Comparative Meta-Analysis of Triplet vs. Quadruplet Induction Regimens in Newly Diagnosed, Treatment Naïve, Multiple Myeloma
Abstract
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Study Selection
3.2. Meta-Analysis for Efficacy of 4-Drug vs. 3-Drug Induction Regimen in NDMM
3.3. Meta-Analysis for Toxicity of a 4-Drug vs. 3-Drug Induction Regimen in NDMM
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Siegel, R.L.; Giaquinto, A.N.; Jemal, A. Cancer statistics, 2024. CA A Cancer J. Clin. 2022, 74, 12–19. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, R.; Abouzaid, S.; Bonafede, M.; Cai, Q.; Parikh, K.; Cosler, L.; Richardson, P. Trends in overall survival and costs of multiple myeloma, 2000–2014. Leukemia 2017, 31, 1915–1921. [Google Scholar] [CrossRef] [PubMed]
- Costa, L.J.; Brill, I.K.; Omel, J.; Godby, K.; Kumar, S.K.; Brown, E.E. Recent trends in multiple myeloma incidence and survival by age, race, and ethnicity in the United States. Blood Adv. 2017, 1, 282–287. [Google Scholar] [CrossRef] [PubMed]
- Braunlin, M.; Belani, R.; Buchanan, J.; Wheeling, T.; Kim, C. Trends in the multiple myeloma treatment landscape and survival: A US analysis using 2011–2019 oncology clinic electronic health record data. Leuk. Lymphoma 2021, 62, 377–386. [Google Scholar] [CrossRef]
- Richardson, P.G.; Jacobus, S.J.; Weller, E.A.; Hassoun, H.; Lonial, S.; Raje, N.S.; Medvedova, E.; McCarthy, P.L.; Libby, E.N.; Voorhees, P.M.; et al. Triplet Therapy, Transplantation, and Maintenance until Progression in Myeloma. N. Engl. J. Med. 2022, 387, 132–147. [Google Scholar] [CrossRef]
- Attal, M.; Lauwers-Cances, V.; Hulin, C.; Leleu, X.; Caillot, D.; Escoffre, M.; Arnulf, B.; Marcro, M.; Belhadj, K.; Garderet, L.; et al. Lenalidomide, bortezomib, and dexamethasone with transplantation for myeloma. N. Engl. J. Med. 2017, 376, 1311–1320. [Google Scholar] [CrossRef]
- Lemieux, C.; Muffly, L.S.; Rezvani, A.; Lowsky, R.; Iberri, D.J.; Craig, J.K.; Frank, M.K.; Johnston, L.J.; Liedtke, M.L.; Negrin, R.; et al. Outcomes with autologous stem cell transplant vs. non-transplant therapy in patients 70 years and older with multiple myeloma. Bone Marrow Transplant. 2021, 56, 368–375. [Google Scholar] [CrossRef]
- Holstein, S.A.; Suman, V.J.; McCarthy, P.L. Should overall survival remain an endpoint for multiple myeloma trials? Curr. Hematol. Malig. Rep. 2019, 14, 31–38. [Google Scholar] [CrossRef]
- Félix, J.; Aragão, F.; Almeida, J.M.; Calado, F.J.; Ferreira, D.; Parreira, A.B.; Rodrigues, R.; Rijo, J.F. Time-dependent endpoints as predictors of overall survival in multiple myeloma. BMC Cancer 2013, 13, 1–12. [Google Scholar] [CrossRef]
- Munshi, N.C.; Avet-Loiseau, H.; Anderson, K.C.; Neri, P.; Paiva, B.; Samur, M.; Dimopoulos, M.; Kulakova, M.; Lam, A.; Hashim, M.; et al. A large meta-analysis establishes the role of MRD negativity in long-term survival outcomes in patients with multiple myeloma. Blood Adv. 2020, 4, 5988–5999. [Google Scholar] [CrossRef]
- Dimopoulos, M.; Sonneveld, P.; Nahi, H.; Kumar, S.; Hashim, M.; Kulakova, M.; Duran, M.; Heeg, B.; Lam, A.; Dearden, L. Progression-free survival as a surrogate endpoint for overall survival in patients with relapsed or refractory multiple myeloma. Value Health 2017, 20, A408. [Google Scholar] [CrossRef]
- Daniele, P.; Mamolo, C.; Cappelleri, J.C.; Bell, T.; Neuhof, A.; Tremblay, G.; Musat, M.; Forsythe, A. Response rates and minimal residual disease outcomes as potential surrogates for progression-free survival in newly diagnosed multiple myeloma. PLoS ONE 2022, 17, e0267979. [Google Scholar] [CrossRef] [PubMed]
- Avet-Loiseau, H.; Ludwig, H.; Landgren, O.; Paiva, B.; Morris, C.; Yang, H.; Zhou, K.; Ro, S.; Mateos, M.V. Minimal residual disease status as a surrogate endpoint for progression-free survival in newly diagnosed multiple myeloma studies: A meta-analysis. Clin. Lymphoma Myeloma Leuk. 2020, 20, e30–e37. [Google Scholar] [CrossRef] [PubMed]
- Moreau, P.; Attal, M.; Hulin, C.; Arnulf, B.; Belhadj, K.; Benboubker, L.; Bene, M.C.; Broijl, A.; Caillon, H.; Caillot, D.; et al. Bortezomib, thalidomide, and dexamethasone with or without daratumumab before and after autologous stem-cell transplantation for newly diagnosed multiple myeloma (CASSIOPEIA): A randomised, open-label, phase 3 study. Lancet 2019, 394, 29–38. [Google Scholar] [CrossRef] [PubMed]
- Voorhees, P.M.; Sborov, D.W.; Laubach, J.; Kaufman, J.L.; Reeves, B.; Rodriguez, C.; Chari, A.; Silbermann, R.; Costa, L.J.; Anderson, L.D.; et al. Addition of daratumumab to lenalidomide, bortezomib, and dexamethasone for transplantation-eligible patients with newly diagnosed multiple myeloma (GRIFFIN): Final analysis of an open-label, randomised, phase 2 trial. Lancet Haematol. 2023, 10, e825–e837. [Google Scholar] [CrossRef] [PubMed]
- Liu, N.; Zhou, Y.; Lee, J.J. IPDfromKM: Reconstruct individual patient data from published Kaplan-Meier survival curves. BMC Med. Res. Methodol. 2021, 21, 111. [Google Scholar] [CrossRef]
- Higgins, J.P.; Thompson, S.G.; Deeks, J.J.; Altman, D.G. Measuring inconsistency in meta-analyses. Br. Med. J. 2003, 327, 557–560. [Google Scholar] [CrossRef]
- Gay, F.; Roeloffzen, W.; Dimopoulos, M.A.; Rosiñol, L.; van der Klift, M.; Mina, R.; Rocafiguera, A.O.; Katodritou, E.; Wu, K.L.; Otero, P.R.; et al. Results of the Phase III Randomized Iskia Trial: Isatuximab-Carfilzomib-Lenalidomide-Dexamethasone Vs Carfilzomib-Lenalidomide-Dexamethasone As Pre-Transplant Induction and Post-Transplant Consolidation in Newly Diagnosed Multiple Myeloma Patients. Blood 2023, 4, 142. [Google Scholar] [CrossRef]
- Palumbo, A.; Bringhen, S.; Rossi, D.; Cavalli, M.; Larocca, A.; Ria, R.; Offidani, M.; Patriarca, F.; Nozzoli, C.; Guglielmelli, T.; et al. Bortezomib-melphalan-prednisone-thalidomide followed by maintenance with bortezomib-thalidomide compared with bortezomib-melphalan-prednisone for initial treatment of multiple myeloma: A randomized controlled trial. J. Clin. Oncol. 2010, 28, 5101–5109. [Google Scholar] [CrossRef]
- Gregersen, H.; Do, T.; Kristensen, I.B.; Frølund, U.C.; Andersen, N.F.; Nielsen, L.K.; Andersen, C.L.; Klausen, T.W.; Vangsted, A.J.; Abildgaard, N. A randomized placebo-controlled phase II study of clarithromycin or placebo combined with VCD induction therapy prior to high-dose melphalan with stem cell support in patients with newly diagnosed multiple myeloma. Exp. Hematol. Oncol. 2018, 7, 1–8. [Google Scholar] [CrossRef]
- Mateos, M.-V.; Dimopoulos, M.A.; Cavo, M.; Suzuki, K.; Jakubowiak, A.; Knop, S.; Doyen, C.; Lucio, P.; Nagy, Z.; Kaplan, P.; et al. Daratumumab plus bortezomib, melphalan, and prednisone for untreated myeloma. N. Engl. J. Med. 2018, 378, 518–528. [Google Scholar] [CrossRef] [PubMed]
- Usmani, S.Z.; Hoering, A.; Ailawadhi, S.; Sexton, R.; Lipe, B.; Hita, S.F.; Valent, J.; Rosenzweig, M.; Zonder, J.A.; Dhodapkar, M.; et al. Bortezomib, lenalidomide, and dexamethasone with or without elotuzumab in patients with untreated, high-risk multiple myeloma (SWOG-1211): Primary analysis of a randomised, phase 2 trial. Lancet Haematol. 2021, 8, e45–e54. [Google Scholar] [CrossRef] [PubMed]
- Sonneveld, P.; Dimopoulos, M.A.; Boccadoro, M.; Quach, H.; Ho, P.J.; Beksac, M.; Hulin, C.; Antonioli, E.; Leleu, X.; Mangiacavalli, S.; et al. Daratumumab, Bortezomib, Lenalidomide, and Dexamethasone for Multiple Myeloma. N. Engl. J. Med. 2023, 390, 301–313. [Google Scholar] [CrossRef] [PubMed]
- Jackson, G.H.; Pawlyn, C.; Cairns, D.A.; de Tute, R.M.; Hockaday, A.; Collett, C.; Jones, J.R.; Kishore, B.; Garg, M.; Williams, C.D.; et al. Carfilzomib, lenalidomide, dexamethasone, and cyclophosphamide (KRdc) as induction therapy for transplant-eligible, newly diagnosed multiple myeloma patients (Myeloma XI+): Interim analysis of an open-label randomised controlled trial. PLoS Med. 2021, 18, e1003454. [Google Scholar] [CrossRef]
- Morgan, G.J.; Davies, F.E.; Gregory, W.M.; Bell, S.E.; Szubert, A.J.; Coy, N.N.; Cook, G.; Feyler, S.; Johnson, P.R.E.; Rudin, C.; et al. Cyclophosphamide, thalidomide, and dexamethasone as induction therapy for newly diagnosed multiple myeloma patients destined for autologous stem-cell transplantation: MRC Myeloma IX randomized trial results. Haematologica 2012, 97, 442. [Google Scholar] [CrossRef]
- Kumar, S.; Flinn, I.; Richardson, P.G.; Hari, P.; Callander, N.; Noga, S.J.; Stewart, A.K.; Turturro, F.; Rifkin, R.; Wolf, J.; et al. Randomized, multicenter, phase 2 study (EVOLUTION) of combinations of bortezomib, dexamethasone, cyclophosphamide, and lenalidomide in previously untreated multiple myeloma. Blood J. Am. Soc. Hematol. 2012, 119, 4375–4382. [Google Scholar] [CrossRef]
- Zervas, K.; Mihou, D.; Katodritou, E.; Pouli, A.; Mitsouli, C.H.; Anagnostopoulos, A.; Delibasi, S.; Kyrtsonis, M.C.; Anagnostopoulos, N.; Terpos, E.; et al. VAD-doxil versus VAD-doxil plus thalidomide as initial treatment for multiple myeloma: Results of a multicenter randomized trial of the Greek Myeloma Study Group. Ann. Oncol. 2007, 18, 1369–1375. [Google Scholar] [CrossRef]
- Goldschmidt, H.; Mai, E.K.; Bertsch, U.; Fenk, R.; Nievergall, E.; Tichy, D.; Besemer, B.; Durig, J.; Schroers, R.; Metzler, I.V.; et al. Addition of isatuximab to lenalidomide, bortezomib, and dexamethasone as induction therapy for newly diagnosed, transplantation-eligible patients with multiple myeloma (GMMG-HD7): Part 1 of an open-label, multicentre, randomised, active-controlled, phase 3 trial. Lancet Haematol. 2022, 9, e810–e821. [Google Scholar]
- Zervas, K.; Dimopoulos, M.; Hatzicharissi, E.; Anagnostopoulos, A.; Papaioannou, M.; Mitsouli, C.; Panagiotidis, P.; Korantzis, J.; Tzilianos, M.; Maniatis, A. Primary treatment of multiple myeloma with thalidomide, vincristine, liposomal doxorubicin and dexamethasone (T-VAD doxil): A phase II multicenter study. Ann. Oncol. 2004, 15, 134–138. [Google Scholar] [CrossRef]
- Benboubker, L.; Dimopoulos, M.A.; Dispenzieri, A.; Catalano, J.; Belch, A.R.; Cavo, M.; Pinto, A.; Weisel, K.; Ludwig, H.; Bahlis, N.; et al. Lenalidomide and dexamethasone in transplant-ineligible patients with myeloma. N. Engl. J. Med. 2014, 371, 906–917. [Google Scholar] [CrossRef]
- Durie, B.G.; Hoering, A.; Abidi, M.H.; Rajkumar, S.V.; Epstein, J.; Kahanic, S.P.; Thakuri, M.; Reu, F.; Reynolds, C.M.; Sexton, R.; et al. Bortezomib with lenalidomide and dexamethasone versus lenalidomide and dexamethasone alone in patients with newly diagnosed myeloma without intent for immediate autologous stem-cell transplant (SWOG S0777): A randomised, open-label, phase 3 trial. Lancet 2017, 389, 519–527. [Google Scholar] [CrossRef]
- Lahuerta, J.-J.; Paiva, B.; Vidriales, M.-B.; Cordón, L.; Cedena, M.-T.; Puig, N.; Martinez-Lopez, J.; Rosinol, L.; Gutierrez, N.C.; Martin-Romos, M.-L.; et al. Depth of response in multiple myeloma: A pooled analysis of three PETHEMA/GEM clinical trials. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2017, 35, 2900. [Google Scholar] [CrossRef] [PubMed]
- Martinez-Lopez, J.; Lahuerta, J.J.; Pepin, F.; González, M.; Barrio, S.; Ayala, R.; Puig, N.; Montalban, M.A.; Paiva, B.; Weng, L.; et al. Prognostic value of deep sequencing method for minimal residual disease detection in multiple myeloma. Blood J. Am. Soc. Hematol. 2014, 123, 3073–3079. [Google Scholar] [CrossRef]
- Facon, T.; Kumar, S.; Plesner, T.; Orlowski, R.Z.; Moreau, P.; Bahlis, N.; Basu, S.; Nahi, H.; Hulin, C.; Quach, H.; et al. Daratumumab plus lenalidomide and dexamethasone for untreated myeloma. N. Engl. J. Med. 2019, 380, 2104–2115. [Google Scholar] [CrossRef] [PubMed]
- Costa, L.J.; Chhabra, S.; Medvedova, E.; Dholaria, B.R.; Schmidt, T.M.; Godby, K.N.; Silbermann, R.; Dhakal, B.; Bal, S.; Giri, S.; et al. Minimal residual disease response-adapted therapy in newly diagnosed multiple myeloma (MASTER): Final report of the multicentre, single-arm, phase 2 trial. Lancet Haematol. 2023, 10, e890–e901. [Google Scholar] [CrossRef]
- Landgren, O.; Hultcrantz, M.; Diamond, B.; Lesokhin, A.M.; Mailankody, S.; Hassoun, H.; Tan, C.; Shah, U.A.; Lu, S.X.; Salcedo, M.; et al. Safety and effectiveness of weekly carfilzomib, lenalidomide, dexamethasone, and daratumumab combination therapy for patients with newly diagnosed multiple myeloma: The MANHATTAN nonrandomized clinical trial. JAMA Oncol. 2021, 7, 862–868. [Google Scholar] [CrossRef]
- Yimer, H.; Melear, J.; Faber, E.; Bensinger, W.I.; Burke, J.M.; Narang, M.; Stevens, D.; Gunawardena, S.; Lutska, Y.; Qi, K.; et al. Daratumumab, bortezomib, cyclophosphamide and dexamethasone in newly diagnosed and relapsed multiple myeloma: LYRA study. Br. J. Haematol. 2019, 185, 492–502. [Google Scholar] [CrossRef]
- Rajkumar, S.V. Value and Cost of Myeloma Therapy; American Society of Clinical Oncology Educational Book: Alexandria, VA, USA, 2018; Volume 38, pp. 662–666. [Google Scholar]
- Yamamoto, C.; Minakata, D.; Koyama, S.; Sekiguchi, K.; Fukui, Y.; Murahashi, R.; Nakashima, H.; Matsuoka, S.; Ikeda, T.; Kawaguchi, S.-I.; et al. Daratumumab in first-line therapy is cost-effective in transplant-eligible patients with newly diagnosed myeloma. Blood J. Am. Soc. Hematol. 2022, 140, 594–607. [Google Scholar] [CrossRef] [PubMed]
- Weisel, K.; Kumar, S.; Moreau, P.; Bahlis, N.; Facon, T.; Plesner, T.; Orlowski, R.; Basu, S.; Nahi, H.; Hulin, C.; et al. Daratumumab plus lenalidomide and dexamethasone (D-Rd) versus lenalidomide and dexamethasone (Rd) alone in transplant-ineligible patients with newly diagnosed multiple myeloma (NDMM): Updated analysis of the phase 3 MAIA study. HemaSphere 2023, 7, 14–15. [Google Scholar]
- Costa, L.J.; Wong, S.W.; Bermúdez, A.; de la Rubia, J.; Mateos, M.-V.; Ocio, E.M.; Rodriguez-Otero, P.; San-Miguel, J.; Li, S.; Sarmiento, R.; et al. First Clinical Study of the B-Cell Maturation Antigen (BCMA) 2+1 T Cell Engager (TCE) CC-93269 in Patients (Pts) with Relapsed/Refractory Multiple Myeloma (RRMM): Interim Results of a Phase 1 Multicenter Trial. Blood 2019, 134, 143. [Google Scholar] [CrossRef]
- Krishnan, A.; Hoering, A.; Hari, P.; Sexton, R.; Orlowski, R.Z. Phase III study of daratumumab/rhuph20 (nsc-810307)+ lenalidomide or lenalidomide as post-autologous stem cell transplant maintenance therapyin patients with multiple myeloma (MM) using minimal residual disease todirect therapy duration (DRAMMATIC study): SWOG s1803. Blood 2020, 136, 21–22. [Google Scholar]
- Bhutani, M.; House, M.; He, J.; Atrash, S.; Foureau, D.M.; Paul, B.; Friend, R.; Symanowski, J.T.; Norek, S.; Begic, X.; et al. Response-Adaptive Phase II Study of Daratumumab Combined with Carfilzomib, Lenalidomide and Dexamethasone in Newly Diagnosed Multiple Myeloma. Blood 2020, 136, 38–39. [Google Scholar] [CrossRef]
- Etekal, T.; Koehn, K.; Sborov, D.W.; McClune, B.; Prasad, V.; Haslam, A.; Berger, K.; Booth, C.; Hadidi, S.A.; Abdallah, A.-O.; et al. Time-to-event surrogate end-points in multiple myeloma randomised trials from 2005 to 2019: A surrogacy analysis. Br. J. Haematol. 2023, 200, 587–594. [Google Scholar] [CrossRef] [PubMed]
Study | Phase | Population | 3-Drug Arm (N) | 4-Drug Arm (N) | MRD Reported? | Reference |
---|---|---|---|---|---|---|
Alcyone | 3 | NDMM | VMP (356) | Dara-VMP (350) | Yes | [21] |
CASSIOPEIA | 3 | NDMM | VTd (542) | Dara-VTd (543) | Yes | [14] |
S1211 | 2 | HR-NDMM | RVd (52) | Elo-RVd (48) | No | [22] |
PERSEUS | 3 | NDMM | RVd (354) | Dara-RVd (355) | Yes | [23] |
GRIFFIN | 2 | NDMM | RVd (103) | Dara-RVd (104) | Yes | [15] |
MYELOMA XI+ | 3 | NDMM | RVd (265)TVd (265) | KRD-Cy (526) | Yes | [24] |
MYELOMA IX | 3 | NDMM | Cy-Td (555) | Cy-VAD (556) | No | [25] |
EVOLUTION | 2 | NDMM | RVd (42)Cy-Vd (50) | Cy-RVd (48) | Yes | [26] |
GREEK MM STUDY GROUP | 3 | NDMM | VAd (115) | T-VAd (117) | No | [27] |
GIMEMA-MM-03-05 | 3 | NDMM | VMP (253) | T-VMP (250) | No | [19] |
GMMG-HD7 | 3 | NDMM | RVd (329) | Isa-RVd (331) | Yes | [28] |
Alcyone | CASSIOPEIA | S1211 | PERSEUS | GRIFFIN | MYELOMA XI+ | MYELOMA IX | EVOLUTION | GREEK MM STUDY GROUP | GIMEMA-MM-03-05 | GMMG-HD7 | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
3-Drug (N = 354) | 4-Drug (N = 346) | 3-Drug (N = 542) | 4-Drug (N = 543) | 3-Drug (N = 52) | 4-Drug (N = 48) | 3-Drug (N = 354) | 4-Drug (N = 355) | 3-Drug (N = 103) | 4-Drug (N = 104) | 3-Drug (N = 530) | 4-Drug (N = 526) | 3-Drug (N = 555) | 4-Drug (N = 556) | 3-Drug (N = 92) | 4-Drug (N = 48) | 3-Drug (N = 115) | 4-Drug (N = 117) | 3-Drug (N = 253) | 4-Drug (N = 250) | 3-Drug (N = 329) | 4-Drug (N = 331) | |
Neutropenia | ||||||||||||||||||||||
All grades | 52.5 | 49.7 | 16.4 | 28.9 | 32.7 | 37.5 | 57.6 | 68.5 | 35.0 | 54.8 | 45.1 | 48.7 | NR | NR | NR | NR | 24.3 | 17.9 | NR | NR | 7.0 | 23.3 |
Grades 3/4 | 38.7 | 39.9 | 14.6 | 27.3 | 9.6 | 16.7 | 50.0 | 61.4 | 21.4 | 39.4 | 17.2 | 16.0 | NR | NR | 19.6 | 43.8 | 10.4 | 7.7 | 28.1 | 38.4 | 7.0 | 23.3 |
Anemia | ||||||||||||||||||||||
All grades | 37.6 | 28.0 | NR | NR | 1.9 | 0.0 | 20.3 | 22.0 | 32.0 | 33.7 | 72.8 | 77.2 | NR | NR | NR | NR | NR | NR | NR | NR | 6.1 | 3.9 |
Grades 3/4 | 19.8 | 15.9 | NR | NR | 0.0 | 0.0 | 6.2 | 5.9 | 5.8 | 8.7 | 5.1 | 9.9 | NR | NR | 5.4 | 8.3 | NR | NR | 9.9 | 10.0 | 6.1 | 3.9 |
Thrombocytopenia | ||||||||||||||||||||||
All grades | 53.7 | 48.8 | 13.5 | 20.1 | 61.5 | 54.2 | 33.6 | 47.9 | 35.0 | 41.3 | 23.4 | 48.7 | NR | NR | NR | NR | 13.0 | 9.4 | NR | NR | 4.6 | 6.6 |
Grades 3/4 | 37.6 | 34.4 | 7.4 | 10.9 | 19.2 | 20.8 | 16.9 | 28.7 | 8.7 | 15.4 | 1.7 | 5.9 | NR | NR | 9.8 | 14.6 | 7.8 | 4.3 | 19.8 | 22.0 | 4.6 | 6.3 |
Neuropathy (%) | ||||||||||||||||||||||
All grades | 34.2 | 28.3 | 62.7 | 57.8 | 61.5 | 79.2 | 50.6 | 53.0 | 71.8 | 56.7 | 35.1 | 20.0 | NR | NR | 70.7 | 68.8 | 46.1 | 12.8 | NR | NR | 31.9 | 27.2 |
Grades 3/4 | 4.0 | 1.4 | 8.5 | 8.7 | 11.5 | 8.3 | 4.0 | 4.2 | 7.8 | 6.7 | 0.8 | 0.2 | NR | NR | 14.1 | 12.5 | 6.1 | 0.9 | 5.1 | 10.8 | 7.6 | 6.6 |
Infections | ||||||||||||||||||||||
All grades | 48.0 | 66.8 | 56.5 | 64.6 | 28.8 | 25.0 | 75.1 | 85.9 | 61.2 | 86.5 | NR | NR | NR | NR | NR | NR | 11.3 | 15.4 | NR | NR | 22.8 | 25.4 |
Grades 3/4 | 14.7 | 1.4 | 21.8 | 19.3 | 15.4 | 8.3 | 26.8 | 34.9 | 21.4 | 22.1 | NR | NR | NR | NR | NR | NR | 6.1 | 8.5 | 9.1 | 12.8 | 9.7 | 12.1 |
URI | ||||||||||||||||||||||
All grades | 13.8 | 26.3 | NR | NR | 7.7 | 6.3 | 24.6 | 31.3 | 43.7 | 59.6 | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR |
Grades 3/4 | 1.4 | 2.0 | NR | NR | 0.0 | 0.0 | 1.7 | 0.6 | 1.9 | 1.0 | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR |
Pneumonia | ||||||||||||||||||||||
All grades | 4.8 | 15.3 | 1.7 | 3.5 | 0.0 | 0.0 | 10.7 | 18.0 | 10.7 | 8.7 | 16.0 | 16.2 | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR |
Grades 3/4 | 4.0 | 11.3 | NR | NR | 0.0 | 0.0 | 5.9 | 10.4 | 10.7 | 7.7 | 7.9 | 10.3 | NR | NR | 3.3 | 4.2 | NR | NR | 2.4 | 5.6 | NR | NR |
Diarrhea | ||||||||||||||||||||||
All grades | 24.6 | 23.7 | NR | NR | 73.1 | 85.4 | 53.1 | 60.3 | 49.5 | 56.7 | 23.2 | 28.7 | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR |
Grades 3/4 | 3.1 | 2.6 | NR | NR | 3.8 | 14.6 | 7.6 | 0.8 | 3.9 | 49.0 | 1.7 | 2.9 | NR | NR | 3.3 | 6.3 | NR | NR | 2.8 | 1.6 | NR | NR |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paul, B.; Anwer, F.; Raza, S.; Mammadzadeh, A.; Khasawneh, B.; Shatnawi, S.; McGuirk, J.; Ahmed, N.; Mahmoudjafari, Z.; Mushtaq, M.; et al. Comparative Meta-Analysis of Triplet vs. Quadruplet Induction Regimens in Newly Diagnosed, Treatment Naïve, Multiple Myeloma. Cancers 2024, 16, 2938. https://doi.org/10.3390/cancers16172938
Paul B, Anwer F, Raza S, Mammadzadeh A, Khasawneh B, Shatnawi S, McGuirk J, Ahmed N, Mahmoudjafari Z, Mushtaq M, et al. Comparative Meta-Analysis of Triplet vs. Quadruplet Induction Regimens in Newly Diagnosed, Treatment Naïve, Multiple Myeloma. Cancers. 2024; 16(17):2938. https://doi.org/10.3390/cancers16172938
Chicago/Turabian StylePaul, Barry, Faiz Anwer, Shahzad Raza, Aytaj Mammadzadeh, Bayan Khasawneh, Sara Shatnawi, Joseph McGuirk, Nausheen Ahmed, Zahra Mahmoudjafari, Muhammad Mushtaq, and et al. 2024. "Comparative Meta-Analysis of Triplet vs. Quadruplet Induction Regimens in Newly Diagnosed, Treatment Naïve, Multiple Myeloma" Cancers 16, no. 17: 2938. https://doi.org/10.3390/cancers16172938
APA StylePaul, B., Anwer, F., Raza, S., Mammadzadeh, A., Khasawneh, B., Shatnawi, S., McGuirk, J., Ahmed, N., Mahmoudjafari, Z., Mushtaq, M., Abdallah, A.-O., & Atrash, S. (2024). Comparative Meta-Analysis of Triplet vs. Quadruplet Induction Regimens in Newly Diagnosed, Treatment Naïve, Multiple Myeloma. Cancers, 16(17), 2938. https://doi.org/10.3390/cancers16172938