Cost-Effectiveness of Lung Cancer Screening with Low-Dose Computed Tomography: Comparing Hungarian Screening Protocols with the US NLST
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Model Development
2.2. Effectiveness Data and Model Inputs
2.3. Utility and ICER Calculation
2.4. Deterministic Sensitivity Analysis
2.5. Overdiagnosis
3. Results
3.1. Diagnosis Rate
3.2. ICER
3.3. Overdiagnosis
3.4. Deterministic Sensitivity Analysis
3.5. Stratified Analysis by Age
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cancer Stat Facts: Common Cancer Sites. Available online: https://seer.cancer.gov/statfacts/html/common.html (accessed on 21 May 2024).
- Bogos, K.; Kiss, Z.; Galffy, G.; Tamasi, L.; Ostoros, G.; Muller, V.; Urban, L.; Bittner, N.; Sarosi, V.; Vastag, A.; et al. Lung Cancer in Hungary. J. Thorac. Oncol. 2020, 15, 692–699. [Google Scholar] [CrossRef]
- Bogos, K.; Kiss, Z.; Galffy, G.; Tamasi, L.; Ostoros, G.; Muller, V.; Urban, L.; Bittner, N.; Sarosi, V.; Vastag, A.; et al. Revising Incidence and Mortality of Lung Cancer in Central Europe: An Epidemiology Review from Hungary. Front. Oncol. 2019, 9, 1051. [Google Scholar] [CrossRef]
- Babar, L.; Modi, P.; Anjum, F. Lung Cancer Screening. In StatPearls; StatPearls: Treasure Island, FL, USA, 2024. [Google Scholar]
- Lung Cancer Key Findings. Available online: https://www.lung.org/research/state-of-lung-cancer/key-findings (accessed on 21 May 2024).
- National Lung Screening Trial Research, T.; Aberle, D.R.; Adams, A.M.; Berg, C.D.; Black, W.C.; Clapp, J.D.; Fagerstrom, R.M.; Gareen, I.F.; Gatsonis, C.; Marcus, P.M.; et al. Reduced lung-cancer mortality with low-dose computed tomographic screening. N. Engl. J. Med. 2011, 365, 395–409. [Google Scholar] [CrossRef] [PubMed]
- de Koning, H.J.; van der Aalst, C.M.; de Jong, P.A.; Scholten, E.T.; Nackaerts, K.; Heuvelmans, M.A.; Lammers, J.J.; Weenink, C.; Yousaf-Khan, U.; Horeweg, N.; et al. Reduced Lung-Cancer Mortality with Volume CT Screening in a Randomized Trial. N. Engl. J. Med. 2020, 382, 503–513. [Google Scholar] [CrossRef] [PubMed]
- Kerpel-Fronius, A.; Monostori, Z.; Kovacs, G.; Ostoros, G.; Horvath, I.; Solymosi, D.; Pipek, O.; Szatmari, F.; Kovacs, A.; Markoczy, Z.; et al. Nationwide lung cancer screening with low-dose computed tomography: Implementation and first results of the HUNCHEST screening program. Eur. Radiol. 2022, 32, 4457–4467. [Google Scholar] [CrossRef] [PubMed]
- Nagy, B.; Szilberhorn, L.; Gyorbiro, D.M.; Moizs, M.; Bajzik, G.; Kerpel-Fronius, A.; Voko, Z. Shall We Screen Lung Cancer with Low-Dose Computed Tomography? Cost-Effectiveness in Hungary. Value Health Reg. Issues 2023, 34, 55–64. [Google Scholar] [CrossRef]
- Criss, S.D.; Cao, P.; Bastani, M.; Ten Haaf, K.; Chen, Y.; Sheehan, D.F.; Blom, E.F.; Toumazis, I.; Jeon, J.; de Koning, H.J.; et al. Cost-Effectiveness Analysis of Lung Cancer Screening in the United States: A Comparative Modeling Study. Ann. Intern. Med. 2019, 171, 796–804. [Google Scholar] [CrossRef]
- Toumazis, I.; de Nijs, K.; Cao, P.; Bastani, M.; Munshi, V.; Ten Haaf, K.; Jeon, J.; Gazelle, G.S.; Feuer, E.J.; de Koning, H.J.; et al. Cost-effectiveness Evaluation of the 2021 US Preventive Services Task Force Recommendation for Lung Cancer Screening. JAMA Oncol. 2021, 7, 1833–1842. [Google Scholar] [CrossRef]
- Han, D.; Heuvelmans, M.A.; Oudkerk, M. Volume versus diameter assessment of small pulmonary nodules in CT lung cancer screening. Transl. Lung Cancer Res. 2017, 6, 52–61. [Google Scholar] [CrossRef]
- Horeweg, N.; Scholten, E.T.; de Jong, P.A.; van der Aalst, C.M.; Weenink, C.; Lammers, J.W.; Nackaerts, K.; Vliegenthart, R.; ten Haaf, K.; Yousaf-Khan, U.A.; et al. Detection of lung cancer through low-dose CT screening (NELSON): A prespecified analysis of screening test performance and interval cancers. Lancet Oncol. 2014, 15, 1342–1350. [Google Scholar] [CrossRef]
- Horeweg, N.; van der Aalst, C.M.; Thunnissen, E.; Nackaerts, K.; Weenink, C.; Groen, H.J.; Lammers, J.W.; Aerts, J.G.; Scholten, E.T.; van Rosmalen, J.; et al. Characteristics of lung cancers detected by computer tomography screening in the randomized NELSON trial. Am. J. Respir. Crit. Care Med. 2013, 187, 848–854. [Google Scholar] [CrossRef]
- Horeweg, N.; van Rosmalen, J.; Heuvelmans, M.A.; van der Aalst, C.M.; Vliegenthart, R.; Scholten, E.T.; ten Haaf, K.; Nackaerts, K.; Lammers, J.W.; Weenink, C.; et al. Lung cancer probability in patients with CT-detected pulmonary nodules: A prespecified analysis of data from the NELSON trial of low-dose CT screening. Lancet Oncol. 2014, 15, 1332–1341. [Google Scholar] [CrossRef]
- Central Statistics Office [Központi Statisztikai Hivatal]. Health Survey 2009 [Egészségfelmérés (ELEF), 2009]. Statisztikai Tükör 2010, 4, 4. [Google Scholar]
- Central Statistics Office [Központi Statisztikai Hivatal]. Population of Hungary by Sex and Age [Magyarország népességének száma nemek és életkor szerint]. Available online: https://www.ksh.hu/interaktiv/korfak/orszag.html (accessed on 21 May 2024).
- National Cancer Institute Cancer Data Access System. Available online: https://cdas.cancer.gov/nlst/ (accessed on 21 May 2024).
- Kelsey, C.R.; Marks, L.B.; Hollis, D.; Hubbs, J.L.; Ready, N.E.; D’Amico, T.A.; Boyd, J.A. Local recurrence after surgery for early stage lung cancer: An 11-year experience with 975 patients. Cancer 2009, 115, 5218–5227. [Google Scholar] [CrossRef]
- Affidea. Cost of Low-Dose Chest CT [CT Mellkas Natív Vizsgálat—Csökkentett Sugárterheléssel]. Available online: https://www.affidea.hu/privat-arlista/ (accessed on 3 August 2021).
- Medicover. Cost of Low-Dose Chest CT [Melkas Natív Vizsgálat]. Available online: https://medicover.hu/arlista/szakrendelesek-arlista/#ct-vizsgalat (accessed on 3 August 2021).
- NEFMI. 11/2012. (II. 28.) NEFMI Decree on Anti-Cancer Therapies Financed from the Health Insurance Fund According to Homogeneous Disease Groups 959A-L and 9511-9515 [11/2012. (II. 28.) NEFMI Rendelet az Egészségbiztosítási Alapból a 959A-L, Valamint 9511- 9515 Homogén Betegségcsoportok Szerint Finanszírozott Daganatellenes Terápiákról]. Available online: https://net.jogtar.hu/jogszabaly?docid=a1200011.nem (accessed on 15 May 2022).
- Szende, A.; Janssen, B.; Cabases, J. (Eds.) Self-Reported Population Health: An International Perspective Based on EQ-5D; Springer: Dordrecht, The Netherlands, 2014. [Google Scholar]
- Papatheofanis, F.J. Utility evaluations for Markov states of lung cancer for PET-based disease management. Q. J. Nucl. Med. 2000, 44, 186–190. [Google Scholar] [PubMed]
- Mahadevia, P.J.; Fleisher, L.A.; Frick, K.D.; Eng, J.; Goodman, S.N.; Powe, N.R. Lung cancer screening with helical computed tomography in older adult smokers: A decision and cost-effectiveness analysis. JAMA 2003, 289, 313–322. [Google Scholar] [CrossRef]
- Ministry of Human Capacities. Professional guideline of Ministry of Human Capacities on conducting health-economic analyses [Az Emberi Erıforrások Minisztériuma szakmai irányelve az egészség-gazdaságtani elemzések készítéséhez és értékeléséhez]. Egészségügyi Közlöny 2021, 5. [Google Scholar]
- European Central Bank. Available online: https://www.ecb.europa.eu/stats/policy_and_exchange_rates/euro_reference_exchange_rates/html/eurofxref-graph-huf.en.html (accessed on 21 May 2024).
- Patz, E.F., Jr.; Pinsky, P.; Gatsonis, C.; Sicks, J.D.; Kramer, B.S.; Tammemagi, M.C.; Chiles, C.; Black, W.C.; Aberle, D.R.; Team, N.O.M.W. Overdiagnosis in low-dose computed tomography screening for lung cancer. JAMA Intern. Med. 2014, 174, 269–274. [Google Scholar] [CrossRef]
- Damhus, C.S.; Quentin, J.G.; Malmqvist, J.; Siersma, V.; Brodersen, J. Psychosocial consequences of a three-month follow-up after receiving an abnormal lung cancer CT-screening result: A longitudinal survey. Lung Cancer 2021, 155, 46–52. [Google Scholar] [CrossRef]
- Lancaster, H.L.; Heuvelmans, M.A.; Oudkerk, M. Low-dose computed tomography lung cancer screening: Clinical evidence and implementation research. J. Intern. Med. 2022, 292, 68–80. [Google Scholar] [CrossRef]
- Adams, S.J.; Stone, E.; Baldwin, D.R.; Vliegenthart, R.; Lee, P.; Fintelmann, F.J. Lung cancer screening. Lancet 2023, 401, 390–408. [Google Scholar] [CrossRef] [PubMed]
- Schabath, M.B.; Cote, M.L. Cancer Progress and Priorities: Lung Cancer. Cancer Epidemiol. Biomark. Prev. 2019, 28, 1563–1579. [Google Scholar] [CrossRef] [PubMed]
- Nagy, B.; Szilbehorn, L.; Kerpel-Fronius, A.; Moizs, M.; Bajzik, G.; Voko, Z. The budget impact of lung cancer screening with low-dose computed tomography. Orvosi Hetil. 2021, 162, 952–959. [Google Scholar] [CrossRef]
- Pinsky, P.F. Assessing the benefits and harms of low-dose computed tomography screening for lung cancer. Lung Cancer Manag. 2014, 3, 491–498. [Google Scholar] [CrossRef] [PubMed]
- Yankelevitz, D.F.; Henschke, C.I. Overdiagnosis in lung cancer screening. Transl. Lung Cancer Res. 2021, 10, 1136–1140. [Google Scholar] [CrossRef]
- Heuvelmans, M.A.; Walter, J.E.; Vliegenthart, R.; van Ooijen, P.M.A.; De Bock, G.H.; de Koning, H.J.; Oudkerk, M. Disagreement of diameter and volume measurements for pulmonary nodule size estimation in CT lung cancer screening. Thorax 2018, 73, 779–781. [Google Scholar] [CrossRef]
- Devaraj, A.; van Ginneken, B.; Nair, A.; Baldwin, D. Use of Volumetry for Lung Nodule Management: Theory and Practice. Radiology 2017, 284, 630–644. [Google Scholar] [CrossRef]
- Revel, M.P.; Bissery, A.; Bienvenu, M.; Aycard, L.; Lefort, C.; Frija, G. Are two-dimensional CT measurements of small noncalcified pulmonary nodules reliable? Radiology 2004, 231, 453–458. [Google Scholar] [CrossRef]
- Presley, C.J.; Reynolds, C.H.; Langer, C.J. Caring for the Older Population with Advanced Lung Cancer. Am. Soc. Clin. Oncol. Educ. Book. 2017, 37, 587–596. [Google Scholar] [CrossRef]
- Pinsky, P.F.; Gierada, D.S.; Hocking, W.; Patz, E.F., Jr.; Kramer, B.S. National Lung Screening Trial findings by age: Medicare-eligible versus under-65 population. Ann. Intern. Med. 2014, 161, 627–633. [Google Scholar] [CrossRef]
- Durham, A.L.; Adcock, I.M. The relationship between COPD and lung cancer. Lung Cancer 2015, 90, 121–127. [Google Scholar] [CrossRef]
- Tindle, H.A.; Stevenson Duncan, M.; Greevy, R.A.; Vasan, R.S.; Kundu, S.; Massion, P.P.; Freiberg, M.S. Lifetime Smoking History and Risk of Lung Cancer: Results from the Framingham Heart Study. J. Natl. Cancer Inst. 2018, 110, 1201–1207. [Google Scholar] [CrossRef] [PubMed]
- Galffy, G.; Szabo, G.T.; Tamasi, L.; Muller, V.; Moldvay, J.; Sarosi, V.; Kerpel-Fronius, A.; Kardos, T.; Csada, E.; Papai-Szekely, Z.; et al. Decreasing incidence and mortality of lung cancer in Hungary between 2011 and 2021 revealed by robust estimates reconciling multiple data sources. Pathol. Oncol. Res. 2024, 30, 1611754. [Google Scholar] [CrossRef] [PubMed]
- Galffy, G.; Vastag, A.; Bogos, K.; Kiss, Z.; Ostoros, G.; Muller, V.; Urban, L.; Bittner, N.; Sarosi, V.; Polanyi, Z.; et al. Significant Regional Differences in Lung Cancer Incidence in Hungary: Epidemiological Study Between 2011 and 2016. Pathol. Oncol. Res. 2021, 27, 1609916. [Google Scholar] [CrossRef]
- Ten Haaf, K.; van der Aalst, C.M.; de Koning, H.J.; Kaaks, R.; Tammemagi, M.C. Personalising lung cancer screening: An overview of risk-stratification opportunities and challenges. Int. J. Cancer 2021, 149, 250–263. [Google Scholar] [CrossRef] [PubMed]
- Pinsky, P.F.; Gierada, D.S.; Black, W.; Munden, R.; Nath, H.; Aberle, D.; Kazerooni, E. Performance of Lung-RADS in the National Lung Screening Trial: A retrospective assessment. Ann. Intern. Med. 2015, 162, 485–491. [Google Scholar] [CrossRef]
Input Name | Hungarian Model N = 1860 | US Model N = 26,309 |
---|---|---|
First baseline screen—positive | 62 (3.33%) | 7191 (27.33%) |
First baseline screen—negative | 1531 (82.31%) | 19,118 (72.67%) |
First baseline screen—indeterminate | 267 (14.35%) | 0 (0.00%) 1 |
Negative first baseline screen—true negative | 591 (99.83%) 2 | 19,100 (99.91%) |
Negative first baseline screen—false negative | 1 (0.17%) | 18 (0.09%) |
Positive first baseline screen—true positive | 24 (48.98%) | 270 (3.75%) |
Positive first baseline screen—false positive | 25 (51.02%) | 6921 (96.25%) |
Indeterminant first baseline screen—positive repeat 3 | 13 (12.50%) | 0 (0.00%) 1 |
Input Name | Hungarian Model N = 682 | US Model N = 24,715 |
---|---|---|
First yearly screen—positive | 9 (1.25%) | 6904 (27.93%) |
First yearly screen—negative | 629 (92.17%) | 17,811 (72.07%) |
First yearly screen—indeterminate | 44 (6.58%) | 0 (0.00%) 1 |
Negative first yearly screen—true negative | 68 (99.90%) 2 | 17,801 (99.94%) |
Negative first yearly screen—false negative | 1 (0.10%) | 10 (0.06%) |
Positive first yearly screen—true positive | 4 (47.33%) | 168 (2.43%) |
Positive first yearly screen—false positive | 5 (52.67%) | 6736 (97.57%) |
Indeterminant first yearly screen—positive repeat 3 | 2 (8.33%) | 0 (0.00%) 1 |
Examination | Hungarian Model | US Model | Unit Cost (EUR) |
---|---|---|---|
Initial LDCT scan | 100% | 100% | 52.39 |
Abdominal CT | 39% | 3% | 83.43 |
Chest CT | 52% | 73% | 83.43 |
Bronchoscopy | 64% | 4% | 28.87 |
CT-guided thoracic biopsy | 27% | 2% | 77.90 |
Baseline | Year 1 | |||
---|---|---|---|---|
Age Band | Positive Rate | False-Positive Rate | Positive Rate | False-Positive Rate |
55–74 (reference) | 27.33% | 96.25% | 27.94% | 97.57% |
55–64 | 25.62% | 96.95% | 26.25% | 98.01% |
55–69 | 26.68% | 96.61% | 27.39% | 97.72% |
60–74 | 29.62% | 95.63% | 30.31% | 96.92% |
65–74 | 32.05% | 94.70% | 32.63% | 96.57% |
Model | Year 1 | Year 3 | Year 5 |
---|---|---|---|
Hungarian | 1.64% | 2.32% | 3.53% |
US | 1.71% | 2.38% | 3.61% |
Model | Treatment Cost (EUR) * | Screening Cost (EUR) ** | Total Cost (EUR) | QALY | ICER (EUR/QALY) |
---|---|---|---|---|---|
Hungarian | 2317 | 226 | 2543 | 6.996 | (Reference) |
US | 2375 | 211 | 2586 | 7.002 | 7875 |
Age Band | QALY | Δ QALY | Cost (EUR) | Δ Cost (EUR) | ICER (EUR/QALY) |
---|---|---|---|---|---|
55–74 (reference) | 7.00 | (Reference) | 2586 | (Reference) | (Reference) |
55–64 | 7.80 | 0.80 | 2413 | −173 | −215 * (dominates) |
55–69 | 7.48 | 0.48 | 2523 | −63 | −130 * (dominates) |
60–74 | 6.10 | −0.90 | 2729 | 143 | −159 ** (dominated) |
65–74 | 5.39 | −1.61 | 2736 | 150 | −93 ** (dominated) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rajabi, T.; Szilberhorn, L.; Győrbíró, D.; Tatár, M.; Vokó, Z.; Nagy, B. Cost-Effectiveness of Lung Cancer Screening with Low-Dose Computed Tomography: Comparing Hungarian Screening Protocols with the US NLST. Cancers 2024, 16, 2933. https://doi.org/10.3390/cancers16172933
Rajabi T, Szilberhorn L, Győrbíró D, Tatár M, Vokó Z, Nagy B. Cost-Effectiveness of Lung Cancer Screening with Low-Dose Computed Tomography: Comparing Hungarian Screening Protocols with the US NLST. Cancers. 2024; 16(17):2933. https://doi.org/10.3390/cancers16172933
Chicago/Turabian StyleRajabi, Tanya, László Szilberhorn, Dávid Győrbíró, Manna Tatár, Zoltán Vokó, and Balázs Nagy. 2024. "Cost-Effectiveness of Lung Cancer Screening with Low-Dose Computed Tomography: Comparing Hungarian Screening Protocols with the US NLST" Cancers 16, no. 17: 2933. https://doi.org/10.3390/cancers16172933
APA StyleRajabi, T., Szilberhorn, L., Győrbíró, D., Tatár, M., Vokó, Z., & Nagy, B. (2024). Cost-Effectiveness of Lung Cancer Screening with Low-Dose Computed Tomography: Comparing Hungarian Screening Protocols with the US NLST. Cancers, 16(17), 2933. https://doi.org/10.3390/cancers16172933