Hepatocellular Carcinoma: The Evolving Role of Systemic Therapies as a Bridging Treatment to Liver Transplantation
Abstract
:Simple Summary
Abstract
1. Introduction
2. Systemic Therapies
2.1. Tyrosine Kinase Inhibitors (TKIs)
Summary and Recommendations
2.2. Immune Checkpoint Inhibitors (ICIs)
2.2.1. Efficacy and Safety
Summary and Recommendations
2.2.2. Response Assessment
Summary and Recommendations
2.2.3. Biomarkers
PD-L1 Expression
Summary and Recommendations
Microsatellite Instability
Tumor Mutational Burden
Tumor-Infiltrating Lymphocytes
Inflammatory Markers
Summary and Recommendations
Gut Microbiota
Summary and Recommendations
Genomic Characteristics
Summary and Recommendations
3. Future Directions
Summary and Recommendations
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Rumgay, H.; Arnold, M.; Ferlay, J.; Lesi, O.; Cabasag, C.J.; Vignat, J.; Laversanne, M.; McGlynn, K.A.; Soerjomataram, I. Global Burden of Primary Liver Cancer in 2020 and Predictions to 2040. J. Hepatol. 2022, 77, 1598–1606. [Google Scholar] [CrossRef] [PubMed]
- Rumgay, H.; Ferlay, J.; de Martel, C.; Georges, D.; Ibrahim, A.S.; Zheng, R.; Wei, W.; Lemmens, V.E.P.P.; Soerjomataram, I. Global, Regional and National Burden of Primary Liver Cancer by Subtype. Eur. J. Cancer 2022, 161, 108–118. [Google Scholar] [CrossRef] [PubMed]
- Singal, A.G.; Kanwal, F.; Llovet, J.M. Global Trends in Hepatocellular Carcinoma Epidemiology: Implications for Screening, Prevention and Therapy. Nat. Rev. Clin. Oncol. 2023, 20, 864–884. [Google Scholar] [CrossRef] [PubMed]
- Llovet, J.M.; Villanueva, A.; Marrero, J.A.; Schwartz, M.; Meyer, T.; Galle, P.R.; Lencioni, R.; Greten, T.F.; Kudo, M.; Mandrekar, S.J.; et al. Trial Design and Endpoints in Hepatocellular Carcinoma: AASLD Consensus Conference. Hepatology 2021, 73, 158–191. [Google Scholar] [CrossRef] [PubMed]
- Mazzaferro, V.; Regalia, E.; Doci, R.; Andreola, S.; Pulvirenti, A.; Bozzetti, F.; Montalto, F.; Ammatuna, M.; Morabito, A.; Gennari, L. Liver Transplantation for the Treatment of Small Hepatocellular Carcinomas in Patients with Cirrhosis. N. Engl. J. Med. 1996, 334, 693–699. [Google Scholar] [CrossRef] [PubMed]
- Pavel, M.-C.; Fuster, J. Expansion of the Hepatocellular Carcinoma Milan Criteria in Liver Transplantation: Future Directions. World J. Gastroenterol. 2018, 24, 3626–3636. [Google Scholar] [CrossRef] [PubMed]
- Yao, F.Y.; Roberts, J.P. Applying Expanded Criteria to Liver Transplantation for Hepatocellular Carcinoma: Too Much Too Soon, or Is Now the Time? Liver Transplant. 2004, 10, 919–921. [Google Scholar] [CrossRef] [PubMed]
- Barreto, S.G.; Strasser, S.I.; McCaughan, G.W.; Fink, M.A.; Jones, R.; McCall, J.; Munn, S.; Macdonald, G.A.; Hodgkinson, P.; Jeffrey, G.P.; et al. Expansion of Liver Transplantation Criteria for Hepatocellular Carcinoma from Milan to UCSF in Australia and New Zealand and Justification for Metroticket 2.0. Cancers 2022, 14, 2777. [Google Scholar] [CrossRef] [PubMed]
- Bento de Sousa, J.H.; Calil, I.L.; Tustumi, F.; da Cunha Khalil, D.; Felga, G.E.G.; de Arruda Pecora, R.A.; de Almeida, M.D. Comparison between Milan and UCSF Criteria for Liver Transplantation in Patients with Hepatocellular Carcinoma: A Systematic Review and Meta-Analysis. Transl. Gastroenterol. Hepatol. 2021, 6, 11. [Google Scholar] [CrossRef]
- Tan, D.J.H.; Lim, W.H.; Yong, J.N.; Ng, C.H.; Muthiah, M.D.; Tan, E.X.; Xiao, J.; Lim, S.Y.; Pin Tang, A.S.; Pan, X.H.; et al. UNOS Down-Staging Criteria for Liver Transplantation of Hepatocellular Carcinoma: Systematic Review and Meta-Analysis of 25 Studies. Clin. Gastroenterol. Hepatol. 2023, 21, 1475–1484. [Google Scholar] [CrossRef]
- Llovet, J.M.; Kelley, R.K.; Villanueva, A.; Singal, A.G.; Pikarsky, E.; Roayaie, S.; Lencioni, R.; Koike, K.; Zucman-Rossi, J.; Finn, R.S. Hepatocellular Carcinoma. Nat. Rev. Dis. Primers 2021, 7, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Sokolich, J.; Buggs, J.; LaVere, M.; Robichaux, K.; Rogers, E.; Nyce, S.; Kumar, A.; Bowers, V. HCC Liver Transplantation Wait List Dropout Rates Before and After the Mandated 6-Month Wait Time. Am. Surg. 2020, 86, 1592–1595. [Google Scholar] [CrossRef] [PubMed]
- Gao, Q.; Anwar, I.J.; Abraham, N.; Barbas, A.S. Liver Transplantation for Hepatocellular Carcinoma after Downstaging or Bridging Therapy with Immune Checkpoint Inhibitors. Cancers 2021, 13, 6307. [Google Scholar] [CrossRef] [PubMed]
- Crocetti, L.; Bozzi, E.; Scalise, P.; Bargellini, I.; Lorenzoni, G.; Ghinolfi, D.; Campani, D.; Balzano, E.; De Simone, P.; Cioni, R. Locoregional Treatments for Bridging and Downstaging HCC to Liver Transplantation. Cancers 2021, 13, 5558. [Google Scholar] [CrossRef] [PubMed]
- Lewis, S.; Dawson, L.; Barry, A.; Stanescu, T.; Mohamad, I.; Hosni, A. Stereotactic Body Radiation Therapy for Hepatocellular Carcinoma: From Infancy to Ongoing Maturity. JHEP Rep. 2022, 4, 100498. [Google Scholar] [CrossRef] [PubMed]
- Mou, L.; Tian, X.; Zhou, B.; Zhan, Y.; Chen, J.; Lu, Y.; Deng, J.; Deng, Y.; Wu, Z.; Li, Q.; et al. Improving Outcomes of Tyrosine Kinase Inhibitors in Hepatocellular Carcinoma: New Data and Ongoing Trials. Front. Oncol. 2021, 11, 752725. [Google Scholar] [CrossRef] [PubMed]
- Llovet, J.M.; Ricci, S.; Mazzaferro, V.; Hilgard, P.; Gane, E.; Blanc, J.-F.; de Oliveira, A.C.; Santoro, A.; Raoul, J.-L.; Forner, A.; et al. Sorafenib in Advanced Hepatocellular Carcinoma. N. Engl. J. Med. 2008, 359, 378–390. [Google Scholar] [CrossRef]
- Saidi, R.F.; Shah, S.A.; Rawson, A.P.; Grossman, S.; Piperdi, B.; Bozorgzadeh, A. Treating Hepatocellular Carcinoma with Sorafenib in Liver Transplant Patients: An Initial Experience. Transpl. Proc. 2010, 42, 4582–4584. [Google Scholar] [CrossRef] [PubMed]
- Aless; Vitale, R.; Salinas, F.; Zanus, G.; Lombardi, G.; Senzolo, M.; Russo, F.; Cillo, U. Could Sorafenib Disclose New Prospects as Bridging Therapy to Liver Transplantation in Patients with Hepatocellular Carcinoma? J. Liver 2013, 2, 1000134. [Google Scholar] [CrossRef]
- Golse, N.; Radenne, S.; Rode, A.; Ducerf, C.; Mabrut, J.-Y.; Merle, P. Liver Transplantation After Neoadjuvant Sorafenib Therapy: Preliminary Experience and Literature Review. Exp. Clin. Transpl. 2018, 16, 227–236. [Google Scholar] [CrossRef]
- Minoux, K.; Lassailly, G.; Ningarhari, M.; Lubret, H.; El Amrani, M.; Canva, V.; Truant, S.; Mathurin, P.; Louvet, A.; Lebuffe, G.; et al. Neo-Adjuvant Use of Sorafenib for Hepatocellular Carcinoma Awaiting Liver Transplantation. Transpl. Int. 2022, 35, 10569. [Google Scholar] [CrossRef]
- Kulik, L.; Vouche, M.; Koppe, S.; Lewandowski, R.J.; Mulcahy, M.F.; Ganger, D.; Habib, A.; Karp, J.; Al-Saden, P.; Lacouture, M.; et al. Prospective Randomized Pilot Study of Y90+/−sorafenib as Bridge to Transplantation in Hepatocellular Carcinoma. J. Hepatol. 2014, 61, 309–317. [Google Scholar] [CrossRef]
- Hoffmann, K.; Ganten, T.; Gotthardtp, D.; Radeleff, B.; Settmacher, U.; Kollmar, O.; Nadalin, S.; Karapanagiotou-Schenkel, I.; Von Kalle, C.; Jäger, D.; et al. Impact of Neo-Adjuvant Sorafenib Treatment on Liver Transplantation in HCC Patients—A Prospective, Randomized, Double-Blind, Phase III Trial. BMC Cancer 2015, 15, 392. [Google Scholar] [CrossRef]
- Abdelrahim, M.; Victor, D.; Esmail, A.; Kodali, S.; Graviss, E.A.; Nguyen, D.T.; Moore, L.W.; Saharia, A.; McMillan, R.; Fong, J.N.; et al. Transarterial Chemoembolization (TACE) Plus Sorafenib Compared to TACE Alone in Transplant Recipients with Hepatocellular Carcinoma: An Institution Experience. Cancers 2022, 14, 650. [Google Scholar] [CrossRef]
- Abou-Alfa, G.K.; Meyer, T.; Cheng, A.-L.; El-Khoueiry, A.B.; Rimassa, L.; Ryoo, B.-Y.; Cicin, I.; Merle, P.; Chen, Y.; Park, J.-W.; et al. Cabozantinib in Patients with Advanced and Progressing Hepatocellular Carcinoma. N. Engl. J. Med. 2018, 379, 54–63. [Google Scholar] [CrossRef]
- Bhardwaj, H.; Fritze, D.; Mais, D.; Kadaba, V.; Arora, S.P. Neoadjuvant Therapy with Cabozantinib as a Bridge to Liver Transplantation in Patients with Hepatocellular Carcinoma (HCC): A Case Report. Front. Transpl. 2022, 1, 863086. [Google Scholar] [CrossRef]
- Kudo, M.; Finn, R.S.; Qin, S.; Han, K.-H.; Ikeda, K.; Piscaglia, F.; Baron, A.; Park, J.-W.; Han, G.; Jassem, J.; et al. Lenvatinib versus Sorafenib in First-Line Treatment of Patients with Unresectable Hepatocellular Carcinoma: A Randomised Phase 3 Non-Inferiority Trial. Lancet 2018, 391, 1163–1173. [Google Scholar] [CrossRef] [PubMed]
- Facciorusso, A.; Tartaglia, N.; Villani, R.; Serviddio, G.; Ramai, D.; Mohan, B.P.; Chandan, S.; Abd El Aziz, M.A.; Evangelista, J.; Cotsoglou, C.; et al. Lenvatinib versus Sorafenib as First-Line Therapy of Advanced Hepatocellular Carcinoma: A Systematic Review and Meta-Analysis. Am. J. Transl. Res. 2021, 13, 2379–2387. [Google Scholar] [PubMed]
- Mandlik, D.S.; Mandlik, S.K.; Choudhary, H.B. Immunotherapy for Hepatocellular Carcinoma: Current Status and Future Perspectives. World J. Gastroenterol. 2023, 29, 1054–1075. [Google Scholar] [CrossRef]
- Atezolizumab Plus Bevacizumab in Unresectable Hepatocellular Carcinoma|NEJM. Available online: https://www.nejm.org/doi/full/10.1056/nejmoa1915745 (accessed on 26 February 2024).
- Wang, T.; Chen, Z.; Liu, Y.; Jia, Y.; Ju, W.; Chen, M.; Zhao, Q.; Wang, D.; Guo, Z.; Tang, Y.; et al. Neoadjuvant Programmed Cell Death 1 Inhibitor before Liver Transplantation for HCC Is Not Associated with Increased Graft Loss. Liver Transpl. 2023, 29, 598–606. [Google Scholar] [CrossRef]
- Kuo, F.-C.; Chen, C.-Y.; Lin, N.-C.; Liu, C.; Hsia, C.-Y.; Loong, C.-C. Optimizing the Safe Washout Period for Liver Transplantation Following Immune Checkpoint Inhibitors with Atezolizumab, Nivolumab, or Pembrolizumab. Transpl. Proc. 2023, 55, 878–883. [Google Scholar] [CrossRef] [PubMed]
- Tabrizian, P.; Florman, S.S.; Schwartz, M.E. PD-1 Inhibitor as Bridge Therapy to Liver Transplantation? Am. J. Transplant. 2021, 21, 1979–1980. [Google Scholar] [CrossRef] [PubMed]
- Chen, Z.; Hong, X.; Wang, T.; Guo, Y.; Huang, C.; Li, M.; He, X.; Ju, W.; Chen, M. Prognosis after Liver Transplantation in Patients Treated with Anti-PD-1 Immunotherapy for Advanced Hepatocellular Carcinoma: Case Series. Ann. Palliat. Med. 2021, 10, 9354–9361. [Google Scholar] [CrossRef] [PubMed]
- Schnickel, G.T.; Fabbri, K.; Hosseini, M.; Misel, M.; Berumen, J.; Parekh, J.; Mekeel, K.; Dehghan, Y.; Kono, Y.; Ajmera, V. Liver Transplantation for Hepatocellular Carcinoma Following Checkpoint Inhibitor Therapy with Nivolumab. Am. J. Transpl. 2022, 22, 1699–1704. [Google Scholar] [CrossRef] [PubMed]
- Sogbe, M.; López-Guerra, D.; Blanco-Fernández, G.; Sangro, B.; Narváez-Rodriguez, I. Durvalumab as a Successful Downstaging Therapy for Liver Transplantation in Hepatocellular Carcinoma: The Importance of a Washout Period. Transplantation 2021, 105, e398–e400. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.-H.; Wang, G.-B.; Huang, F.; Qin, R.; Yu, X.-J.; Wu, R.-L.; Hou, L.-J.; Ye, Z.-H.; Zhang, X.-H.; Zhao, H.-C. Pretransplant Use of Toripalimab for Hepatocellular Carcinoma Resulting in Fatal Acute Hepatic Necrosis in the Immediate Postoperative Period. Transpl. Immunol. 2021, 66, 101386. [Google Scholar] [CrossRef] [PubMed]
- Schwacha-Eipper, B.; Minciuna, I.; Banz, V.; Dufour, J.F. Immunotherapy as a Downstaging Therapy for Liver Transplantation. Hepatology 2020, 72, 1488–1490. [Google Scholar] [CrossRef] [PubMed]
- Nordness, M.F.; Hamel, S.; Godfrey, C.M.; Shi, C.; Johnson, D.B.; Goff, L.W.; O’Dell, H.; Perri, R.E.; Alexopoulos, S.P. Fatal Hepatic Necrosis after Nivolumab as a Bridge to Liver Transplant for HCC: Are Checkpoint Inhibitors Safe for the Pretransplant Patient? Am. J. Transplant. 2020, 20, 879–883. [Google Scholar] [CrossRef] [PubMed]
- Qiao, Z.; Zhang, Z.; Lv, Z.; Tong, H.; Xi, Z.; Wu, H.; Chen, X.; Xia, L.; Feng, H.; Zhang, J.; et al. Neoadjuvant Programmed Cell Death 1 (PD-1) Inhibitor Treatment in Patients with Hepatocellular Carcinoma Before Liver Transplant: A Cohort Study and Literature Review. Front. Immunol. 2021, 12, 653437. [Google Scholar] [CrossRef]
- Abdelrahim, M.; Esmail, A.; Umoru, G.; Westhart, K.; Abudayyeh, A.; Saharia, A.; Ghobrial, R.M. Immunotherapy as a Neoadjuvant Therapy for a Patient with Hepatocellular Carcinoma in the Pretransplant Setting: A Case Report. Curr. Oncol. 2022, 29, 4267–4273. [Google Scholar] [CrossRef]
- Schmiderer, A.; Zoller, H.; Niederreiter, M.; Effenberger, M.; Oberhuber, G.; Krendl, F.J.; Oberhuber, R.; Schneeberger, S.; Tilg, H.; Djanani, A. Liver Transplantation after Successful Downstaging of a Locally Advanced Hepatocellular Carcinoma with Systemic Therapy. Dig Dis. 2023, 41, 641–644. [Google Scholar] [CrossRef] [PubMed]
- Dave, S.; Yang, K.; Schnickel, G.T.; Kono, Y.; Delebecque, F.; Arellano, D.; Liu, A.; Zhang, X.; Tu, X.M.; Ajmera, V. The Impact of Treatment of Hepatocellular Carcinoma with Immune Checkpoint Inhibitors on Pre- and Post-Liver Transplant Outcomes. Transplantation 2022, 106, e308–e309. [Google Scholar] [CrossRef]
- Tsujita, Y.; Sofue, K.; Ueshima, E.; Ueno, Y.; Hori, M.; Tsurusaki, M.; Murakami, T. Evaluation and Prediction of Treatment Response for Hepatocellular Carcinoma. Magn. Reson. Med. Sci. 2023, 22, 209–220. [Google Scholar] [CrossRef] [PubMed]
- Bruix, J.; Sherman, M.; Llovet, J.M.; Beaugrand, M.; Lencioni, R.; Burroughs, A.K.; Christensen, E.; Pagliaro, L.; Colombo, M.; Rodés, J.; et al. Clinical Management of Hepatocellular Carcinoma. Conclusions of the Barcelona-2000 EASL Conference. European Association for the Study of the Liver. J. Hepatol. 2001, 35, 421–430. [Google Scholar] [CrossRef] [PubMed]
- Lencioni, R.; Llovet, J.M. Modified RECIST (mRECIST) Assessment for Hepatocellular Carcinoma. Semin. Liver Dis. 2010, 30, 52–60. [Google Scholar] [CrossRef]
- Kim, M.N.; Kim, B.K.; Han, K.-H.; Kim, S.U. Evolution from WHO to EASL and mRECIST for Hepatocellular Carcinoma: Considerations for Tumor Response Assessment. Expert Rev. Gastroenterol. Hepatol. 2015, 9, 335–348. [Google Scholar] [CrossRef] [PubMed]
- Kudo, M.; Montal, R.; Finn, R.S.; Castet, F.; Ueshima, K.; Nishida, N.; Haber, P.K.; Hu, Y.; Chiba, Y.; Schwartz, M.; et al. Objective Response Predicts Survival in Advanced Hepatocellular Carcinoma Treated with Systemic Therapies. Clin. Cancer Res. 2022, 28, 3443–3451. [Google Scholar] [CrossRef]
- Lee, D.H.; Hwang, S.; Koh, Y.H.; Lee, K.-H.; Kim, J.Y.; Kim, Y.J.; Yoon, J.-H.; Lee, J.-H.; Park, J.-W. Outcome of Initial Progression During Nivolumab Treatment for Hepatocellular Carcinoma: Should We Use iRECIST? Front. Med. 2021, 8, 771887. [Google Scholar] [CrossRef]
- Galle, P.R.; Forner, A.; Llovet, J.M.; Mazzaferro, V.; Piscaglia, F.; Raoul, J.-L.; Schirmacher, P.; Vilgrain, V. EASL Clinical Practice Guidelines: Management of Hepatocellular Carcinoma. J. Hepatol. 2018, 69, 182–236. [Google Scholar] [CrossRef]
- Cheng, A.-L.; Qin, S.; Ikeda, M.; Galle, P.R.; Ducreux, M.; Kim, T.-Y.; Lim, H.Y.; Kudo, M.; Breder, V.; Merle, P.; et al. Updated Efficacy and Safety Data from IMbrave150: Atezolizumab plus Bevacizumab vs. Sorafenib for Unresectable Hepatocellular Carcinoma. J. Hepatol. 2022, 76, 862–873. [Google Scholar] [CrossRef]
- Yau, T.; Kang, Y.-K.; Kim, T.-Y.; El-Khoueiry, A.B.; Santoro, A.; Sangro, B.; Melero, I.; Kudo, M.; Hou, M.-M.; Matilla, A.; et al. Efficacy and Safety of Nivolumab Plus Ipilimumab in Patients with Advanced Hepatocellular Carcinoma Previously Treated with Sorafenib: The CheckMate 040 Randomized Clinical Trial. JAMA Oncol. 2020, 6, e204564. [Google Scholar] [CrossRef]
- Tremelimumab Plus Durvalumab in Unresectable Hepatocellular Carcinoma|NEJM Evidence. Available online: https://evidence.nejm.org/doi/full/10.1056/EVIDoa2100070 (accessed on 11 March 2024).
- Yau, T.; Park, J.-W.; Finn, R.S.; Cheng, A.-L.; Mathurin, P.; Edeline, J.; Kudo, M.; Harding, J.J.; Merle, P.; Rosmorduc, O.; et al. Nivolumab versus Sorafenib in Advanced Hepatocellular Carcinoma (CheckMate 459): A Randomised, Multicentre, Open-Label, Phase 3 Trial. Lancet Oncol. 2022, 23, 77–90. [Google Scholar] [CrossRef]
- Zhu, A.X.; Finn, R.S.; Edeline, J.; Cattan, S.; Ogasawara, S.; Palmer, D.; Verslype, C.; Zagonel, V.; Fartoux, L.; Vogel, A.; et al. Pembrolizumab in Patients with Advanced Hepatocellular Carcinoma Previously Treated with Sorafenib (KEYNOTE-224): A Non-Randomised, Open-Label Phase 2 Trial. Lancet Oncol. 2018, 19, 940–952. [Google Scholar] [CrossRef]
- Yang, Y.; Chen, D.; Zhao, B.; Ren, L.; Huang, R.; Feng, B.; Chen, H. The Predictive Value of PD-L1 Expression in Patients with Advanced Hepatocellular Carcinoma Treated with PD-1/PD-L1 Inhibitors: A Systematic Review and Meta-Analysis. Cancer Med. 2023, 12, 9282–9292. [Google Scholar] [CrossRef]
- Pinato, D.J.; Mauri, F.A.; Spina, P.; Cain, O.; Siddique, A.; Goldin, R.; Victor, S.; Pizio, C.; Akarca, A.U.; Boldorini, R.L.; et al. Clinical Implications of Heterogeneity in PD-L1 Immunohistochemical Detection in Hepatocellular Carcinoma: The Blueprint-HCC Study. Br. J. Cancer 2019, 120, 1033–1036. [Google Scholar] [CrossRef]
- Le, D.T.; Uram, J.N.; Wang, H.; Bartlett, B.R.; Kemberling, H.; Eyring, A.D.; Skora, A.D.; Luber, B.S.; Azad, N.S.; Laheru, D.; et al. PD-1 Blockade in Tumors with Mismatch-Repair Deficiency. N. Engl. J. Med. 2015, 372, 2509–2520. [Google Scholar] [CrossRef]
- Muro, K.; Chung, H.C.; Shankaran, V.; Geva, R.; Catenacci, D.; Gupta, S.; Eder, J.P.; Golan, T.; Le, D.T.; Burtness, B.; et al. Pembrolizumab for Patients with PD-L1-Positive Advanced Gastric Cancer (KEYNOTE-012): A Multicentre, Open-Label, Phase 1b Trial. Lancet Oncol. 2016, 17, 717–726. [Google Scholar] [CrossRef]
- Frenel, J.-S.; Le Tourneau, C.; O’Neil, B.; Ott, P.A.; Piha-Paul, S.A.; Gomez-Roca, C.; van Brummelen, E.M.J.; Rugo, H.S.; Thomas, S.; Saraf, S.; et al. Safety and Efficacy of Pembrolizumab in Advanced, Programmed Death Ligand 1-Positive Cervical Cancer: Results From the Phase Ib KEYNOTE-028 Trial. J. Clin. Oncol. 2017, 35, 4035–4041. [Google Scholar] [CrossRef]
- Marabelle, A.; Le, D.T.; Ascierto, P.A.; Di Giacomo, A.M.; De Jesus-Acosta, A.; Delord, J.-P.; Geva, R.; Gottfried, M.; Penel, N.; Hansen, A.R.; et al. Efficacy of Pembrolizumab in Patients with Noncolorectal High Microsatellite Instability/Mismatch Repair–Deficient Cancer: Results From the Phase II KEYNOTE-158 Study. J. Clin. Oncol. 2020, 38, 1–10. [Google Scholar] [CrossRef]
- Le, D.T.; Kim, T.W.; Cutsem, E.V.; Geva, R.; Jäger, D.; Hara, H.; Burge, M.; O’Neil, B.; Kavan, P.; Yoshino, T.; et al. Phase II Open-Label Study of Pembrolizumab in Treatment-Refractory, Microsatellite Instability-High/Mismatch Repair-Deficient Metastatic Colorectal Cancer: KEYNOTE-164. J. Clin. Oncol. 2020, 38, 11–19. [Google Scholar] [CrossRef]
- Eso, Y.; Shimizu, T.; Takeda, H.; Takai, A.; Marusawa, H. Microsatellite Instability and Immune Checkpoint Inhibitors: Toward Precision Medicine against Gastrointestinal and Hepatobiliary Cancers. J. Gastroenterol. 2020, 55, 15–26. [Google Scholar] [CrossRef] [PubMed]
- Ando, Y.; Yamauchi, M.; Suehiro, Y.; Yamaoka, K.; Kosaka, Y.; Fuji, Y.; Uchikawa, S.; Kodama, K.; Morio, K.; Fujino, H.; et al. Complete Response to Pembrolizumab in Advanced Hepatocellular Carcinoma with Microsatellite Instability. Clin. J. Gastroenterol. 2020, 13, 867–872. [Google Scholar] [CrossRef] [PubMed]
- Kawaoka, T.; Ando, Y.; Yamauchi, M.; Suehiro, Y.; Yamaoka, K.; Kosaka, Y.; Fuji, Y.; Uchikawa, S.; Morio, K.; Fujino, H.; et al. Incidence of Microsatellite Instability-High Hepatocellular Carcinoma among Japanese Patients and Response to Pembrolizumab. Hepatol. Res. 2020, 50, 885–888. [Google Scholar] [CrossRef] [PubMed]
- Muhammed, A.; Fulgenzi, C.A.M.; Dharmapuri, S.; Pinter, M.; Balcar, L.; Scheiner, B.; Marron, T.U.; Jun, T.; Saeed, A.; Hildebrand, H.; et al. The Systemic Inflammatory Response Identifies Patients with Adverse Clinical Outcome from Immunotherapy in Hepatocellular Carcinoma. Cancers 2021, 14, 186. [Google Scholar] [CrossRef] [PubMed]
- Marabelle, A.; Fakih, M.; Lopez, J.; Shah, M.; Shapira-Frommer, R.; Nakagawa, K.; Chung, H.C.; Kindler, H.L.; Lopez-Martin, J.A.; Miller, W.H.; et al. Association of Tumour Mutational Burden with Outcomes in Patients with Advanced Solid Tumours Treated with Pembrolizumab: Prospective Biomarker Analysis of the Multicohort, Open-Label, Phase 2 KEYNOTE-158 Study. Lancet Oncol. 2020, 21, 1353–1365. [Google Scholar] [CrossRef] [PubMed]
- Aggarwal, C.; Ben-Shachar, R.; Gao, Y.; Hyun, S.W.; Rivers, Z.; Epstein, C.; Kaneva, K.; Sangli, C.; Nimeiri, H.; Patel, J. Assessment of Tumor Mutational Burden and Outcomes in Patients with Diverse Advanced Cancers Treated with Immunotherapy. JAMA Netw. Open 2023, 6, e2311181. [Google Scholar] [CrossRef] [PubMed]
- Yarchoan, M.; Albacker, L.A.; Hopkins, A.C.; Montesion, M.; Murugesan, K.; Vithayathil, T.T.; Zaidi, N.; Azad, N.S.; Laheru, D.A.; Frampton, G.M.; et al. PD-L1 Expression and Tumor Mutational Burden Are Independent Biomarkers in Most Cancers. JCI Insight 2019, 4, e126908. [Google Scholar] [CrossRef] [PubMed]
- Sangro, B.; Melero, I.; Wadhawan, S.; Finn, R.S.; Abou-Alfa, G.K.; Cheng, A.-L.; Yau, T.; Furuse, J.; Park, J.-W.; Boyd, Z.; et al. Association of Inflammatory Biomarkers with Clinical Outcomes in Nivolumab-Treated Patients with Advanced Hepatocellular Carcinoma. J. Hepatol. 2020, 73, 1460–1469. [Google Scholar] [CrossRef]
- Dharmapuri, S.; Özbek, U.; Lin, J.-Y.; Sung, M.; Schwartz, M.; Branch, A.D.; Ang, C. Predictive Value of Neutrophil to Lymphocyte Ratio and Platelet to Lymphocyte Ratio in Advanced Hepatocellular Carcinoma Patients Treated with Anti-PD-1 Therapy. Cancer Med. 2020, 9, 4962–4970. [Google Scholar] [CrossRef]
- Wong, C.C.; Yu, J. Gut Microbiota in Colorectal Cancer Development and Therapy. Nat. Rev. Clin. Oncol. 2023, 20, 429–452. [Google Scholar] [CrossRef]
- Zeriouh, M.; Raskov, H.; Kvich, L.; Gögenur, I.; Bennedsen, A.L.B. Checkpoint Inhibitor Responses Can Be Regulated by the Gut Microbiota—A Systematic Review. Neoplasia 2023, 43, 100923. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Wang, T.; Tu, X.; Huang, Y.; Zhang, H.; Tan, D.; Jiang, W.; Cai, S.; Zhao, P.; Song, R.; et al. Gut Microbiome Affects the Response to Anti-PD-1 Immunotherapy in Patients with Hepatocellular Carcinoma. J. Immunother. Cancer 2019, 7, 193. [Google Scholar] [CrossRef] [PubMed]
- Mao, J.; Wang, D.; Long, J.; Yang, X.; Lin, J.; Song, Y.; Xie, F.; Xun, Z.; Wang, Y.; Wang, Y.; et al. Gut Microbiome Is Associated with the Clinical Response to Anti-PD-1 Based Immunotherapy in Hepatobiliary Cancers. J. Immunother. Cancer 2021, 9, e003334. [Google Scholar] [CrossRef] [PubMed]
- Lee, P.-C.; Wu, C.-J.; Hung, Y.-W.; Lee, C.J.; Chi, C.-T.; Lee, I.-C.; Yu-Lun, K.; Chou, S.-H.; Luo, J.-C.; Hou, M.-C.; et al. Gut Microbiota and Metabolites Associate with Outcomes of Immune Checkpoint Inhibitor-Treated Unresectable Hepatocellular Carcinoma. J. Immunother. Cancer 2022, 10, e004779. [Google Scholar] [CrossRef] [PubMed]
- Sia, D.; Jiao, Y.; Martinez-Quetglas, I.; Kuchuk, O.; Villacorta-Martin, C.; Castro de Moura, M.; Putra, J.; Camprecios, G.; Bassaganyas, L.; Akers, N.; et al. Identification of an Immune-Specific Class of Hepatocellular Carcinoma, Based on Molecular Features. Gastroenterology 2017, 153, 812–826. [Google Scholar] [CrossRef] [PubMed]
- Zucman-Rossi, J.; Villanueva, A.; Nault, J.-C.; Llovet, J.M. Genetic Landscape and Biomarkers of Hepatocellular Carcinoma. Gastroenterology 2015, 149, 1226–1239.e4. [Google Scholar] [CrossRef] [PubMed]
- Harding, J.J.; Nandakumar, S.; Armenia, J.; Khalil, D.N.; Albano, M.; Ly, M.; Shia, J.; Hechtman, J.F.; Kundra, R.; El Dika, I.; et al. Prospective Genotyping of Hepatocellular Carcinoma: Clinical Implications of Next-Generation Sequencing for Matching Patients to Targeted and Immune Therapies. Clin. Cancer Res. 2019, 25, 2116–2126. [Google Scholar] [CrossRef]
- Morita, M.; Nishida, N.; Sakai, K.; Aoki, T.; Chishina, H.; Takita, M.; Ida, H.; Hagiwara, S.; Minami, Y.; Ueshima, K.; et al. Immunological Microenvironment Predicts the Survival of the Patients with Hepatocellular Carcinoma Treated with Anti-PD-1 Antibody. Liver Cancer 2021, 10, 380–393. [Google Scholar] [CrossRef]
- RenJi Hospital. Safety and Efficacy Study of Pembrolizumab in Combination with LENvatinib in Participants with Hepatocellular Carcinoma (HCC) before Liver Transplant as Neoadjuvant TherapY—PLENTY Randomized Clinical Trial. 2020. Available online: https://clinicaltrials.gov/study/NCT04425226 (accessed on 27 May 2024).
- Sohal, D. Durvalumab (MEDI4736) and Tremelimumab for Hepatocellular Carcinoma in Patients Listed for a Liver Transplant. 2023. Available online: https://clinicaltrials.gov/study/NCT05027425 (accessed on 27 May 2024).
- Abdelrahim, M. Atezolizumab and Bevacizumab Pre-Liver Transplantation for Patients with Hepatocellular Carcinoma Beyond Milan Criteria: A Feasibility Study. 2023. Available online: https://www.clinicaltrials.gov/study/NCT05185505 (accessed on 27 May 2024).
- RenJi Hospital. Safety and Efficacy Study of Durvalumab in Combination with Lenvatinib in Participants with Locally Advanced and Metastatic Hepatocellular Carcinoma—DULECT2020-1 Trial. 2020. Available online: https://clinicaltrials.gov/study/NCT04443322 (accessed on 27 May 2024).
- Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University. A Prospective, Single-Arm Study of Downstaging Protocol Containing Immunotherapy for HCC Beyond the Milan Criteria Before Liver Transplantation. 2023. Available online: https://classic.clinicaltrials.gov/ct2/show/NCT05475613 (accessed on 27 May 2024).
Author/Year | Milan Criteria | Treatment | No. of Transplanted Patients | Post-LT DFS | Post-LT OS | Post-LT Follow-Up (Months) |
---|---|---|---|---|---|---|
Minoux et al. (2022) [21] | In: 69.4% Out: 30.7% | Sorafenib | 26 | 48% | 77% | 60 |
Abdelrahim et al. (2022) [24] | In: 74% Out: 26% | TACE ± sorafenib | 128 | 100% vs. 67.2%, p = 0.07 | 77.8% vs. 61.5%, p = 0.51 | 60 |
Bhardwaj et al. (2022) [26] | In: 100% | Cabozantinib | 2 | 50% | 50% | 21 |
Golse et al. (2018) [20] | In: 60% Out: 40% | 3/5: hepatectomy or TACE then sorafenib 2/5: sorafenib | 5 | 100% | NA | 27 |
Hoffmann et al. (2015) [23] | In: 100% | TACE + sorafenib vs. TACE + placebo | 17 | HR: 1.259 (95%CI: 0.486, 3.270) | NA | 10 |
Kulik et al. (2014) [22] | up to UCSF criteria: 100% | Y90 radioembolization ± sorafenib | 17 | NA | 72% vs. 70%, p = 0.57 | 36 |
Vitale et al. (2013) [19] | Out: 100% | Sorafenib | 6 | 66% | 66% | (27–41) |
Saidi et al. (2010) [18] | In: 100% | Sorafenib | 7 | 85% | NA | NA |
Author/Year | Milan Criteria | Treatment | No. of Transplanted Patients | Washout Period (Days) | Post-LT IS-Protocol Included Steroids | BPAR | HCC Recurrence | Post-LT Follow-Up (Months) |
---|---|---|---|---|---|---|---|---|
Schmiderer et al. (2023) [42] | Out: 100% | Atezolizumab + bevacizumab | 1 | 42 | Yes | No | No | 12 |
Abdelrahim et al. (2022) [41] | Out: 100% | Atezolizumab + bevacizumab | 1 | 60 | No | No | No | 12 |
Dave et al. (2022) [43] | In: 87% Out: 13% | Nivolumab | 5/8 | 11–354 (median: 105) | NA | Yes: 40% | No | NA |
Schnickel et al. (2022) [35] | NA | Nivolumab | 5 | 10–330 | NA: 40% No: 20% Yes: 40% | Yes: 40% | No | 2–16 |
Tabrizian et al. (2021) [33] | up to UCSF criteria: 100% | Nivolumab | 9 | 1–253 (80% of patients ≤ 30 days) | Yes | No | No | 8–23 (median: 16) |
Chen et al. (2021) [34] | Out: 100% | Nivolumab | 5 | Mean: 63.80 ± 18.26 | No | No | Yes: 40% | NA |
Sogbe et al. (2021) [36] | Out: 100% | Durvalumab | 1 | 90 | Yes | No | No | 24 |
Chen et al. (2021) [37] | In: 100% | Toripalimab | 1 | 93 | Yes | Yes: 100%, fatal hepatic necrosis | NA | NA |
Qiao et al. (2021) [40] | NA | (Pembrolizumab or camrelizumab) + lenvatinib | 7 | 42 | Yes | Yes: 14.3% | NA | NA |
Nordness et al. (2020) [39] | In: 100% | Nivolumab | 1 | 8 | Yes | Yes: 100%, fatal hepatic necrosis | NA | NA |
Schwacha-Eipper et al. (2020) [38] | In: 100% | Nivolumab | 1 | 105 | NA | No | No | 12 |
RECIST Criteria | mRECIST Criteria |
---|---|
CR: disappearance of all target lesions. | CR: disappearance of any intra-tumoral arterial enhancement in all target lesions. |
PR: ≥30% reduction of the sum of the diameters of target lesions. | PR: ≥30% reduction of the sum of the diameters of viable (enhancing) target lesions. |
SD: features classified as neither PR nor PD. | SD: features classified as neither PR nor PD. |
PD: ≥20% increase of the sum of the diameter of target legions. | PD: ≥20% increase of the sum of the diameter of viable (enhancing) target legions. |
ClinicalTrials.gov ID | Bridging Therapy | Trial Phase | Primary Endpoints |
---|---|---|---|
NCT04425226 [81] | Pembrolizumab + lenvatinib | NA | RFS |
NCT05027425 [82] | Durvalumab + tremelimumab | 2 | Cellular rejection rate |
NCT05185505 [83] | Atezolizumab + bevacizumab | 4 | Acute rejection rate post liver transplant |
NCT04443322 [84] | Durvalumab + lenvatinib | NA | RFS, PFS |
NCT05475613 [85] | Anti-PD-1 inhibitors (tislelizumab, pembrolizumab, nivolumab) | 2 | 2-year event-free survival rate |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saleh, Y.; Abu Hejleh, T.; Abdelrahim, M.; Shamseddine, A.; Chehade, L.; Alawabdeh, T.; Mohamad, I.; Sammour, M.; Turfa, R. Hepatocellular Carcinoma: The Evolving Role of Systemic Therapies as a Bridging Treatment to Liver Transplantation. Cancers 2024, 16, 2081. https://doi.org/10.3390/cancers16112081
Saleh Y, Abu Hejleh T, Abdelrahim M, Shamseddine A, Chehade L, Alawabdeh T, Mohamad I, Sammour M, Turfa R. Hepatocellular Carcinoma: The Evolving Role of Systemic Therapies as a Bridging Treatment to Liver Transplantation. Cancers. 2024; 16(11):2081. https://doi.org/10.3390/cancers16112081
Chicago/Turabian StyleSaleh, Yacob, Taher Abu Hejleh, Maen Abdelrahim, Ali Shamseddine, Laudy Chehade, Tala Alawabdeh, Issa Mohamad, Mohammad Sammour, and Rim Turfa. 2024. "Hepatocellular Carcinoma: The Evolving Role of Systemic Therapies as a Bridging Treatment to Liver Transplantation" Cancers 16, no. 11: 2081. https://doi.org/10.3390/cancers16112081
APA StyleSaleh, Y., Abu Hejleh, T., Abdelrahim, M., Shamseddine, A., Chehade, L., Alawabdeh, T., Mohamad, I., Sammour, M., & Turfa, R. (2024). Hepatocellular Carcinoma: The Evolving Role of Systemic Therapies as a Bridging Treatment to Liver Transplantation. Cancers, 16(11), 2081. https://doi.org/10.3390/cancers16112081