Helicobacter pylori Infection in Patients with Gastric Cancer: A 2024 Update
Abstract
:Simple Summary
Abstract
1. Introduction
2. Immunopathology and Virulence Factors
3. Variable Genes and Hosts
4. CG Clinical Trajectory in H. pylori-Eradicated Patients
5. Treatment
6. Future Directions
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Schulz, C.; Schütte, K.; Link, A.; Malfertheiner, P. 1983–2023—Four decades Helicobacter pylori—What’s next? Z Gastroenterol 2024, 62, 512–516. [Google Scholar] [CrossRef] [PubMed]
- Ali, A.; AlHussaini, K.I. Helicobacter pylori: A Contemporary Perspective on Pathogenesis, Diagnosis and Treatment Strategies. Microorganisms 2024, 12, 222. [Google Scholar] [CrossRef] [PubMed]
- Chong, Y.; Yu, D.; Lu, Z.; Nie, F. Role and research progress of spasmolytic polypeptide-expressing metaplasia in gastric cancer (Review). Int. J. Oncol. 2024, 64, 33. [Google Scholar] [CrossRef]
- Yang, S.; Hao, S.; Ye, H.; Zhang, X. Cross-talk between Helicobacter pylori and gastric cancer: A scientometric analysis. Front. Cell. Infect. Microbiol. 2024, 14, 1353094. [Google Scholar] [CrossRef]
- Sharma, R. Burden of Stomach Cancer Incidence, Mortality, Disability-Adjusted Life Years, and Risk Factors in 204 Countries, 1990–2019: An Examination of Global Burden of Disease 2019. J. Gastrointest. Cancer 2024. [Google Scholar] [CrossRef]
- Giubelan, A.; Stancu, M.I.; Mogoantă, S.S.; Radu, R.I.; Mălăescu, G.D. Gastric Cancer in Gorj County—A Clinical-Statistical Study. Curr. Health Sci. J. 2023, 49, 343–350. [Google Scholar] [CrossRef]
- Morgos, D.-T.; Stefani, C.; Miricescu, D.; Greabu, M.; Stanciu, S.; Nica, S.; Stanescu-Spinu, I.-I.; Balan, D.G.; Balcangiu-Stroescu, A.-E.; Coculescu, E.-C.; et al. Targeting PI3K/AKT/mTOR and MAPK Signaling Pathways in Gastric Cancer. Int. J. Mol. Sci. 2024, 25, 1848. [Google Scholar] [CrossRef] [PubMed]
- Usui, G.; Matsusaka, K.; Huang, K.K.; Zhu, F.; Shinozaki, T.; Fukuyo, M.; Rahmutulla, B.; Yogi, N.; Okada, T.; Minami, M.; et al. Integrated environmental, lifestyle, and epigenetic risk prediction of primary gastric neoplasia using the longitudinally monitored cohorts. EBioMedicine 2023, 98, 104844. [Google Scholar] [CrossRef]
- Engelsberger, V.; Gerhard, M.; Mejias-Luque, R. Effects of Helicobacter pylori infection on intestinal microbiota, immunity and colorectal cancer risk. Front. Cell. Infect. Microbiol. 2024, 14, 1339750. [Google Scholar] [CrossRef]
- Pan, H.; Zhang, Y.-L.; Fang, C.-Y.; Chen, Y.-D.; He, L.-P.; Zheng, X.-L.; Li, X. Retrospective cohort study investigating association between precancerous gastric lesions and colorectal neoplasm risk. Front. Oncol. 2024, 14, 1320020. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Yang, H.; Zhang, W.; Li, Z.; Ji, R. Disruption of the gastric epithelial barrier in Correa’s cascade: Clinical evidence via confocal endomicroscopy. Helicobacter 2024, 29, e13065. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; Peppelenbosch, M.; Fuhler, G. Impact of Helicobacter pylori infection status on outcomes among patients with advanced gastric cancer treated with immune checkpoint inhibitors. J. Immunother. Cancer 2024, 12, e008422. [Google Scholar] [CrossRef]
- Burz, C.; Pop, V.; Silaghi, C.; Lupan, I.; Samasca, G. Prognosis and Treatment of Gastric Cancer: A 2024 Update. Cancers 2024, 16, 1708. [Google Scholar] [CrossRef]
- Shaopeng, Z.; Yang, Z.; Yuan, F.; Chen, H.; Zhengjun, Q. Regulation of regulatory T cells and tumor-associated macrophages in gastric cancer tumor microenvironment. Cancer Med. 2024, 13, e6959. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; He, Y.; Zhang, X.; Fu, B.; Song, Z.; Wang, L.; Fu, R.; Lu, X.; Xing, J.; Lv, J.; et al. Sustained exposure to Helicobacter pylori induces immune tolerance by desensitizing TLR6. Gastric Cancer 2024, 27, 324–342. [Google Scholar] [CrossRef] [PubMed]
- Guo, Y.; Chen, J.; Huang, Y.; Ke, S.; Xie, F.; Li, D.; Li, B.; Lu, H. Increased infiltration of CD4+IL-17A+FOXP3+ T cells in Helicobacter pylori-induced gastritis. Eur. J. Immunol. 2024, 54, e2350662. [Google Scholar] [CrossRef] [PubMed]
- Afkhamipour, M.; Kaviani, F.; Dalali, S.; Piri-Gharaghie, T.; Doosti, A. Potential Gastric Cancer Immunotherapy: Stimulating the Immune System with Helicobacter pylori pIRES2-DsRed-Express-ureF DNA Vaccines. Arch. Immunol. Et Ther. Exp. 2024, 72. [Google Scholar] [CrossRef]
- Morin, C.; Verma, V.T.; Arya, T.; Casu, B.; Jolicoeur, E.; Ruel, R.; Marinier, A.; Sygusch, J.; Baron, C. Structure-based design of small molecule inhibitors of the cagT4SS ATPase Cagα of Helicobacter pylori. Biochem. Cell Biol. 2024. [Google Scholar] [CrossRef] [PubMed]
- Yu, B.; de Vos, D.; Guo, X.; Peng, S.; Xie, W.; Peppelenbosch, M.P.; Fu, Y.; Fuhler, G.M. IL-6 facilitates cross-talk between epithelial cells and tumor-associated macrophages in Helicobacter pylori-linked gastric carcinogenesis. Neoplasia 2024, 50, 100981. [Google Scholar] [CrossRef]
- Anthofer, M.; Windisch, M.; Haller, R.; Ehmann, S.; Wrighton, S.; Miller, M.; Schernthanner, L.; Kufferath, I.; Schauer, S.; Jelušić, B.; et al. Immune evasion by proteolytic shedding of natural killer group 2, member D ligands in Helicobacter pylori infection. Front. Immunol. 2024, 15, 1282680. [Google Scholar] [CrossRef]
- Jia, K.; Chen, Y.; Xie, Y.; Wang, X.; Hu, Y.; Sun, Y.; Cao, Y.; Zhang, L.; Wang, Y.; Wang, Z.; et al. Helicobacter pylori and immunotherapy for gastrointestinal cancer. Innovation 2024, 5, 100561. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Zhao, M.; Shi, F.; Zheng, S.; Xiong, L.; Zheng, L. A review of signal pathway induced by virulent protein CagA of Helicobacter pylori. Front. Cell. Infect. Microbiol. 2023, 13, 1062803. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Dong, Z.; Xiang, H.; Chen, S.; Yu, W.; Liang, C. Helicobacter pylori CagA protein induces gastric cancer stem cell-like properties through the Akt/FOXO3a axis. J. Cell. Biochem. 2024, 125, e30527. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Yao, Z.; Cao, J.; Liu, Y.; Zhu, L.; Mao, B.; Cui, F.; Shao, S. Helicobacter pylori upregulates circPGD and promotes development of gastric cancer. J. Cancer Res. Clin. Oncol. 2024, 150, 104. [Google Scholar] [CrossRef]
- Chang, M.; Cui, X.; Sun, Q.; Wang, Y.; Liu, J.; Sun, Z.; Ren, J.; Sun, Y.; Han, L.; Li, W. Lnc-PLCB1 is stabilized by METTL14 induced m6A modification and inhibits Helicobacter pylori mediated gastric cancer by destabilizing DDX21. Cancer Lett. 2024, 588, 216746. [Google Scholar] [CrossRef] [PubMed]
- Shen, D.; Zhang, J.; Zhang, Z. Upregulated LncRNA-LINC00659 expression by H. pylori infection promoted the progression of gastritis to cancer by regulating PTBP1 expression. Indian J. Pathol. Microbiol. 2024. [Google Scholar] [CrossRef] [PubMed]
- Zeng, J.; Xie, C.; Huang, Z.; Cho, C.H.; Chan, H.; Li, Q.; Ashktorab, H.; Smoot, D.T.; Wong, S.H.; Yu, J.; et al. LOX-1 acts as an N6-methyladenosine-regulated receptor for Helicobacter pylori by binding to the bacterial catalase. Nat. Commun. 2024, 15, 669. [Google Scholar] [CrossRef]
- Ma, C.; Tian, Z.; Wang, D.; Gao, W.; Qian, L.; Zang, Y.; Xu, X.; Jia, J.; Liu, Z. Ubiquitin-specific Protease 35 Promotes Gastric Cancer Metastasis by Increasing the Stability of Snail1. Int. J. Biol. Sci. 2024, 20, 953–967. [Google Scholar] [CrossRef] [PubMed]
- Kashani, S.F.; Abedini, Z.; Darehshouri, A.F.; Jazi, K.; Bereimipour, A.; Malekraeisi, M.A.; Javanshir, H.T.; Mahmoodzadeh, H.; Hadjilooei, F. Investigation of Molecular Mechanisms of S-1, Docetaxel and Cisplatin in Gastric Cancer with a History of Helicobacter pylori Infection. Mol. Biotechnol. 2024, 66, 1303–1313. [Google Scholar] [CrossRef]
- Maciel, D.N.; Silva, L.L.d.L.; Assunção, L.D.P.; Rasmussen, L.T.; Barbosa, M.S. Helicobacter pylori Oipa Virulence Gene as a Molecular Marker Of Severe Gastropathies. Arq. De Gastroenterol. 2024, 61, e23110. [Google Scholar] [CrossRef]
- Pulaski, M.; Dungan, M.; Weber, M.; Constantino, G.; Katona, B.W. Low prevalence of gastric intestinal metaplasia and Helicobacter pylori on surveillance upper endoscopy in Lynch syndrome. Fam. Cancer 2024, 23, 23–27. [Google Scholar] [CrossRef] [PubMed]
- Pratas, A.; Malhão, B.; Palma, R.; Mendonça, P.; Cervantes, R.; Marques-Ramos, A. Effects of apigenin on gastric cancer cells. Biomed. Pharmacother. 2024, 172, 116251. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.A.; Priyadharshini, T.; Ragunathan, P.; Ponnuraj, K. Analyzing the interaction of Helicobacter pylori GAPDH with host molecules and hemin: Inhibition of hemin binding. Biophys. Chem. 2024, 307, 107193. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Shangguan, J.; Lu, Y.; Rong, J.; Yang, Q.; Yang, Y.; Xie, C.; Shu, X. ROS-mediated up-regulation of SAE1 by Helicobacter pylori promotes human gastric tumor genesis and progression. J. Transl. Med. 2024, 22, 148. [Google Scholar] [CrossRef] [PubMed]
- González-Stegmaier, R.; Aguila-Torres, P.; Villarroel-Espíndola, F. Historical and Molecular Perspectives on the Presence of Helicobacter pylori in Latin America: A Niche to Improve Gastric Cancer Risk Assessment. Int. J. Mol. Sci. 2024, 25, 1761. [Google Scholar] [CrossRef] [PubMed]
- Mahmud, T.; Ahmed, F.; Rana, J.; Rahman, A.; Atta, A.; Saif-Ur-Rahman, K. Association of HLA gene polymorphisms with Helicobacter pylori related gastric cancer—A systematic review. HLA 2024, 103, e15394. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Gao, F.; Dong, W.; Song, Q.; Jia, Y. Association study between SNPs in MST1 and MST2 genes and H. pylori infection as well as non-cardia gastric carcinogenesis. Dig. Dis. 2024. [Google Scholar] [CrossRef]
- Bhattacharjee, A.; Sahoo, O.S.; Sarkar, A.; Bhattacharya, S.; Chowdhury, R.; Kar, S.; Mukherjee, O. Infiltration to infection: Key virulence players of Helicobacter pylori pathogenicity. Infection 2024, 52, 345–384. [Google Scholar] [CrossRef]
- Takahashi, S.; Watanabe, K.; Fukuda, S.; Yoshida, T.; Dohmen, T.; Fujiwara, J.; Matsuyama, M.; Fujimori, S.; Funaoka, M.; Shirayama, K.; et al. Helicobacter pylori Eradication Does Not Adversely Affect the Clinical Course of Gastric Cancer: A Multicenter Study on Screening Endoscopic Examination in Japan. Cancers 2024, 16, 733. [Google Scholar] [CrossRef]
- Kobayashi, M.; Fujisaki, J.; Namikawa, K.; Hoteya, S.; Sasaki, A.; Shibagaki, K.; Yao, K.; Abe, S.; Oda, I.; Ueyama, H.; et al. Multicenter study of invasive gastric cancer detected after 10 years of Helicobacter pylori eradication in Japan: Clinical, endoscopic, and histopathologic characteristics. DEN Open 2024, 4, e345. [Google Scholar] [CrossRef]
- Cheung, K.S. Big data approach in the field of gastric and colorectal cancer research. J. Gastroenterol. Hepatol. 2024. [Google Scholar] [CrossRef]
- He, F.; Wang, S.; Zheng, R.; Gu, J.; Zeng, H.; Sun, K.; Chen, R.; Li, L.; Han, B.; Li, X.; et al. Trends of gastric cancer burdens attributable to risk factors in China from 2000 to 2050. Lancet Reg. Heal West. Pac. 2024, 44, 101003. [Google Scholar] [CrossRef]
- Mohammed, R.A.; Alghamdi, I.K.; Alqahtani, M.F.; Alhelali, S.N.; Sultan, I.; Badawy, M.I.; Barakat, M.M.; Abozeid, H.E.; Mohammed, H.L.; Mohammed, R.A.; et al. Histopathological Findings in Adult Patients With Dyspepsia and Their Association With Helicobacter pylori Infection. Cureus 2023, 15, e50981. [Google Scholar] [CrossRef] [PubMed]
- Bongkotvirawan, P.; Aumpan, N.; Pornthisarn, B.; Chonprasertsuk, S.; Siramolpiwat, S.; Bhanthumkomol, P.; Nunanun, P.; Issariyakulkarn, N.; Mahachai, V.; Pawa, K.K.; et al. Predictive Factors Associated with Survival in Female Gastric Cancer Patients in Southeast Asia. Women’s Heal Rep. 2024, 5, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Lama, S.D.; García, D.D.; Cumplido, M.T.; Alvarez, Y.L. Successful eradication rate of Helicobacter pylori with empirical antibiotic treatment in pediatric patients from a Tertiary Hospital. Andes Pediatr. 2023, 94, 721–728. [Google Scholar] [CrossRef]
- Wang, Y.-M.; Chen, M.-Y.; Chen, J.; Zhang, X.-H.; Feng, Y.; Han, Y.-X.; Li, Y.-L. Success of susceptibility-guided eradication of Helicobacter pylori in a region with high secondary clarithromycin and levofloxacin resistance rates. World J. Gastroenterol. 2024, 30, 184–195. [Google Scholar] [CrossRef] [PubMed]
- Hasanuzzaman; Bang, C.S.; Gong, E.J. Antibiotic Resistance of Helicobacter pylori: Mechanisms and Clinical Implications. J. Korean Med. Sci. 2024, 39, e44. [Google Scholar] [CrossRef]
- Malfertheiner, P.; Schulz, C.; Hunt, R.H. Helicobacter pylori Infection: A 40-year journey through shifting the paradigm to transforming the management. Dig. Dis. 2024. [Google Scholar] [CrossRef]
- Zou, Y.; Yuan, Y.; Zhou, Q.; Yue, Z.; Liu, J.; Fan, L.; Xu, H.; Xin, L. The Role of Methionine Restriction in Gastric Cancer: A Summary of Mechanisms and a Discussion on Tumor Heterogeneity. Biomolecules 2024, 14, 161. [Google Scholar] [CrossRef]
- Arai, J.; Miyawaki, A.; Aoki, T.; Niikura, R.; Hayakawa, Y.; Fujiwara, H.; Ihara, S.; Fujishiro, M.; Kasuga, M. Association between vonoprazan and the risk of gastric cancer after Helicobacter pylori eradication. Clin. Gastroenterol. Hepatol. 2024. [Google Scholar] [CrossRef]
- Jonaitis, P.; Kupcinskas, J.; Gisbert, J.P.; Jonaitis, L. Helicobacter pylori Eradication Treatment in Older Patients. Drugs Aging 2024, 41, 141–151. [Google Scholar] [CrossRef]
- Gong, H.; Wang, X.; Hu, X.; Liao, M.; Yuan, C.; Lu, J.R.; Gao, L.; Yan, X. Effective Treatment of Helicobacter pylori Infection Using Supramolecular Antimicrobial Peptide Hydrogels. Biomacromolecules 2024, 25, 1602–1611. [Google Scholar] [CrossRef]
- Shirley, M. Vonoprazan: A Review in Helicobacter pylori Infection. Drugs 2024, 84, 319–327. [Google Scholar] [CrossRef] [PubMed]
- Kammoun, A.K.; Hafez, H.M.; Kamel, E.B.; Fawzy, M.G. A comparative analysis of univariate versus multivariate eco-friendly spectrophotometric manipulations for resolving severely overlapped spectra of vonoprazan and amoxicillin new combination. Anal. Biochem. 2024, 689, 115501. [Google Scholar] [CrossRef] [PubMed]
- Mascaretti, F.; Haider, S.; Amoroso, C.; Caprioli, F.; Ramai, D.; Ghidini, M. Role of the Microbiome in the Diagnosis and Management of Gastroesophageal Cancers. J. Gastrointest. Cancer 2024. [Google Scholar] [CrossRef] [PubMed]
- Fakharian, F.; Sadeghi, A.; Pouresmaeili, F.; Soleimani, N.; Yadegar, A. Anti-inflammatory effects of extracellular vesicles and cell-free supernatant derived from Lactobacillus crispatus strain RIGLD-1 on Helicobacter pylori-induced inflammatory response in gastric epithelial cells in vitro. Folia Microbiol. 2024. [Google Scholar] [CrossRef] [PubMed]
- Kaveh-Samani, A.; Dalali, S.; Kaviani, F.; Piri-Gharaghie, T.; Doosti, A. Oral administration of DNA alginate nanovaccine induced immune-protection against Helicobacter pylori in Balb/C mice. BMC Immunol. 2024, 25, 11. [Google Scholar] [CrossRef]
- Zou, T.H.; Gao, Q.Y.; De Liu, S.; Li, Y.Q.; Meng, X.J.; Zhang, G.X.; Bin Tian, Z.; Zou, X.P.; He, S.; Hou, X.H.; et al. Effectiveness and safety of Moluodan in the treatment of precancerous lesions of gastric cancer: A randomized clinical trial. J. Dig. Dis. 2024, 25, 27–35. [Google Scholar] [CrossRef] [PubMed]
- Peng, Y.; Lei, X.; Yang, Q.; Zhang, G.; He, S.; Wang, M.; Ling, R.; Zheng, B.; He, J.; Chen, X.; et al. Helicobacter pylori CagA-mediated ether lipid biosynthesis promotes ferroptosis susceptibility in gastric cancer. Exp. Mol. Med. 2024, 56, 441–452. [Google Scholar] [CrossRef]
- Feng, Z.; Li, H.; Hao, Y.; Peng, C.; Ou, L.; Jia, J.; Xun, M.; Zou, Y.; Chen, M.; Zhang, G.; et al. In vitro anti-Helicobacter pylori activity and the underlining mechanism of an empirical herbal formula—Hezi Qingyou. Front. Microbiol. 2024, 15, 1355460. [Google Scholar] [CrossRef]
- Garg, A.; Karhana, S.; Khan, M.A. Nanomedicine for eradication of Helicobacter pylori: Recent advances, challenges and future perspective. Future Microbiol. 2024, 19, 431–447. [Google Scholar] [CrossRef] [PubMed]
- Rugge, M.; Genta, R.M.; Malfertheiner, P.; Dinis-Ribeiro, M.; El-Serag, H.; Graham, D.Y.; Kuipers, E.J.; Leung, W.K.; Park, J.Y.; Rokkas, T.; et al. RE.GA.IN.: The Real-world Gastritis Initiative–updating the updates. Gut 2024, 73, 407–441. [Google Scholar] [CrossRef] [PubMed]
- Meliț, L.E.; Mărginean, C.O.; Balas, R.B. The Most Recent Insights into the Roots of Gastric Cancer. Life 2024, 14, 95. [Google Scholar] [CrossRef] [PubMed]
Immunological Studies | References |
---|---|
The development of novel GC treatment targets may be influenced by the tumor immune microenvironment (TIME) of GC. | [14] |
TLR6 might be a good therapeutic candidate. | [15] |
FOXP3+ T lymphocytes pick up on triggers related to inflammation. | [16] |
DNA vaccines against H. pylori pIRES2-DsRed-Express-ureF may be useful as immunotherapeutics. | [17] |
The inhibition of T4SS-determined extracellular pili assembly by 1G2 and its derivatives provides a mechanism for their anti-virulence impact. | [18] |
IL-6-driven autocrine and paracrine positive feedback loops between macrophages and stomach epithelial cells. | [19] |
H. pylori changes the NKG2D pathway. | [20] |
Tumor microenvironments are heated by H. pylori infection, and this outcome is beneficial for immunotherapy in the treatment of GC. | [21] |
Genetics Studies | References |
---|---|
GC cells’ transition into a stemness stage and the regulating role of the Akt/FOXO3a axis. | [23] |
For therapeutic intervention, CircPGD might be a promising new target. | [24] |
One potential new target for GC therapy is lnc-PLCB1. | [25] |
For stomach disorders linked to H. pylori, LINC00659 may prove to be a unique, promising prognostic and therapeutic marker. | [26] |
H. pylori adhesion is decreased by the m6A alteration of the host LOX-1 mRNA. | [27] |
One possible target for GC treatment could be USP35. | [28] |
The proteins NCOR1, KIT, MITF, ESF1, ARNT2, TCF7L2, and KRR1 have been linked to GC, whether or not H. pylori is present. | [29] |
An essential pathogenicity marker, the H. pylori oipA genotype, has been linked to the severity of gastric disorders. | [30] |
Significance of baseline biopsies of the stomach antrum. | [31] |
Api controls several GC hallmarks. | [32] |
GAPDH has been identified as a heme chaperone. | [33] |
SEA1 may be a potential treatment option. | [34] |
Genetic variety of H. pylori in various parts of the world. | [35] |
The development of GC and mortality related to H. pylori are linked to particular polymorphisms. | [36] |
The TT genotype of rs7827435 and the CC genotype of rs10955176 may operate as protective factors against the risk of noncardia GC and H. pylori infection, respectively. | [37] |
The course of an infection is determined by the interplay among virulence factors, phase-variable genes, and host genetics. | [38] |
Current Treatment Options Studies | References |
---|---|
Lower eradication rate with the empirical regimens employed. | [45] |
High secondary resistance rates to LFX and CLA in treatment. | [46] |
Antibiotic- and multidrug-resistant forms are becoming more common. | [47] |
Gastritis caused by H. pylori is classified as an infectious condition, and all symptomatic patients need to receive treatment. | [48] |
Methionine-restricted therapies have been shown to inhibit GC. | [49] |
In H. pylori-eradicated individuals, the use of PCABs was linked to a greater risk of GC, with effects according to dosage and duration. | [50] |
Optimal eradication effectiveness (>90%) is mostly achieved with bismuth- and non-bismuth-based quadruple therapies. | [51] |
Effective and biosafe AMP hydrogels could be good options for the clinical management of H. pylori infections. | [52] |
In PHALCON-HP, the dual- and triple-therapy regimens based on vonoprazan were typically well tolerated. | [53] |
Pharmacological combinations such as vonoprazan and amoxicillin have synergistic results. | [54] |
Intake of probiotics and prebiotics is being researched to enhance therapeutic results and lessen side effects related to anticancer medication. | [55] |
The EVs and CFS of the L. crispatus strain RIGLD-1 are possible therapeutic agents to combat inflammation caused by H. pylori. | [56] |
One possible nanovaccine to be used in an oral vaccination against H. pylori infection is alginate/pCI-neo-UreH. | [57] |
One pack of Moluodan, taken three times a day for a year, was a safe and effective way to reverse stomach precancerous lesions, particularly dysplasia, in individuals who tested negative for H. pylori. An improvement in efficacy was observed when the dosage was doubled. | [58] |
A patient’s CagA status for H. pylori may help stratify patients susceptible to apatinib treatment. | [59] |
HZQYF showed potential anti-H. pylori activity in vitro by downregulating the expression of genes related to flagellar adhesion, urease, and bacterial adhesion. | [60] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Burz, C.; Pop, V.; Silaghi, C.; Lupan, I.; Samasca, G. Helicobacter pylori Infection in Patients with Gastric Cancer: A 2024 Update. Cancers 2024, 16, 1958. https://doi.org/10.3390/cancers16111958
Burz C, Pop V, Silaghi C, Lupan I, Samasca G. Helicobacter pylori Infection in Patients with Gastric Cancer: A 2024 Update. Cancers. 2024; 16(11):1958. https://doi.org/10.3390/cancers16111958
Chicago/Turabian StyleBurz, Claudia, Vlad Pop, Ciprian Silaghi, Iulia Lupan, and Gabriel Samasca. 2024. "Helicobacter pylori Infection in Patients with Gastric Cancer: A 2024 Update" Cancers 16, no. 11: 1958. https://doi.org/10.3390/cancers16111958
APA StyleBurz, C., Pop, V., Silaghi, C., Lupan, I., & Samasca, G. (2024). Helicobacter pylori Infection in Patients with Gastric Cancer: A 2024 Update. Cancers, 16(11), 1958. https://doi.org/10.3390/cancers16111958