Imaging in Vulval Cancer
Abstract
:Simple Summary
Abstract
1. Introduction
2. Summary of Current Guidelines
3. Imaging Modalities for the Primary Vulval Tumour
4. Imaging Modalities for Nodal Assessment
4.1. Magnetic Resonance Imaging (MRI)
4.2. Computed Tomography (CT)
4.3. Positron Emission Tomography/Computed Tomography (PET/CT)
Author | Type of Study | Year | Number of Patients | Diagnostic Criteria | Findings |
---|---|---|---|---|---|
De Hullu et al. [26] | Prospective | 1999 | 25 | Visual (qualitative) analysis | Sensitivity 53% |
Specificity 95% | |||||
PPV 33% | |||||
NPV 98% | |||||
Cohn et al. [31] | Prospective | 2002 | 15 | Visual (qualitative) analysis | Sensitivity 80% |
Specificity 90% | |||||
PPV 80% | |||||
NPV 90% | |||||
Kamran et al. [32] | Retrospective | 2014 | 20 | Focal increased tracer uptake (SUVmax) | Sensitivity 50% |
Specificity 100% | |||||
PPV 100% | |||||
NPV 57% | |||||
Peiro et al. [13] | Retrospective | 2014 | 10 | Visual (qualitative) analysis | Sensitivity 100% |
Lin et al. [27] | Prospective | 2015 | 23 | SUVmax interpreted by two nuclear medicine physicians and two radiologists | Sensitivity 92% |
specificity 91% | |||||
PPV 85% | |||||
NPV 95% | |||||
Dolanbay et al. [30] | Prospective | 2015 | 8 | Visual (qualitative) analysis | Sensitivity 100% |
Specificity 100% | |||||
Robertson et al. [35] | Retrospective | 2016 | 54 | Qualitative assessment | Change in prognosis in 51% of patients |
Collarino et al. [29] | Prospective | 2017 | 33 | Qualitative (visual) analysis and semi-quantitative analysis (SUVmax) | Sensitivity 95% |
Specificity 78% | |||||
PPV 69% | |||||
NPV 96% | |||||
Crivellaro et al. [33] | Retrospective | 2017 | 29 | Focal increased tracer uptake | Sensitivity 50% |
Specificity 67% | |||||
PPV 58% | |||||
NPV 59% | |||||
Garganese et al. [34] | Prospective | 2017 | 47 | Focal uptake of FDG tracer | Sensitivity 56% |
Specificity 88% | |||||
PPV 38% | |||||
NPV 93% | |||||
Oldan et al. [37] | Retrospective | 2018 | 21 | SUVmax cutoff of 4.5 or of two times the average liver uptake | Sensitivity 100% |
specificity 89% | |||||
Rufini et al. [28] | Retrospective | 2021 | 160 | Visual assessment | Sensitivity 86% |
Specificity 66% | |||||
PPV 52% | |||||
NPV 91% | |||||
Semi-quantitative analysis (SUVmax cut-off 1.89) | Sensitivity 73% | ||||
Specificity 85% | |||||
PPV 68% | |||||
NPV 88% | |||||
Overall assessment | Sensitivity 79% | ||||
Specificity 78% | |||||
PPV 61% | |||||
NPV 89% | |||||
Triumbari et al. [36] | Systematic review and meta-analysis | 2021 | 72 | As per individual studies | Sensitivity 70% |
Specificity 90% | |||||
PPV 86% | |||||
NPV 77% |
4.4. Ultrasound (US)
4.5. Sentinel Lymph Node Biopsy
5. Imaging Modalities for Distant Metastasis
6. Imaging Modalities for Surveillance after Treatment and for Suspected Recurrent Vulval Cancer
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- World Health Organization. GLOBOCAN 2020: Estimated Cancer Incidence, Mortality and Prevalence Worldwide in 2020. Available online: https://gco.iarc.fr/today/en/dataviz/bars?sexes=2&mode=cancer&group_populations=1&sort_by=value0&nb_items=-1 (accessed on 15 April 2024).
- Weinberg, D.; Gomez-Martinez, R.A. Vulvar Cancer. Obstet. Gynecol. Clin. N. Am. 2019, 46, 125–135. [Google Scholar] [CrossRef]
- Serrado, M.A.; Horta, M.; Cunha, T.M. State of the art in vulvar cancer imaging. Radiol. Bras. 2019, 52, 316–324. [Google Scholar] [CrossRef]
- National Comprehensive Cancer Network. NCCN clinical practice guidelines in oncology: Vulvar cancer (version 3.2024). J. Natl. Compr. Cancer Netw. 2024, 22, 117–135. [Google Scholar] [CrossRef]
- Woelber, L.; Eulenburg, C.; Choschzick, M.; Kruell, A.; Petersen, C.; Gieseking, F.; Jaenicke, F.; Mahner, S. Prognostic role of lymph node metastases in vulvar cancer and implications for adjuvant treatment. Int. J. Gynecol. Cancer 2012, 22, 503–508. [Google Scholar] [CrossRef]
- Olawaiye, A.B.; Cotler, J.; Cuello, M.A.; Bhatla, N.; Okamoto, A.; Wilailak, S.; Purandare, C.N.; Lindeque, G.; Berek, J.S.; Kehoe, S. FIGO staging for carcinoma of the vulva: 2021 revision. Int. J. Gynecol. Obstet. 2021, 155, 43–47. [Google Scholar] [CrossRef]
- Bhatla, N.; Berek, J.S.; Cuello Fredes, M.; Denny, L.A.; Grenman, S.; Karunaratne, K.; Kehoe, S.T.; Konishi, I.; Olawaiye, A.B.; Prat, J.; et al. Revised FIGO staging for carcinoma of the cervix uteri. Int. J. Gynecol. Obstet. 2019, 145, 129–135. [Google Scholar] [CrossRef]
- Oonk, M.H.M.; Planchamp, F.; Baldwin, P.; Mahner, S.; Mirza, M.R.; Fischerova, D.; Creutzberg, C.L.; Guillot, E.; Garganese, G.; Lax, S.; et al. European Society of Gynaecological Oncology Guidelines for the Management of Patients with Vulvar Cancer—Update 2023. Int. J. Gynecol. Cancer 2023, 33, 1023–1043. [Google Scholar] [CrossRef]
- Nikolic, O.; Sousa, F.A.E.; Cunha, T.M.; Nikolic, M.B.; Otero-Garcia, M.M.; Gui, B.; Nougaret, S.; Leonhardt, H.; ESUR Female Pelvic Imaging Working Group. Vulvar cancer staging: Guidelines of the European Society of Urogenital Radiology (ESUR). Insights Imaging 2021, 12, 131. [Google Scholar] [CrossRef]
- Salani, R.; Khanna, N.; Frimer, M.; Bristow, R.E.; Chen, L.M. An update on post-treatment surveillance and diagnosis of recurrence in women with gynecologic malignancies: Society of Gynecologic Oncology (SGO) recommendations. Gynecol. Oncol. 2017, 146, 3–10. [Google Scholar] [CrossRef]
- Sohaib, S.A.; Richards, P.S.; Ind, T.; Jeyarajah, A.R.; Shepherd, J.H.; Jacobs, I.J.; Reznek, R.H. MR imaging of carcinoma of the vulva. AJR Am. J. Roentgenol. 2002, 178, 373–377. [Google Scholar] [CrossRef]
- Kataoka, M.Y.; Sala, E.; Baldwin, P.; Reinhold, C.; Farhadi, A.; Hudolin, T.; Hricak, H. The accuracy of magnetic resonance imaging in staging of vulvar cancer: A retrospective multi-centre study. Gynecol. Oncol. 2010, 117, 82–87. [Google Scholar] [CrossRef]
- Peiro, V.; Chiva, L.; Gonzalez, A.; Bratos, R.; Alonso, S.; Marquez, R.; Carballo, N.; Alonso-Farto, J.C. Utility of the PET/CT in vulvar cancer management. Rev. Esp. Med. Nucl. Imagen Mol. 2014, 33, 87–92. [Google Scholar] [CrossRef]
- Yanarates, A.; Budak, E.; Budak, A.; Inan, A.H.; Kanmaz, A.G.; Oral, A.; Yazici, B. Clinical value of metabolic PET parameters of primary vulvar carcinoma. Rev. Esp. Med. Nucl. Imagen Mol. Engl. Ed. 2021, 40, 367–371. [Google Scholar] [CrossRef]
- Wessels, R.; van Beurden, M.; de Bruin, D.M.; Faber, D.J.; Vincent, A.D.; Sanders, J.; van Leeuwen, T.G.; Ruers, T.J. The value of optical coherence tomography in determining surgical margins in squamous cell carcinoma of the vulva: A single-center prospective study. Int. J. Gynecol. Cancer 2015, 25, 112–118. [Google Scholar] [CrossRef]
- Makela, P.J.; Leminen, A.; Kaariainen, M.; Lehtovirta, P. Pretreatment sonographic evaluation of inguinal lymph nodes in patients with vulvar malignancy. J. Ultrasound Med. 1993, 12, 255–258. [Google Scholar] [CrossRef]
- Wagner, M.M.; van der Zee, A.G.J.; Oonk, M.H.M. History and Updates of the GROINSS-V Studies. Cancers 2022, 14, 1956. [Google Scholar] [CrossRef]
- Hawnaur, J.M.; Reynolds, K.; Wilson, G.; Hillier, V.; Kitchener, H.C. Identification of inguinal lymph node metastases from vulval carcinoma by magnetic resonance imaging: An initial report. Clin. Radiol. 2002, 57, 995–1000. [Google Scholar] [CrossRef]
- Singh, K.; Orakwue, C.O.; Honest, H.; Balogun, M.; Lopez, C.; Luesley, D.M. Accuracy of magnetic resonance imaging of inguinofemoral lymph nodes in vulval cancer. Int. J. Gynecol. Cancer 2006, 16, 1179–1183. [Google Scholar] [CrossRef]
- Bipat, S.; Fransen, G.A.; Spijkerboer, A.M.; van der Velden, J.; Bossuyt, P.M.; Zwinderman, A.H.; Stoker, J. Is there a role for magnetic resonance imaging in the evaluation of inguinal lymph node metastases in patients with vulva carcinoma? Gynecol. Oncol. 2006, 103, 1001–1006. [Google Scholar] [CrossRef]
- Sakae, C.; Yamaguchi, K.; Matsumura, N.; Nakai, H.; Yoshioka, Y.; Kondoh, E.; Hamanishi, J.; Abiko, K.; Koshiyama, M.; Baba, T.; et al. Groin lymph node detection and sentinel lymph node biopsy in vulvar cancer. J. Gynecol. Oncol. 2016, 27, e57. [Google Scholar] [CrossRef]
- Land, R.; Herod, J.; Moskovic, E.; King, M.; Sohaib, S.A.; Trott, P.; Nasiri, N.; Shepherd, J.H.; Bridges, J.E.; Ind, T.E.; et al. Routine computerized tomography scanning, groin ultrasound with or without fine needle aspiration cytology in the surgical management of primary squamous cell carcinoma of the vulva. Int. J. Gynecol. Cancer 2006, 16, 312–317. [Google Scholar] [CrossRef]
- Andersen, K.; Zobbe, V.; Thranov, I.R.; Pedersen, K.D. Relevance of computerized tomography in the preoperative evaluation of patients with vulvar cancer: A prospective study. Cancer Imaging 2015, 15, 8. [Google Scholar] [CrossRef]
- Pounds, R.; O’Neill, D.; Subba, K.; Garg, A.; Scerif, M.; Leong, E.; Nevin, J.; Kehoe, S.; Yap, J. The role of preoperative computerized tomography (CT) scan of the pelvis and groin in the management of clinically early staged vulva squamous cell carcinoma. Gynecol. Oncol. 2020, 157, 444–449. [Google Scholar] [CrossRef]
- Bohlin, K.S.; Bruno, A.K.; von Knorring, C.; Rahm, C.; Leonhardt, H. Accuracy of computerized tomography in the preoperative evaluation of metastases in primary vulvar cancer—A population-based study. Gynecol. Oncol. 2021, 161, 449–453. [Google Scholar] [CrossRef]
- De Hullu, J.A.; Pruim, J.; Que, T.H.; Aalders, J.G.; Boonstra, H.; Vaalburg, W.; Hollema, H.; Van Der Zee, A.G. Noninvasive detection of inguinofemoral lymph node metastases in squamous cell cancer of the vulva by L-[1–11C]-tyrosine positron emission tomography. Int. J. Gynecol. Cancer 1999, 9, 141–146. [Google Scholar] [CrossRef]
- Lin, G.; Chen, C.Y.; Liu, F.Y.; Yang, L.Y.; Huang, H.J.; Huang, Y.T.; Jung, S.M.; Chou, H.H.; Lai, C.H.; Ng, K.K. Computed tomography, magnetic resonance imaging and FDG positron emission tomography in the management of vulvar malignancies. Eur. Radiol. 2015, 25, 1267–1278. [Google Scholar] [CrossRef]
- Rufini, V.; Garganese, G.; Ieria, F.P.; Pasciuto, T.; Fragomeni, S.M.; Gui, B.; Florit, A.; Inzani, F.; Zannoni, G.F.; Scambia, G.; et al. Diagnostic performance of preoperative [(18)F]FDG-PET/CT for lymph node staging in vulvar cancer: A large single-centre study. Eur. J. Nucl. Med. Mol. Imaging 2021, 48, 3303–3314. [Google Scholar] [CrossRef]
- Collarino, A.; Garganese, G.; Valdes Olmos, R.A.; Stefanelli, A.; Perotti, G.; Mirk, P.; Fragomeni, S.M.; Ieria, F.P.; Scambia, G.; Giordano, A.; et al. Evaluation of Dual-Timepoint (18)F-FDG PET/CT Imaging for Lymph Node Staging in Vulvar Cancer. J. Nucl. Med. 2017, 58, 1913–1918. [Google Scholar] [CrossRef]
- Dolanbay, M.; Ozcelik, B.; Abdulrezzak, U.; Serin, I.S.; Kutuk, M.S.; Uludag, S. F-18 fluoro-D-glucose (FDG)-positron emission tomography (PET)/computed tomography (CT) in planning of surgery and sentinel lymph node screening in vulvar cancers. Arch. Gynecol. Obstet. 2016, 293, 1319–1324. [Google Scholar] [CrossRef]
- Cohn, D.E.; Dehdashti, F.; Gibb, R.K.; Mutch, D.G.; Rader, J.S.; Siegel, B.A.; Herzog, T.J. Prospective evaluation of positron emission tomography for the detection of groin node metastases from vulvar cancer. Gynecol. Oncol. 2002, 85, 179–184. [Google Scholar] [CrossRef]
- Kamran, M.W.; O’Toole, F.; Meghen, K.; Wahab, A.N.; Saadeh, F.A.; Gleeson, N. Whole-body [18F]fluoro-2-deoxyglucose positron emission tomography scan as combined PET-CT staging prior to planned radical vulvectomy and inguinofemoral lymphadenectomy for squamous vulvar cancer: A correlation with groin node metastasis. Eur. J. Gynaecol. Oncol. 2014, 35, 230–235. [Google Scholar]
- Crivellaro, C.; Guglielmo, P.; De Ponti, E.; Elisei, F.; Guerra, L.; Magni, S.; La Manna, M.; Di Martino, G.; Landoni, C.; Buda, A. 18F-FDG PET/CT in preoperative staging of vulvar cancer patients: Is it really effective? Medicine 2017, 96, e7943. [Google Scholar] [CrossRef]
- Garganese, G.; Collarino, A.; Fragomeni, S.M.; Rufini, V.; Perotti, G.; Gentileschi, S.; Evangelista, M.T.; Ieria, F.P.; Zagaria, L.; Bove, S.; et al. Groin sentinel node biopsy and (18)F-FDG PET/CT-supported preoperative lymph node assessment in cN0 patients with vulvar cancer currently unfit for minimally invasive inguinal surgery: The GroSNaPET study. Eur. J. Surg. Oncol. 2017, 43, 1776–1783. [Google Scholar] [CrossRef]
- Robertson, N.L.; Hricak, H.; Sonoda, Y.; Sosa, R.E.; Benz, M.; Lyons, G.; Abu-Rustum, N.R.; Sala, E.; Vargas, H.A. The impact of FDG-PET/CT in the management of patients with vulvar and vaginal cancer. Gynecol. Oncol. 2016, 140, 420–424. [Google Scholar] [CrossRef]
- Triumbari, E.K.A.; de Koster, E.J.; Rufini, V.; Fragomeni, S.M.; Garganese, G.; Collarino, A. 18F-FDG PET and 18F-FDG PET/CT in Vulvar Cancer: A Systematic Review and Meta-analysis. Clin. Nucl. Med. 2021, 46, 125–132. [Google Scholar] [CrossRef]
- Oldan, J.D.; Sullivan, S.A. Positron emission tomography-computed tomography for inguinal nodes in vulvar cancer. World J. Nucl. Med. 2018, 17, 139–144. [Google Scholar] [CrossRef]
- Moskovic, E.C.; Shepherd, J.H.; Barton, D.P.; Trott, P.A.; Nasiri, N.; Thomas, J.M. The role of high resolution ultrasound with guided cytology of groin lymph nodes in the management of squamous cell carcinoma of the vulva: A pilot study. Br. J. Obstet. Gynaecol. 1999, 106, 863–867. [Google Scholar] [CrossRef]
- Abang Mohammed, D.K.; Uberoi, R.; Lopes, A.d.B.; Monaghan, J.M. Inguinal node status by ultrasound in vulva cancer. Gynecol. Oncol. 2000, 77, 93–96. [Google Scholar] [CrossRef]
- Hall, T.B.; Barton, D.P.; Trott, P.A.; Nasiri, N.; Shepherd, J.H.; Thomas, J.M.; Moskovic, E.C. The role of ultrasound-guided cytology of groin lymph nodes in the management of squamous cell carcinoma of the vulva: 5-year experience in 44 patients. Clin. Radiol. 2003, 58, 367–371. [Google Scholar] [CrossRef]
- de Gregorio, N.; Ebner, F.; Schwentner, L.; Friedl, T.W.; Deniz, M.; Lato, K.; Kreienberg, R.; Janni, W.; Varga, D. The role of preoperative ultrasound evaluation of inguinal lymph nodes in patients with vulvar malignancy. Gynecol. Oncol. 2013, 131, 113–117. [Google Scholar] [CrossRef]
- Garganese, G.; Fragomeni, S.M.; Pasciuto, T.; Leombroni, M.; Moro, F.; Evangelista, M.T.; Bove, S.; Gentileschi, S.; Tagliaferri, L.; Paris, I.; et al. Ultrasound morphometric and cytologic preoperative assessment of inguinal lymph-node status in women with vulvar cancer: MorphoNode study. Ultrasound Obstet. Gynecol. 2020, 55, 401–410. [Google Scholar] [CrossRef]
- Sykes, P.; Eva, L.; van der Griend, R.; McNally, O.; Blomfield, P.; Brand, A.; Tristram, A.; Bergzoll, C.; Petrich, S.; Kenwright, D.; et al. Pathological process has a crucial role in sentinel node biopsy for vulvar cancer. Gynecol. Oncol. 2019, 153, 292–296. [Google Scholar] [CrossRef]
- Verri, D.; Moro, F.; Fragomeni, S.M.; Zace, D.; Bove, S.; Pozzati, F.; Gui, B.; Scambia, G.; Testa, A.C.; Garganese, G. The Role of Ultrasound in the Evaluation of Inguinal Lymph Nodes in Patients with Vulvar Cancer: A Systematic Review and Meta-Analysis. Cancers 2022, 14, 3082. [Google Scholar] [CrossRef]
- Decesare, S.L.; Fiorica, J.V.; Roberts, W.S.; Reintgen, D.; Arango, H.; Hoffman, M.S.; Puleo, C.; Cavanagh, D. A pilot study utilizing intraoperative lymphoscintigraphy for identification of the sentinel lymph nodes in vulvar cancer. Gynecol. Oncol. 1997, 66, 425–428. [Google Scholar] [CrossRef]
- de Hullu, J.A.; Hollema, H.; Piers, D.A.; Verheijen, R.H.; van Diest, P.J.; Mourits, M.J.; Aalders, J.G.; van Der Zee, A.G. Sentinel lymph node procedure is highly accurate in squamous cell carcinoma of the vulva. J. Clin. Oncol. 2000, 18, 2811–2816. [Google Scholar] [CrossRef]
- De Cicco, C.; Sideri, M.; Bartolomei, M.; Grana, C.; Cremonesi, M.; Fiorenza, M.; Maggioni, A.; Bocciolone, L.; Mangioni, C.; Colombo, N.; et al. Sentinel node biopsy in early vulvar cancer. Br. J. Cancer 2000, 82, 295–299. [Google Scholar] [CrossRef]
- Sideri, M.; De Cicco, C.; Maggioni, A.; Colombo, N.; Bocciolone, L.; Trifiro, G.; De Nuzzo, M.; Mangioni, C.; Paganelli, G. Detection of sentinel nodes by lymphoscintigraphy and gamma probe guided surgery in vulvar neoplasia. Tumori 2000, 86, 359–363. [Google Scholar] [CrossRef]
- Molpus, K.L.; Kelley, M.C.; Johnson, J.E.; Martin, W.H.; Jones, H.W., 3rd. Sentinel lymph node detection and microstaging in vulvar carcinoma. J. Reprod. Med. 2001, 46, 863–869. [Google Scholar]
- Tavares, M.G.; Sapienza, M.T.; Galeb, N.A., Jr.; Belfort, F.A.; Costa, R.R.; Osorio, C.A.; Goes, J.C.; Endo, I.S.; Soares, J., Jr.; Lewin, S.; et al. The use of 99mTc-phytate for sentinel node mapping in melanoma, breast cancer and vulvar cancer: A study of 100 cases. Eur. J. Nucl. Med. 2001, 28, 1597–1604. [Google Scholar] [CrossRef]
- Boran, N.; Kayikcioglu, F.; Kir, M. Sentinel lymph node procedure in early vulvar cancer. Gynecol. Oncol. 2003, 90, 492–493. [Google Scholar] [CrossRef]
- Sliutz, G.; Reinthaller, A.; Lantzsch, T.; Mende, T.; Sinzinger, H.; Kainz, C.; Koelbl, H. Lymphatic mapping of sentinel nodes in early vulvar cancer. Gynecol. Oncol. 2002, 84, 449–452. [Google Scholar] [CrossRef]
- Moore, R.G.; DePasquale, S.E.; Steinhoff, M.M.; Gajewski, W.; Steller, M.; Noto, R.; Falkenberry, S. Sentinel node identification and the ability to detect metastatic tumor to inguinal lymph nodes in squamous cell cancer of the vulva. Gynecol. Oncol. 2003, 89, 475–479. [Google Scholar] [CrossRef]
- Puig-Tintore, L.M.; Ordi, J.; Vidal-Sicart, S.; Lejarcegui, J.A.; Torne, A.; Pahisa, J.; Iglesias, X. Further data on the usefulness of sentinel lymph node identification and ultrastaging in vulvar squamous cell carcinoma. Gynecol. Oncol. 2003, 88, 29–34. [Google Scholar] [CrossRef]
- Merisio, C.; Berretta, R.; Gualdi, M.; Pultrone, D.C.; Anfuso, S.; Agnese, G.; Aprile, C.; Mereu, L.; Salamano, S.; Tateo, S.; et al. Radioguided sentinel lymph node detection in vulvar cancer. Int. J. Gynecol. Cancer 2005, 15, 493–497. [Google Scholar] [CrossRef]
- Selman, T.J.; Luesley, D.M.; Acheson, N.; Khan, K.S.; Mann, C.H. A systematic review of the accuracy of diagnostic tests for inguinal lymph node status in vulvar cancer. Gynecol. Oncol. 2005, 99, 206–214. [Google Scholar] [CrossRef]
- Van der Zee, A.G.; Oonk, M.H.; De Hullu, J.A.; Ansink, A.C.; Vergote, I.; Verheijen, R.H.; Maggioni, A.; Gaarenstroom, K.N.; Baldwin, P.J.; Van Dorst, E.B.; et al. Sentinel node dissection is safe in the treatment of early-stage vulvar cancer. J. Clin. Oncol. 2008, 26, 884–889. [Google Scholar] [CrossRef]
- Prader, S.; du Bois, A.; Harter, P.; Breit, E.; Schneider, S.; Baert, T.; Heitz, F.; Traut, A.; Ehmann, S.; Pauly, N.; et al. Sentinel lymph node mapping with fluorescent and radioactive tracers in vulvar cancer patients. Arch. Gynecol. Obstet. 2020, 301, 729–736. [Google Scholar] [CrossRef]
- Koual, M.; Benoit, L.; Nguyen-Xuan, H.T.; Bentivegna, E.; Azais, H.; Bats, A.S. Diagnostic value of indocyanine green fluorescence guided sentinel lymph node biopsy in vulvar cancer: A systematic review. Gynecol. Oncol. 2021, 161, 436–441. [Google Scholar] [CrossRef]
- Pouwer, A.W.; Mus, R.; IntHout, J.; van der Zee, A.; Bulten, J.; Massuger, L.; de Hullu, J.A. The efficacy of ultrasound in the follow up after a negative sentinel lymph node in women with vulvar cancer: A prospective single-centre study. BJOG Int. J. Obstet. Gynaecol. 2018, 125, 1461–1468. [Google Scholar] [CrossRef]
- Albano, D.; Bonacina, M.; Savelli, G.; Ferro, P.; Busnardo, E.; Gianolli, L.; Camoni, L.; Giubbini, R.; Bertagna, F. Clinical and prognostic (18)F-FDG PET/CT role in recurrent vulvar cancer: A multicentric experience. Jpn. J. Radiol. 2022, 40, 66–74. [Google Scholar] [CrossRef]
- Fischerova, D.; Garganese, G.; Reina, H.; Fragomeni, S.M.; Cibula, D.; Nanka, O.; Rettenbacher, T.; Testa, A.C.; Epstein, E.; Guiggi, I.; et al. Terms, definitions and measurements to describe sonographic features of lymph nodes: Consensus opinion from the Vulvar International Tumor Analysis (VITA) group. Ultrasound Obstet. Gynecol. 2021, 57, 861–879. [Google Scholar] [CrossRef]
Stage | Description | |
---|---|---|
I | Tumour confined to the vulva | |
IA | Tumour size ≤ 2 cm and stromal invasion ≤ 1 mm a | |
IB | Tumour size > 2 cm or stromal invasion > 1 mm a | |
II | Tumour of any size with extension to lower one-third of the urethra, lower one-third of the vagina, lower one-third of the anus with negative nodes | |
III | Tumour of any size with extension to upper part of adjacent perineal structures, or with any number of non-fixed, non-ulcerated lymph node | |
IIIA | Tumour of any size with disease extension to upper two-thirds of the urethra, upper two-thirds of the vagina, bladder mucosa, rectal mucosa, or regional lymph node metastases ≤ 5 mm | |
IIIB | Regional b lymph node metastases > 5 mm | |
IIIC | Regional b lymph node metastases with extracapsular spread | |
IV | Tumour of any size fixed to the bone, or fixed, ulcerated lymph node metastases, or distant metastases | |
IVA | Disease fixed to pelvic bone, or fixed or ulcerated regional lymph node metastases | |
IVB | Distant metastases |
Author | Type of Study | Year | Number of Patients | Diagnostic Criteria | Findings |
---|---|---|---|---|---|
Sohaib et al. [11] | Retrospective | 2002 | 22 | >10 mm short axis for superficial LN | Sensitivity 40% |
Specificity 97% | |||||
>8 mm short axis for deep LN | Sensitivity 50% | ||||
Specificity 100% | |||||
Hawnaur et al. [18] | Prospective | 2002 | 10 | One of the following: long axis diameter > 21 mm, short axis diameter > 10 mm, long/short axis ratio < 1.3:1, irregularity of contour, cystic changes within solid parts of an LN | Sensitivity 89% |
Specificity 91% | |||||
Singh et al. [19] | Retrospective | 2006 | 59 | Two of the following: short axis diameter 1 cm, irregular or rounded shape, increased signal intensity on STIR or heterogenous signal intensity on T2-WI | Sensitivity 86% |
Specificity 82% | |||||
Bipat et al. [20] | Prospective | 2006 | 60 | Overall impression based on short axis diameter ≥8 mm, size in axial/sagittal and coronal plane, localisation, appearance, margin and shape | Sensitivity 52% |
Specificity 85% | |||||
PPV 46% | |||||
NPV 87% | |||||
Kataoka et al. [12] | Retrospective | 2010 | 49 | Overall impression based on long and short axis diameter, contour, presence of cystic changes/necrosis, loss of fatty hilum, signal intensity similar to primary lesion | Sensitivity 88% |
Specificity 86% | |||||
PPV 88% | |||||
NPV 86% | |||||
Sakae et al. [21] | Retrospective | 2016 | 41 | Long axis > 10 mm | Sensitivity 88% |
Specificity 71% | |||||
PPV 58% | |||||
NPV 92% |
Author | Type of Study | Year | Number of Patients | Diagnostic Criteria | Findings |
---|---|---|---|---|---|
Land et al. [22] | Retrospective | 2006 | 44 | Long axis ≥ 10 mm, evidence of necrosis in an LN, or evidence of extranodal disease | Sensitivity 58% |
Specificity 75% | |||||
PPV 58% | |||||
NPV 75% | |||||
Andersen et al. [23] | Prospective | 2015 | 27 | Short axis > 10 mm and/or abnormal contrast enhancement | Sensitivity 60% |
Specificity 90% | |||||
PPV 38% | |||||
NPV 96% | |||||
Pounds et al. [24] | Prospective | 2020 | 116 | Not specified | Sensitivity 59% |
Specificity 78% | |||||
PPV 62% | |||||
NPV 76% | |||||
Bohlin et al. [25] | Retrospective | 2021 | 134 | Short axis > 10 mm, abnormal shape, attenuation or contrast enhancement | Sensitivity 43% |
Specificity 96% | |||||
PPV 88% | |||||
NPV 73% |
Author | Type of Study | Year | Number of Patients | Diagnostic Criteria | Results |
---|---|---|---|---|---|
Makela et al. [16] | Prospective | 1993 | 25 | Nodal hypoechogenicity, absence of internal hilar echoes, greatest diameter > 1.5 cm, roundish shape, thickness ratio length > 1/2 | Sensitivity 82% |
Specificity 87% | |||||
Moskovic et al. [38] | Prospective | 1999 | 24 | LN with a more circular or irregular configuration and with loss of central hilar fat | Sensitivity 85% |
Specificity 83% | |||||
FNA cytology | Sensitivity 58% | ||||
Specificity 100% | |||||
US combined with FNA cytology | Sensitivity 83% | ||||
Specificity 82% | |||||
Mohammed et al. [39] | Prospective | 2000 | 20 | Short axis > 8 mm | Sensitivity 83% |
Specificity 90% | |||||
PPV 63%, | |||||
NPV 97% | |||||
Long/short axis ratio ≤ 2 | Sensitivity 100% | ||||
Specificity 58% | |||||
PPV 38% | |||||
NPV 100% | |||||
Short axis > 8 mm AND L/S axis ratio ≤ 2 | Sensitivity 83% | ||||
Specificity 88% | |||||
PPV 63% | |||||
NPV 96% | |||||
Hall et al. [40] | Prospective | 2003 | 44 | Grading based on size, shape (L/S ratio), preservation of an echogenic hilum, general attenuation and vascularity on Doppler | Sensitivity 86% |
Specificity 96% | |||||
FNA cytology | Sensitivity 75% | ||||
Specificity 100% | |||||
Combined US + FNA cytology | Sensitivity 93% | ||||
Specificity 100% | |||||
Land et al. [22] | Retrospective | 2006 | 44 | Circular or irregular configuration, loss of central hilar fat | Sensitivity 87% |
Specificity 69% | |||||
PPV 48% | |||||
NPV 94% | |||||
US features plus FNA cytology on the largest or most abnormal node | Sensitivity 80% | ||||
Specificity 100% | |||||
PPV 100% | |||||
NPV 93% | |||||
De Gregorio et al. [41] | Retrospective | 2013 | 60 | Absence of fatty hilum, irregular shape, cortical region diameter ≥ 4 mm, peripheral vascularisation | Sensitivity 76% |
Specificity 91% | |||||
PPV 83% | |||||
NPV 88% | |||||
Garganese et al. [42] | Retrospective | 2020 | 144 | Cortical thickness > 2.5 mm | Sensitivity 90% |
Specificity 78% | |||||
PPV 59% | |||||
NPV 96% | |||||
Short axis > 8.5 mm | Sensitivity 64% | ||||
Specificity 91% | |||||
PPV 74% | |||||
NPV 86% | |||||
Cortex/medulla (C/M) ratio > 1.2 | Sensitivity 70% | ||||
Specificity 92% | |||||
PPV 73% | |||||
NPV 90% | |||||
Combination of short axis and C/M ratio | Sensitivity 89% | ||||
Specificity 82% | |||||
PPV 68% | |||||
NPV 95% | |||||
Final overall assessment | Sensitivity 86% | ||||
Specificity 84% | |||||
PPV 73% | |||||
NPV 92% | |||||
Verri et al. [44] | Systematic review and meta-analysis | 2022 | 437 | As per individual studies | Sensitivity 85% |
Specificity 86% | |||||
PPV 65% | |||||
NPV 92% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ha, M.; Eva, L. Imaging in Vulval Cancer. Cancers 2024, 16, 2269. https://doi.org/10.3390/cancers16122269
Ha M, Eva L. Imaging in Vulval Cancer. Cancers. 2024; 16(12):2269. https://doi.org/10.3390/cancers16122269
Chicago/Turabian StyleHa, Minah, and Lois Eva. 2024. "Imaging in Vulval Cancer" Cancers 16, no. 12: 2269. https://doi.org/10.3390/cancers16122269
APA StyleHa, M., & Eva, L. (2024). Imaging in Vulval Cancer. Cancers, 16(12), 2269. https://doi.org/10.3390/cancers16122269