staining for IDO1 (a marker for immunotolerance)/CD83 (a marker for maturation profile). | Metastatic SLNs presented a statistically significant increased subset of tolerogenic immature LC (IDO1+CD83−) compared to non-metastatic SLNs. |
Tajpara et al., 2018 [14] | Research article | To study the expression and activation of sensing pattern recognition receptors in LCs and keratinocytes of human skin as possible molecular targets for therapeutic vaccination. | LCs exclusively expressed melanoma differentiation-associated protein 5 (MDA5), which could represent a target for the epicutaneous delivery of therapeutic vaccines. |
Romoli et al., 2017 [15] | Research article | To evaluate HLA-class I APM components in LCs. | APM levels were low in immature epidermal LCs compared to mature LCs. Moreover, the APM component was significantly lower in SLN LCs of patients with thick melanomas compared to thin/intermediate lesions. |
Koch et al., 2017 [16] | Research article | To evaluate the expression of an immune regulator in LCs: the AhR and the functional consequences. | AhR activation upregulates IDO expression in LCs, possibly dampening allergen-induced inflammation in atopic dermatitis. |
Chung et al., 2017 [17] | Phase I vaccine trial | To evaluate the effectiveness of a vaccine based on autologous LCs in melanoma patients. | LCs were electroporated with murine tyrosinase-related peptide-2 (mTRP2) mRNA. The vaccines were safe and immunogenic in 9 patients. |
Gerlini et al., 2013 [18] | Research article | To assess the presence of DCs in the inflammatory perilesional infiltrate following electrochemotherapy. | Electrochemotherapy induced LC activation, migration to regional lymph nodes and maturation (CD83 expression). |
Van den Hout et al., 2012 [19] | Letter to the editor (response to Gerlini et al., 2012 [20]) | To characterize human DC subsets residing in SLNs of melanoma patients. | Melanoma-draining SLNs host skin-derived cDCs (in particular LCs), and the maturation state depends on Breslow thickness and the excision interval state. |
Gerlini et al., 2012 [20] | Letter to the editor (response to Van de Ven et al., 2011 [21]) | To characterize human DC subsets residing in SLNs of melanoma patients. | Melanoma-draining SLNs host immature skin-derived cDCs (in particular LCs), thus presenting an inferior ability to activate T-cells. |
Van de Ven et al., 2011 [21] | Research article | To characterize human DC subsets residing in SLNs of melanoma patients. | Melanoma-draining SLNs host skin-derived cDCs (in particular LCs) that are characterized by a high maturation state but an inferior ability to activate T-cells. |
Romano et al., 2011 [22] | Phase I clinical trial | To compare LCs in vivo tumor immunogen activity with monocyte-derived DCs (moDCs) in patients with AJCC stage III or IV melanoma. | The two vaccines were both safe and immunogenic, but LCs synthesized much more IL15 than moDCs. |
Stoitzner et al., 2008 [4] | Research article | To evaluate the role of LCs in tumor immunotherapy following epicutaneous immunization with OVA protein (directed against OVA-expressing melanoma cells). | LCs play a central role. Indeed, in a mouse model, LC depletion reduced the tumor-protective effect. |
Cao et al., 2007 [23] | Research article | To assess DCs ability to present melanoma antigens to CD8+ T cells. | In vitro, both LCs and DCs can cross-present melanoma antigens to naive CD8+ T cells, promoting host immune response. |
Fay et al., 2006 [24] | Phase I clinical trial | To evaluate the potential role of DCs vaccine (including LCs) loaded with melanoma antigens. | The vaccine was safe and immunogenic in 10 patients. |
Bennaceur et al., 2006 [25] | Research article | To assess the effect of human melanoma cells purified gangliosides on LCs. | In vitro, GM3 and GD3 gangliosides impaired LC maturation, reducing their T immune-stimulating effect. |
Von Bubnoff et al., 2004 [26] | Research article | To study LC functions. | LC stimulation with interferon-c induces IDO1 expression, inhibiting T-cell proliferation. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gerlini, G.; Susini, P.; Sestini, S.; Brandani, P.; Giannotti, V.; Borgognoni, L. Langerhans Cells in Sentinel Lymph Nodes from Melanoma Patients. Cancers 2024, 16, 1890. https://doi.org/10.3390/cancers16101890
Gerlini G, Susini P, Sestini S, Brandani P, Giannotti V, Borgognoni L. Langerhans Cells in Sentinel Lymph Nodes from Melanoma Patients. Cancers. 2024; 16(10):1890. https://doi.org/10.3390/cancers16101890
Chicago/Turabian StyleGerlini, Gianni, Pietro Susini, Serena Sestini, Paola Brandani, Vanni Giannotti, and Lorenzo Borgognoni. 2024. "Langerhans Cells in Sentinel Lymph Nodes from Melanoma Patients" Cancers 16, no. 10: 1890. https://doi.org/10.3390/cancers16101890
APA StyleGerlini, G., Susini, P., Sestini, S., Brandani, P., Giannotti, V., & Borgognoni, L. (2024). Langerhans Cells in Sentinel Lymph Nodes from Melanoma Patients. Cancers, 16(10), 1890. https://doi.org/10.3390/cancers16101890