Treatment, Prognostic Markers, and Survival in Thymic Neuroendocrine Tumors, with Special Reference to Temozolomide-Based Chemotherapy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Patients
2.2. Follow-up and Outcomes
2.3. Clinicopathological Characteristics
2.4. Statistical Analysis
3. Results
3.1. Clinicopathological Characteristics
3.2. Treatments
3.3. Survival
3.4. Prognostic Factors
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tartarone, A.; Lerose, R.; Lettini, A.R.; Tartarone, M. Current Treatment Approaches for Thymic Epithelial Tumors. Life 2023, 13, 1170. [Google Scholar] [CrossRef]
- Hsu, C.-H.; Chan, J.K.; Yin, C.-H.; Lee, C.-C.; Chern, C.-U.; Liao, C.-I. Trends in the Incidence of Thymoma, Thymic Car-cinoma, and Thymic Neuroendocrine Tumor in the United States. PLoS ONE 2019, 14, e0227197. [Google Scholar] [CrossRef]
- Ma, K.; Liu, Y.; Xue, Z.; Chu, X. Treatment, Prognostic Markers, and Survival in Thymic Neuroendocrine Tumors: A Single Center Experience of 41 Patients. Medicine 2017, 96, e7842. [Google Scholar] [CrossRef]
- Volante, M.; Mete, O.; Pelosi, G.; Roden, A.C.; Speel, E.J.M.; Uccella, S. Molecular Pathology of Well-Differentiated Pulmonary and Thymic Neuroendocrine Tumors: What Do Pathologists Need to Know? Endocr. Pathol. 2021, 32, 154–168. [Google Scholar] [CrossRef]
- Bai, C.; Xv, J. Chinese expert consensus on lung and thyus neuroendocrine neoplasms. Chin. J. Oncol. 2021, 43, 10. [Google Scholar] [CrossRef]
- Rindi, G.; Mete, O.; Uccella, S.; Basturk, O.; La Rosa, S.; Brosens, L.A.A.; Ezzat, S.; De Herder, W.W.; Klimstra, D.S.; Papotti, M.; et al. Overview of the 2022 WHO Classification of Neuroendocrine Neoplasms. Endocr Pathol 2022, 33, 115–154. [Google Scholar] [CrossRef]
- Filosso, P.L.; Yao, X.; Ahmad, U.; Zhan, Y.; Huang, J.; Ruffini, E.; Travis, W.; Lucchi, M.; Rimner, A.; Antonicelli, A.; et al. Outcome of Primary Neuroendocrine Tumors of the Thymus: A Joint Analysis of the International Thymic Malignancy Interest Group and the European Society of Thoracic Surgeons Databases. J. Thorac. Cardiovasc. Surg. 2015, 149, 103–109.e2. [Google Scholar] [CrossRef]
- Baudin, E.; Caplin, M.; Garcia-Carbonero, R.; Fazio, N.; Ferolla, P.; Filosso, P.L.; Frilling, A.; De Herder, W.W.; Hörsch, D.; Knigge, U.; et al. Lung and Thymic Carcinoids: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Fol-low-Up☆. Ann. Oncol. 2021, 32, 439–451. [Google Scholar] [CrossRef]
- Eisenhauer, E.A.; Therasse, P.; Bogaerts, J.; Schwartz, L.H.; Sargent, D.; Ford, R.; Dancey, J.; Arbuck, S.; Gwyther, S.; Mooney, M.; et al. New Response Evaluation Criteria in Solid Tumours: Revised RECIST Guideline (Version 1.1). Eur. J. Cancer 2009, 45, 228–247. [Google Scholar] [CrossRef]
- Edge, S.B.; Compton, C.C. The American Joint Committee on Cancer: The 7th Edition of the AJCC Cancer Staging Manual and the Future of TNM. Ann. Surg. Oncol. 2010, 17, 1471–1474. [Google Scholar] [CrossRef]
- Masaoka, A.; Monden, Y.; Nakahara, K.; Tanioka, T. Follow-up Study of Thymomas with Special Reference to Their Clinical Stages. Cancer 1981, 48, 2485–2492. [Google Scholar] [CrossRef]
- Thakker, R.V.; Newey, P.J.; Walls, G.V.; Bilezikian, J.; Dralle, H.; Ebeling, P.R.; Melmed, S.; Sakurai, A.; Tonelli, F.; Brandi, M.L.; et al. Clinical Practice Guidelines for Multiple Endocrine Neoplasia Type 1 (MEN1). J. Clin. Endocrinol. Metab. 2012, 97, 2990–3011. [Google Scholar] [CrossRef]
- Fang, W.; Filosso, P.L.; Roden, A.C.; Gu, Z.; Liu, Y.; Agzarian, J.; Shen, R.K.; Ruffini, E. Clinicopathological Features and Current Treatment Outcomes of Neuroendocrine Thymic Tumours. Eur. J. Cardio-Thorac. Surg. 2021, 59, 1004–1013. [Google Scholar] [CrossRef]
- Ose, N.; Maeda, H.; Inoue, M.; Morii, E.; Shintani, Y.; Matsui, H.; Tada, H.; Tokunaga, T.; Kimura, K.; Sakamaki, Y.; et al. Results of Treatment for Thymic Neuroendocrine Tumours: Multicentre Clinicopathological Study. Interact. Cardiovasc. Thorac. Surg. 2018, 26, 18–24. [Google Scholar] [CrossRef]
- The Utility of Blood Neuroendocrine Gene Transcript Measurement in the Diagnosis of Bronchopulmonary Neuroendocrine Tumours and as a Tool to Evaluate Surgical Resection and Disease Progression—PubMed. Available online: https://pubmed.ncbi.nlm.nih.gov/29145657/ (accessed on 5 May 2024).
- Petrović, M.; Bukumirić, Z.; Zdravković, V.; Mitrović, S.; Atkinson, H.D.; Jurišić, V. The Prognostic Significance of the Circulating Neuroendocrine Markers Chromogranin A, pro-Gastrin-Releasing Peptide, and Neuron-Specific Enolase in Patients with Small-Cell Lung Cancer. Med. Oncol. 2014, 31, 823. [Google Scholar] [CrossRef]
- Tutar, N.; Yetkïn, N.A.; Yazici, C.; Önal, Ö.; Kontaş, O.; Keleştïmur, F. Clinical Significance of Pro-Gastrin-Releasing Peptide, Neuron-Specific Enolase, Chromogranin A and Squamous Cell Cancer Antigen in Pulmonary Neuroendocrine Tumors. Turk. J. Med. Sci. 2019, 49, 774–781. [Google Scholar] [CrossRef]
- Wu, Z.D.; Wang, J.C.; Lin, J.Q.; Zhong, L.H.; Wu, Z.Z.; Zhang, X.; Chen, Y.P.; Chen, G.; Zheng, X.W. Clinicopathological characteristics and prognosis of 21 patients with thymic neuroendocrine tumors. Zhonghua Bing Li Xue Za Zhi 2021, 50, 664–666. [Google Scholar] [CrossRef]
- Huang, Y.-Y.; Liang, S.-H.; Hu, Y.; Liu, X.; Ma, G.-W. Prognostic Value of Preoperative Nutritional Assessment and Neutrophil-to-Lymphocyte Ratio in Patients with Thymic Epithelial Tumors. Front. Nutr. 2022, 9, 868336. [Google Scholar] [CrossRef]
- Christakis, I.; Qiu, W.; Silva Figueroa, A.M.; Hyde, S.; Cote, G.J.; Busaidy, N.L.; Williams, M.; Grubbs, E.; Lee, J.E.; Perrier, N.D. Clinical Features, Treatments, and Outcomes of Patients with Thymic Carcinoids and Multiple Endocrine Neoplasia Type 1 Syndrome at MD Anderson Cancer Center. Horm. Cancer 2016, 7, 279–287. [Google Scholar] [CrossRef]
- Goudet, P.; Murat, A.; Cardot-Bauters, C.; Emy, P.; Baudin, E.; Du Boullay Choplin, H.; Chapuis, Y.; Kraimps, J.; Sadoul, J.; Tabarin, A.; et al. Thymic Neuroendocrine Tumors in Multiple Endocrine Neoplasia Type 1: A Comparative Study on 21 Cases Among a Series of 761 MEN1 from the GTE (Groupe Des Tumeurs Endocrines). World J. Surg. 2009, 33, 1197–1207. [Google Scholar] [CrossRef]
- Crona, J.; Bjrklund, P.; Welin, S.; Kozlovacki, G.; Berg, K.; Granberg, D. Treatment, Prognostic Markers and Survival in Thymic Neuroendocrine Tumours. A Study from a Single Tertiary Referral Centre. Lung Cancer 2013, 79, 289–293. [Google Scholar] [CrossRef]
- Righi, L.; Volante, M.; Tavaglione, V.; Billè, A.; Daniele, L.; Angusti, T.; Inzani, F.; Pelosi, G.; Rindi, G.; Papotti, M. Soma-tostatin Receptor Tissue Distribution in Lung Neuroendocrine Tumours: A Clinicopathologic and Immunohistochemical Study of 218 “clinically Aggressive” Cases. Ann. Oncol. 2010, 21, 548–555. [Google Scholar] [CrossRef]
- Vatrano, S.; Giorcelli, J.; Votta, A.; Capone, G.; Izzo, S.; Gatti, G.; Righi, L.; Napoli, F.; Scagliotti, G.; Papotti, M.; et al. Mul-tiple Assays to Determine Methylguanine-Methyltransferase Status in Lung Carcinoids and Correlation with Clinical and Pathological Features. Neuroendocrinology 2020, 110, 1–9. [Google Scholar] [CrossRef]
- Uccella, S.; La Rosa, S.; Volante, M.; Papotti, M. Immunohistochemical Biomarkers of Gastrointestinal, Pancreatic, Pulmonary, and Thymic Neuroendocrine Neoplasms. Endocr. Pathol. 2018, 29, 150–168. [Google Scholar] [CrossRef]
- Watanabe, H.; Yamazaki, Y.; Fujishima, F.; Izumi, K.; Imamura, M.; Hijioka, S.; Toriyama, K.; Yatabe, Y.; Kudo, A.; Motoi, F.; et al. O6-Methylguanine DNA Methyltransferase and Glucose Transporter 2 in Foregut and Hindgut Gastrointestinal Neuroendocrine Neoplasms. BMC Cancer 2020, 20, 1195. [Google Scholar] [CrossRef]
- Sullivan, J.L.; Weksler, B. Neuroendocrine Tumors of the Thymus: Analysis of Factors Affecting Survival in 254 Patients. Ann. Thorac. Surg. 2017, 103, 935–939. [Google Scholar] [CrossRef]
- Rindi, G.; Klersy, C.; Inzani, F.; Fellegara, G.; Ampollini, L.; Ardizzoni, A.; Campanini, N.; Carbognani, P.; De Pas, T.M.; Galetta, D.; et al. Grading the Neuroendocrine Tumors of the Lung: An Evidence-Based Proposal. Endocr. Relat. Cancer 2014, 21, 1–16. [Google Scholar] [CrossRef]
- Marchevsky, A.M.; Hendifar, A.; Walts, A.E. The Use of Ki-67 Labeling Index to Grade Pulmonary Well-Differentiated Neuroendocrine Neoplasms: Current Best Evidence. Mod. Pathol. 2018, 31, 1523–1531. [Google Scholar] [CrossRef]
- Mao, Y.G.; Lei, X.; Li, X.K.; Yang, M.J.; Ma, Y.H.; Song, L.J. Analysis of survival and prognostic factors of neuroendocrine tumors of the thymus. J. Basic Clin. Oncol. 2023, 36, 303–307. [Google Scholar]
- Zhai, Y.; Zeng, Q.; Bi, N.; Zhou, Z.; Xiao, Z.; Hui, Z.; Chen, D.; Wang, L.; Wang, J.; Liu, W.; et al. A Single Center Analysis of Thymic Neuroendocrine Tumors. Cancers 2022, 14, 4944. [Google Scholar] [CrossRef]
- Tiffet, O.; Nicholson, A.G.; Ladas, G.; Sheppard, M.N.; Goldstraw, P. A Clinicopathologic Study of 12 Neuroendocrine Tumors Arising in the Thymus. Chest 2003, 124, 141–146. [Google Scholar] [CrossRef] [PubMed]
- Modica, R.; Minotta, R.; Liccardi, A.; Cannavale, G.; Benevento, E.; Colao, A. Evaluation of Neutrophil-to-Lymphocyte Ratio (NLR), Platelet-to-Lymphocyte Ratio (PLR) and Systemic Immune-Inflammation Index (SII) as Potential Biomarkers in Pa-tients with Sporadic Medullary Thyroid Cancer (MTC). J. Pers. Med. 2023, 13, 953. [Google Scholar] [CrossRef] [PubMed]
- Xu, N.; Jian, Y.; Wang, Y.; Tian, W. Evaluation of Neutrophil-to-Lymphocyte Ratio and Calcitonin Concentration for Pre-dicting Lymph Node Metastasis and Distant Metastasis in Patients with Medullary Thyroid Cancer. Mol. Clin. Oncol. 2018, 9, 629–634. [Google Scholar] [CrossRef] [PubMed]
- von Arx, C.; Della Vittoria Scarpati, G.; Cannella, L.; Clemente, O.; Marretta, A.L.; Bracigliano, A.; Picozzi, F.; Iervolino, D.; Granata, V.; Modica, R.; et al. A New Schedule of One Week on/One Week off Temozolomide as Second-Line Treatment of Advanced Neuroendocrine Carcinomas (TENEC-TRIAL): A Multicenter, Open-Label, Single-Arm, Phase II Trial. ESMO Open 2024, 9, 103003. [Google Scholar] [CrossRef] [PubMed]
- Saranga-Perry, V.; Morse, B.; Centeno, B.; Kvols, L.; Strosberg, J. Treatment of Metastatic Neuroendocrine Tumors of the Thymus with Capecitabine and Temozolomide: A Case Series. Neuroendocrinology 2013, 97, 318–321. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Li, Y.; Duan, J.; Chen, Y.; Yuan, B.; Qi, Z.; Tan, H. Capecitabine and Temozolomide as a Promising Therapy for Advanced Thymic Atypical Carcinoid. Oncologist 2019, 24, 798–802. [Google Scholar] [CrossRef] [PubMed]
- Bongiovanni, A.; Recine, F.; Riva, N.; Foca, F.; Liverani, C.; Mercatali, L.; Nicolini, S.; Pieri, F.; Amadori, D.; Ibrahim, T. Outcome Analysis of First-Line Somatostatin Analog Treatment in Metastatic Pulmonary Neuroendocrine Tumors and Prognostic Significance of 18 FDG-PET/CT. Clin. Lung Cancer 2017, 18, 415–420. [Google Scholar] [CrossRef] [PubMed]
- Baudin, E.; Berruti, A.; Giuliano, M.; Mansoor, W.; Bobirca, C.; Houtsma, E.; Fagan, N.; Oberg, K.E.; Ferolla, P. First Long-Term Results on Efficacy and Safety of Long-Acting Pasireotide in Combination with Everolimus in Patients with Advanced Carcinoids (NET) of the Lung/Thymus: Phase II LUNA Trial. J. Clin. Oncol. 2021, 39, 8574. [Google Scholar] [CrossRef]
- Chi, Y.; Song, L.; Liu, W.; Zhou, Y.; Miao, Y.; Fang, W.; Tan, H.; Shi, S.; Jiang, H.; Xu, J.; et al. S-1/Temozolomide versus S-1/Temozolomide plus Thalidomide in Advanced Pancreatic and Non-Pancreatic Neuroendocrine Tumours (STEM): A Randomised, Open-Label, Multicentre Phase 2 Trial. eClinicalMedicine 2022, 54, 101667. [Google Scholar] [CrossRef]
- Brighi, N.; Lamberti, G.; Andrini, E.; Mosconi, C.; Manuzzi, L.; Donati, G.; Lisotti, A.; Campana, D. Prospective Evaluation of MGMT-Promoter Methylation Status and Correlations with Outcomes to Temozolomide-Based Chemotherapy in Well-Differentiated Neuroendocrine Tumors. Curr. Oncol. 2023, 30, 1381–1394. [Google Scholar] [CrossRef]
- Kulke, M.H.; Hornick, J.L.; Frauenhoffer, C.; Hooshmand, S.; Ryan, D.P.; Enzinger, P.C.; Meyerhardt, J.A.; Clark, J.W.; Stuart, K.; Fuchs, C.S.; et al. O 6-Methylguanine DNA Methyltransferase Deficiency and Response to Temozolomide-Based Therapy in Patients with Neuroendocrine Tumors. Clin. Cancer Res. 2009, 15, 338–345. [Google Scholar] [CrossRef] [PubMed]
- Walter, T.; van Brakel, B.; Vercherat, C.; Hervieu, V.; Forestier, J.; Chayvialle, J.-A.; Molin, Y.; Lombard-Bohas, C.; Joly, M.-O.; Scoazec, J.-Y. O6-Methylguanine-DNA Methyltransferase Status in Neuroendocrine Tumours: Prognostic Relevance and Association with Response to Alkylating Agents. Br. J. Cancer 2015, 112, 523–531. [Google Scholar] [CrossRef] [PubMed]
- Lemelin, A.; Barritault, M.; Hervieu, V.; Payen, L.; Péron, J.; Couvelard, A.; Cros, J.; Scoazec, J.-Y.; Bin, S.; Villeneuve, L.; et al. O6-Methylguanine-DNA Methyltransferase (MGMT) Status in Neuroendocrine Tumors: A Randomized Phase II Study (MGMT-NET). Dig. Liver Dis. 2019, 51, 595–599. [Google Scholar] [CrossRef] [PubMed]
Clinicopathological Characteristics | Number of Patients (n = 32) | % | |
---|---|---|---|
Gender | Male | 24 | 75.0 |
Female | 8 | 25.0 | |
Age (years) | Mean ± SD, range | 47.09 ± 10.21 (22.0–66.0) | |
First symptoms | Chest discomfort Superior vena cava syndrome Fever Gastrointestinal symptoms Swollen lymph nodes Ectopic ACTH syndrome None a | 11 4 2 1 3 1 10 | 34.3 12.5 6.3 3.1 9.4 3.1 31.3 |
NSE (ng/mL) b | <16.3 | 15 | 46.9 |
≥16.3 | 17 | 53.1 | |
Pro-GRP (ng/mL) c | <67.42 | 16 | 50.0 |
≥67.42 | 16 | 50.0 | |
ALC | Mean ± SD, range | 1.6 ± 0.5 (0.5–2.5) | |
NLR | Mean ± SD, range | 2.2 ± 1.1 (0.9–5.8) | |
LMR | Mean ± SD, range | 4.1 ± 1.8 (1.7–9.8) | |
PLR | Mean ± SD, range | 137.0 ± 56.3 (30.9–295.9) | |
Histological diagnosis | Typical carcinoid | 3 | 9.4 |
Atypical carcinoid | 25 | 78.1 | |
Carcinoids/NETs with elevated mitotic counts and/or Ki67 proliferation index | 4 | 12.5 | |
Mitotic index (/10HPF) | <2 | 5 | 15.6 |
2–10 | 23 | 71.9 | |
>10 | 4 | 12.5 | |
Ki67 (%) | <5.0 | 1 | 3.1 |
5.0–30.0 | 28 | 87.5 | |
>30.0 | 3 | 9.4 | |
Tumor size (cm) | Mean ± SD, range | 6.8 ± 0.5 (2.0–15.0) | |
Distant metastasis | Yes | 10 | 31.3 |
No | 22 | 68.8 | |
TNM stage | I IIIa IIIb IVa IVb | 14 3 3 2 10 | 43.8 9.4 9.4 6.3 31.3 |
Masaoka stage | I IIa IIb III IVb | 7 2 5 7 11 | 21.9 6.3 15.6 21.9 34.4 |
MEN-1 syndrome | Yes | 6 | 18.8 |
No | 26 | 81.2 | |
SSTR2 | Positive | 12 | 37.5 |
Negative | 20 | 62.5 | |
MGMT | Positive | 27 | 84.4 |
Negative | 5 | 15.6 |
Treatment | Number of Patients | % | |
---|---|---|---|
Therapeutic regimens | Surgery | 10 | 31.3 |
Surgery + chemotherapy | 7 | 21.9 | |
Surgery + radiation | 1 | 3.1 | |
Surgery + chemotherapy +radiation | 3 | 9.4 | |
Chemotherapy | 7 | 21.9 | |
Chemotherapy + radiation | 2 | 6.3 | |
Somatostatin analogs | 1 | 3.1 | |
Everolimus | 1 | 3.1 | |
Surgery approach | Yes | 21 | 65.6 |
No | 11 | 34.4 | |
Adjuvant therapies (21 patients) | Chemotherapy | 6 | 28.6 |
Chemotherapy + radiation | 3 | 14.3 | |
Radiation | 1 | 4.8 | |
No adjuvant therapies | 11 | 52.4 | |
TMZ-based Chemotherapy (19 patients) | First-line treatment | 5 | 26.3 |
Second-line treatment | 8 | 42.1 | |
Third or above line treatment | 6 | 31.6 |
ID | Treatment Lines | MGMT Status | Ki67 (%) | Surgery | PFS (m) | OS (m) | Best Response |
---|---|---|---|---|---|---|---|
2 | Second-line | - | 10 | Yes | 22.0 | 38.2 | Partial response |
4 | First-line | - | 5 | No | 12.8 | 32.1 | Partial response |
5 | Third or above line | - | 10 | No | 13.7 | 35.6 | Stable disease |
6 | Second-line | + | 10 | No | 5.1 | 62.4 | Stable disease |
7 | First-line | + | 18 | No | 5.2 | 11.9 | Stable disease |
9 | Second-line | + | 25 | No | 7.0 | 11.1 | Stable disease |
13 | Second-line | + | 10 | No | 23.8 | 51.1 | Stable disease |
14 | Third or above line | + | 8 | Yes | 8.1 | 72.9 | Stable disease |
15 | Second-line | + | 8 | Yes | 23.9 | 60.9 | Stable disease |
16 | First-line | + | 20 | No | 12.5 | 41.3 | Partial response |
17 | Second-line | + | 5 | Yes | 7.9 | 29.6 | Stable disease |
19 | Third or above line | + | 15 | Yes | 13.2 | 94.3 | Stable disease |
21 | Third or above line | + | 40 | Yes | 2.7 | 30.1 | Progressive disease |
22 | Second-line | + | 10 | No | 6.0 | 19.3 | Stable disease |
23 | First-line | + | 40 | No | 4.1 | 34.2 | Stable disease |
28 | Second-line | + | 20 | Yes | 32.1 | 32.1 | Stable disease |
30 | First-line | + | 5 | No | 25.1 | 35.4 | Stable disease |
31 | Third or above line | + | 15 | Yes | 4.2 | 8.5 | Progressive disease |
32 | Third or above line | + | 10 | Yes | 5.7 | 5.7 | Stable disease |
Prognostic Factors | Univariable Analysis | Multivariable Analysis | |||
---|---|---|---|---|---|
HR (95% CI) | p | HR (95% CI) | p | ||
Ki67 | ≤10% | 1 | 0.004 | 1 | 0.007 |
>10% | 8.03 (1.56–41.45) | 9.54 (1.55–58.58) | |||
NSE (ng/mL) | Low (<16.3) | 1 | 0.025 | 1 | 0.448 |
High (≥16.3) | 4.96 (1.06–23.23) | 2.28 (0.37–13.86) | |||
Distant metastasis | No | 1 | 0.003 | 1 | 0.508 |
Yes | 6.93 (1.60–30.06) | 2.39 (0.24–23.50) | |||
TNM stage | I–II | 1 | 0.044 | 1 | 0.779 |
III–IV | 3.720 (0.96–14.45) | 0.66 (0.06–7.03) | |||
Masaoka stage | I–II | 1 | 0.044 | 1 | 0.779 |
III–IV | 3.720 (0.96–14.45) | 0.66 (0.06–7.03) | |||
Surgery approach | No | 1 | 0.002 | 1 | 0.003 |
Yes | 0.17 (0.05–0.59) | 0.24 (0.02–3.92) |
Prognostic Factors | Univariable Analysis | Multivariable Analysis | |||
---|---|---|---|---|---|
HR (95% CI) | p | HR (95% CI) | p | ||
TNM stage | I–II | 1 | 0.049 | 1 | 0.032 |
III–IV | 2.89 (0.96–8.70) | 4.62 (1.14–18.66) | |||
Masaoka stage | I–II | 1 | 0.049 | 1 | 0.032 |
III–IV | 2.89 (0.96–8.70) | 4.62 (1.14–18.66) | |||
Adjuvant therapies | No | 1 | 0.027 | 1 | 0.010 |
Yes | 0.28 (0.08–0.93) | 0.13 (0.03–0.62) | |||
NLR a | Low (<1.94) | 1 | 0.020 | 1 | 0.046 |
High (≥1.94) | 3.72 (1.14–12.12) | 3.59 (1.03–12.54) |
Prognostic Factors | Univariable Analysis | Multivariable Analysis | |||
---|---|---|---|---|---|
HR (95% CI) | p | HR (95% CI) | p | ||
Gender | Male | 1 | 0.028 | 1 | 0.03 |
Female | 3.79 (1.06–13.6) | 3.48 (0.88–13.80) | |||
NLR a | Low (<1.94) | 1 | 0.023 | 1 | 0.025 |
High (≥1.94) | 3.88 (1.12–13.42) | 3.66 (0.97–13.81) | |||
PLR b | Low (<106.09) | 1 | 0.044 | 1 | 0.370 |
High (≥106.09) | 3.19 (0.98–) | 1.82 (0.49–6.85) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cheng, Z.; Yu, F.; Chen, R.; Cui, L.; Chen, Y.; Deng, C.; Shi, Y.; Tan, H. Treatment, Prognostic Markers, and Survival in Thymic Neuroendocrine Tumors, with Special Reference to Temozolomide-Based Chemotherapy. Cancers 2024, 16, 2502. https://doi.org/10.3390/cancers16142502
Cheng Z, Yu F, Chen R, Cui L, Chen Y, Deng C, Shi Y, Tan H. Treatment, Prognostic Markers, and Survival in Thymic Neuroendocrine Tumors, with Special Reference to Temozolomide-Based Chemotherapy. Cancers. 2024; 16(14):2502. https://doi.org/10.3390/cancers16142502
Chicago/Turabian StyleCheng, Zixuan, Fuhuan Yu, Ruao Chen, Lingjun Cui, Yingying Chen, Chao Deng, Yanfen Shi, and Huangying Tan. 2024. "Treatment, Prognostic Markers, and Survival in Thymic Neuroendocrine Tumors, with Special Reference to Temozolomide-Based Chemotherapy" Cancers 16, no. 14: 2502. https://doi.org/10.3390/cancers16142502
APA StyleCheng, Z., Yu, F., Chen, R., Cui, L., Chen, Y., Deng, C., Shi, Y., & Tan, H. (2024). Treatment, Prognostic Markers, and Survival in Thymic Neuroendocrine Tumors, with Special Reference to Temozolomide-Based Chemotherapy. Cancers, 16(14), 2502. https://doi.org/10.3390/cancers16142502