The Impact of Different Patterns of Residual Disease on Long-Term Oncological Outcomes in Breast Cancer Patients Treated with Neo-Adjuvant Chemotherapy
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Statistical Analysis
3. Results
3.1. Characteristics and Treatment of Breast Cancer Patients with Pathologic Partial Response after Neo-Adjuvant Chemotherapy
3.2. Identification of Predictive Factors for Different Patterns of Residual Disease in the Breast after Neo-Adjuvant Chemotherapy
3.3. Comparison of Long-Term Oncological Outcomes between Patients with Different Patterns of Residual Disease in the Breast after Neo-Adjuvant Chemotherapy and Independent Factors Influencing the Prognosis
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Thompson, A.M.; Moulder-Thompson, S.L. Neoadjuvant Treatment of Breast Cancer. Ann. Oncol. 2012, 23, x231–x236. [Google Scholar] [CrossRef]
- Korde, L.A.; Somerfield, M.R.; Carey, L.A.; Crews, J.R.; Denduluri, N.; Hwang, E.S.; Khan, S.A.; Loibl, S.; Morris, E.A.; Perez, A.; et al. Neoadjuvant Chemotherapy, Endocrine Therapy, and Targeted Therapy for Breast Cancer: ASCO Guideline. J. Clin. Oncol. 2021, 39, 1485–1505. [Google Scholar] [CrossRef] [PubMed]
- Ofri, A.; Elstner, K.; Mann, G.; Kumar, S.; Warrier, S. Neoadjuvant Chemotherapy in Non-Metastatic Breast Cancer: The Surgeon’s Perspective. Surgeon 2023, 21, 356–360. [Google Scholar] [CrossRef] [PubMed]
- Shien, T.; Iwata, H. Adjuvant and Neoadjuvant Therapy for Breast Cancer. Jpn. J. Clin. Oncol. 2020, 50, 225–229. [Google Scholar] [CrossRef] [PubMed]
- Van Nes, J.G.H.; Putter, H.; Julien, J.P.; Tubiana-Hulin, M.; Van De Vijver, M.; Bogaerts, J.; De Vos, M.; Van De Velde, C.J.H. Preoperative Chemotherapy Is Safe in Early Breast Cancer, Even after 10 Years of Follow-up; Clinical and Translational Results from the EORTC Trial 10902. Breast Cancer Res. Treat. 2009, 115, 101–113. [Google Scholar] [CrossRef]
- Mauri, D.; Pavlidis, N.; Ioannidis, J.P.A. Neoadjuvant versus Adjuvant Systemic Treatment in Breast Cancer: A Meta-Analysis. J. Natl. Cancer Inst. 2005, 97, 188–194. [Google Scholar] [CrossRef] [PubMed]
- Sun, Y.; Liao, M.; He, L.; Zhu, C. Comparison of Breast-Conserving Surgery with Mastectomy in Locally Advanced Breast Cancer after Good Response to Neoadjuvant Chemotherapy. Medicine 2017, 96, e8367. [Google Scholar] [CrossRef]
- Specht, J.; Gralow, J.R. Neoadjuvant Chemotherapy for Locally Advanced Breast Cancer. Semin. Radiat. Oncol. 2009, 19, 222–228. [Google Scholar] [CrossRef]
- Marra, A.; Curigliano, G. Adjuvant and Neoadjuvant Treatment of Triple-Negative Breast Cancer with Chemotherapy. Cancer J. 2021, 27, 41–49. [Google Scholar] [CrossRef]
- Kwapisz, D. Pembrolizumab and Atezolizumab in Triple-Negative Breast Cancer. Cancer Immunol. Immunother. 2021, 70, 607–617. [Google Scholar] [CrossRef]
- Poggio, F.; Bruzzone, M.; Ceppi, M.; Pondé, N.F.; La Valle, G.; Del Mastro, L.; de Azambuja, E.; Lambertini, M. Platinum-Based Neoadjuvant Chemotherapy in Triple-Negative Breast Cancer: A Systematic Review and Meta-Analysis. Ann. Oncol. 2018, 29, 1497–1508. [Google Scholar] [CrossRef] [PubMed]
- Takada, M.; Toi, M. Neoadjuvant Treatment for HER2-Positive Breast Cancer. Chin. Clin. Oncol. 2020, 9, 32. [Google Scholar] [CrossRef] [PubMed]
- Harbeck, N. Neoadjuvant and Adjuvant Treatment of Patients with HER2-Positive Early Breast Cancer. Breast 2022, 62, S12–S16. [Google Scholar] [CrossRef] [PubMed]
- Spronk, P.E.R.; Volders, J.H.; van den Tol, P.; Smorenburg, C.H.; Vrancken Peeters, M.-J.T.F.D. Breast Conserving Therapy after Neoadjuvant Chemotherapy; Data from the Dutch Breast Cancer Audit. Eur. J. Surg. Oncol. 2019, 45, 110–117. [Google Scholar] [CrossRef] [PubMed]
- Man, V.C.; Cheung, P.S. Neoadjuvant Chemotherapy Increases Rates of Breast-Conserving Surgery in Early Operable Breast Cancer. Hong Kong Med. J. 2017. [Google Scholar] [CrossRef] [PubMed]
- Vugts, G.; Maaskant-Braat, A.J.G.; de Roos, W.K.; Voogd, A.C.; Nieuwenhuijzen, G.A.P. Management of the Axilla after Neoadjuvant Chemotherapy for Clinically Node Positive Breast Cancer: A Nationwide Survey Study in The Netherlands. Eur. J. Surg. Oncol. 2016, 42, 956–964. [Google Scholar] [CrossRef] [PubMed]
- Tinterri, C.; Sagona, A.; Barbieri, E.; Di Maria Grimaldi, S.; Caraceni, G.; Ambrogi, G.; Jacobs, F.; Biondi, E.; Scardina, L.; Gentile, D. Sentinel Lymph Node Biopsy in Breast Cancer Patients Undergoing Neo-Adjuvant Chemotherapy: Clinical Experience with Node-Negative and Node-Positive Disease Prior to Systemic Therapy. Cancers 2023, 15, 1719. [Google Scholar] [CrossRef] [PubMed]
- Von Minckwitz, G.; Untch, M.; Blohmer, J.U.; Costa, S.S.D.; Eidtmann, H.; Fasching, P.A.; Gerber, B.; Eiermann, W.; Hilfrich, J.; Huober, J.; et al. Definition and Impact of Pathologic Complete Response on Prognosis after Neoadjuvant Chemotherapy in Various Intrinsic Breast Cancer Subtypes. J. Clin. Oncol. 2012, 30, 1796–1804. [Google Scholar] [CrossRef]
- Yoshioka, T.; Hosoda, M.; Yamamoto, M.; Taguchi, K.; Hatanaka, K.C.; Takakuwa, E.; Hatanaka, Y.; Matsuno, Y.; Yamashita, H. Prognostic Significance of Pathologic Complete Response and Ki67 Expression after Neoadjuvant Chemotherapy in Breast Cancer. Breast Cancer 2015, 22, 185–191. [Google Scholar] [CrossRef]
- Broglio, K.R.; Quintana, M.; Foster, M.; Olinger, M.; McGlothlin, A.; Berry, S.M.; Boileau, J.F.; Brezden-Masley, C.; Chia, S.; Dent, S.; et al. Association of Pathologic Complete Response to Neoadjuvant Therapy in HER2-Positive Breast Cancer with Long-Term Outcomes Ameta-Analysis. JAMA Oncol. 2016, 2, 751–760. [Google Scholar] [CrossRef]
- Cortazar, P.; Zhang, L.; Untch, M.; Mehta, K.; Costantino, J.P.; Wolmark, N.; Bonnefoi, H.; Cameron, D.; Gianni, L.; Valagussa, P.; et al. Pathological Complete Response and Long-Term Clinical Benefit in Breast Cancer: The CTNeoBC Pooled Analysis. Lancet 2014, 384, 164–172. [Google Scholar] [CrossRef] [PubMed]
- Gentile, D.; Sagona, A.; De Carlo, C.; Fernandes, B.; Barbieri, E.; Di Maria Grimaldi, S.; Jacobs, F.; Vatteroni, G.; Scardina, L.; Biondi, E.; et al. Pathologic Response and Residual Tumor Cellularity after Neo-Adjuvant Chemotherapy Predict Prognosis in Breast Cancer Patients. Breast 2023, 69, 323–329. [Google Scholar] [CrossRef] [PubMed]
- Yau, C.; Osdoit, M.; van der Noordaa, M.; Shad, S.; Wei, J.; de Croze, D.; Hamy, A.-S.; Laé, M.; Reyal, F.; Sonke, G.S.; et al. Residual Cancer Burden after Neoadjuvant Chemotherapy and Long-Term Survival Outcomes in Breast Cancer: A Multicentre Pooled Analysis of 5161 Patients. Lancet Oncol. 2022, 23, 149–160. [Google Scholar] [CrossRef] [PubMed]
- Tabl, A.A.; Alkhateeb, A.; ElMaraghy, W.; Rueda, L.; Ngom, A. A Machine Learning Approach for Identifying Gene Biomarkers Guiding the Treatment of Breast Cancer. Front. Genet. 2019, 10, 256. [Google Scholar] [CrossRef]
- Zhou, L.; Rueda, M.; Alkhateeb, A. Classification of Breast Cancer Nottingham Prognostic Index Using High-Dimensional Embedding and Residual Neural Network. Cancers 2022, 14, 934. [Google Scholar] [CrossRef]
- Laws, A.; Pastorello, R.; Dey, T.; Grossmith, S.; King, C.; McGrath, M.; Schnitt, S.J.; Mittendorf, E.A.; King, T. Impact of the Histologic Pattern of Residual Tumor After Neoadjuvant Chemotherapy on Recurrence and Survival in Stage I–III Breast Cancer. Ann. Surg. Oncol. 2022, 29, 7726–7736. [Google Scholar] [CrossRef]
- von Minckwitz, G.; Huang, C.-S.; Mano, M.S.; Loibl, S.; Mamounas, E.P.; Untch, M.; Wolmark, N.; Rastogi, P.; Schneeweiss, A.; Redondo, A.; et al. Trastuzumab Emtansine for Residual Invasive HER2-Positive Breast Cancer. N. Engl. J. Med. 2019, 380, 617–628. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.; Zhang, L.; Chen, Y.; Lin, Y.; Cheng, M.; Zheng, X.; Zhuang, X.; Wang, K. Neoadjuvant Chemotherapy and Neoadjuvant Chemotherapy with Immunotherapy Result in Defferent Tumor Shrinkage Patterns in Triple-Negative Breast Cancer. J. Breast Cancer 2023, 26, e49. [Google Scholar] [CrossRef]
- Goorts, B.; Dreuning, K.M.A.; Houwers, J.B.; Kooreman, L.F.S.; Boerma, E.-J.G.; Mann, R.M.; Lobbes, M.B.I.; Smidt, M.L. MRI-Based Response Patterns during Neoadjuvant Chemotherapy Can Predict Pathological (Complete) Response in Patients with Breast Cancer. Breast Cancer Res. 2018, 20, 34. [Google Scholar] [CrossRef]
- Fukada, I.; Araki, K.; Kobayashi, K.; Shibayama, T.; Takahashi, S.; Gomi, N.; Kokubu, Y.; Oikado, K.; Horii, R.; Akiyama, F.; et al. Pattern of Tumor Shrinkage during Neoadjuvant Chemotherapy Is Associated with Prognosis in Low-Grade Luminal Early Breast Cancer. Radiology 2018, 286, 49–57. [Google Scholar] [CrossRef] [PubMed]
- Pastorello, R.G.; Laws, A.; Grossmith, S.; King, C.; McGrath, M.; Mittendorf, E.A.; King, T.A.; Schnitt, S.J. Clinico-Pathologic Predictors of Patterns of Residual Disease Following Neoadjuvant Chemotherapy for Breast Cancer. Mod. Pathol. 2021, 34, 875–882. [Google Scholar] [CrossRef] [PubMed]
- Wolff, A.C.; Hammond, M.E.H.; Hicks, D.G.; Dowsett, M.; McShane, L.M.; Allison, K.H.; Allred, D.C.; Bartlett, J.M.S.; Bilous, M.; Fitzgibbons, P.; et al. Recommendations for Human Epidermal Growth Factor Receptor 2 Testing in Breast. J. Clin. Oncol. 2013, 31, 3997–4013. [Google Scholar] [CrossRef] [PubMed]
- Chen, A.M.; Meric-Bernstam, F.; Hunt, K.K.; Thames, H.D.; Oswald, M.J.; Outlaw, E.D.; Strom, E.A.; McNeese, M.D.; Kuerer, H.M.; Ross, M.I.; et al. Breast Conservation After Neoadjuvant Chemotherapy: The M.D. Anderson Cancer Center Experience. J. Clin. Oncol. 2004, 22, 2303–2312. [Google Scholar] [CrossRef] [PubMed]
- Symmans, W.F.; Peintinger, F.; Hatzis, C.; Rajan, R.; Kuerer, H.; Valero, V.; Assad, L.; Poniecka, A.; Hennessy, B.; Green, M.; et al. Measurement of Residual Breast Cancer Burden to Predict Survival after Neoadjuvant Chemotherapy. J. Clin. Oncol. 2007, 25, 4414–4422. [Google Scholar] [CrossRef]
- Symmans, W.F.; Wei, C.; Gould, R.; Yu, X.; Zhang, Y.; Liu, M.; Walls, A.; Bousamra, A.; Ramineni, M.; Sinn, B.; et al. Long-Term Prognostic Risk after Neoadjuvant Chemotherapy Associated with Residual Cancer Burden and Breast Cancer Subtype. J. Clin. Oncol. 2017, 35, 1049–1060. [Google Scholar] [CrossRef]
- Müller, H.D.; Posch, F.; Suppan, C.; Bargfrieder, U.; Gumpoldsberger, M.; Hammer, R.; Hauser, H.; Dandachi, N.; Prein, K.; Stoeger, H.; et al. Validation of Residual Cancer Burden as Prognostic Factor for Breast Cancer Patients after Neoadjuvant Therapy. Ann. Surg. Oncol. 2019, 26, 4274–4283. [Google Scholar] [CrossRef]
- Peintinger, F.; Sinn, B.; Hatzis, C.; Albarracin, C.; Downs-Kelly, E.; Morkowski, J.; Gould, R.; Symmans, W.F. Reproducibility of Residual Cancer Burden for Prognostic Assessment of Breast Cancer after Neoadjuvant Chemotherapy. Mod. Pathol. 2015, 28, 913–920. [Google Scholar] [CrossRef]
Characteristics | Number (%)/Median (Range) |
---|---|
Patients | |
Age (years) | 50 (26–84) |
Postmenopausal | 116 (53.0%) |
Preoperative staging | |
Mammography | 140 (63.9%) |
Breast and axillary US | 495 (100%) |
Axillary biopsy | 40 (18.3%) |
MRI | 65 (29.7%) |
PET | 116 (53.0%) |
Dimension pre-NAC (mm) | 33 (12–115) |
Stage pre-NAC | |
cT1 | 20 (9.1%) |
cT2 | 132 (60.2%) |
cT3 | 39 (17.8%) |
cT4 | 28 (12.9%) |
cN0 | 73 (33.3%) |
cN1 | 146 (66.7%) |
NAC with anthracycline only | 49 (22.4%) |
NAC without anthracycline | 13 (5.9%) |
NAC with anthracycline and taxanes | 157 (71.7%) |
Trastuzumab | 52 (23.7%) |
Pertuzumab | 8 (3.7%) |
Complete NAC cycles | 195 (89.0%) |
Pattern of residual disease | |
- Scattered | |
- Circumscribed | 111 (50.7%) |
Tumor | 108 (49.3%) |
Subtype | |
- Luminal-like | |
- HER2-positive | 114 (52.1%) |
- Triple negative | 53 (24.2%) |
Histotype | 52 (23.7%) |
- Ductal | |
- Lobular | 195 (89.0%) |
- Other | 15 (6.9%) |
Vascular invasion | 9 (4.1%) |
Single nodule | 89 (40.6%) |
Dimension post-NAC (mm) | 168 (76.7%) |
Stage post-NAC | 18 (1–120) |
- ypTmi | |
- ypT1a | 4 (1.8%) |
- ypT1b | 12 (5.5%) |
- ypT1c | 27 (12.3%) |
- ypT2 | 62 (28.3%) |
- ypT3 | 83 (37.9%) |
- ypT4 | 20 (9.1%) |
- ypN0 | 11 (5.1%) |
- ypNmi | 95 (43.4%) |
- ypN1 | 5 (2.3%) |
- ypN2 | 51 (23.3%) |
- ypN3 | 41 (18.7%) |
Surgical treatment | 27 (12.3%) |
- BCS | |
- Mastectomy | 89 (40.6%) |
- SLNB not followed by ALND | 130 (59.4%) |
- SLNB followed by ALND | 78 (35.6%) |
- Direct ALND | 28 (12.8%) |
Postoperative treatment | 113 (51.6%) |
- Taxanes | |
- Capecitabine | 21 (9.6%) |
- Radiotherapy | 22 (10.1%) |
- Endocrine | 176 (80.4%) |
- T-DM1 | 149 (68.0%) |
50 (22.8%) |
Characteristics | Scattered (No. 111) Tot. (%) | Circumscribed (No. 108) Tot. (%) | Univariate Analysis | Multivariate Analysis |
---|---|---|---|---|
p-Value | p-Value OR (95% CI) | |||
Demographic | ||||
Age (years) | ||||
- ≤50 | 59 (53.2%) | 56 (51.9%) | 0.848 | - |
- >50 | 52 (46.8%) | 52 (48.1%) | - | |
Menopausal status | ||||
- Pre-menopausal | 54 (48.7%) | 49 (45.4%) | 0.629 | - |
- Postmenopausal | 57 (51.3%) | 59 (54.6%) | - | |
Preoperative staging | ||||
Dimension pre-NAC (mm) | ||||
- ≤33 | 54 (48.7%) | 50 (46.3%) | 0.550 | - |
- >33 | 57 (51.3%) | 58 (53.7%) | - | |
Single nodule | ||||
- Yes | 89 (80.2%) | 79 (73.2%) | 0.220 | - |
- No | 22 (19.8%) | 29 (26.8%) | - | |
Stage pre-NAC | ||||
- cT1-2 | 80 (72.1%) | 72 (66.7%) | 0.388 | - |
- cT3-4 | 31 (27.9%) | 36 (33.3%) | - | |
NAC | ||||
- Anthracycline and taxanes | 76 (68.5%) | 81 (75.0%) | 0.399 | - |
- Anthracycline only | 27 (24.3%) | 22 (20.4%) | - | |
- Without anthracycline | 8 (7.2%) | 5 (4.6%) | - | |
Complete NAC cycles | ||||
- Yes | 106 (95.5%) | 89 (82.4%) | 0.002 a | 0.011 a 0.255 (0.089–0.729) |
- No | 5 (4.5%) | 19 (17.6%) | - | - |
Tumor | ||||
Histotype | ||||
- Ductal | 98 (88.3%) | 97 (89.8%) | 0.106 | - |
- Lobular | 10 (9.0%) | 5 (4.6%) | - | |
- Other | 3 (2.7%) | 6 (5.6%) | - | |
Subtype | ||||
- Luminal-like | 58 (52.3%) | 56 (51.9%) | 0.362 | - |
- HER2-positive | 32 (28.8%) | 21 (19.4%) | - | |
- Triple negative | 21 (18.9%) | 31 (28.7%) | - | |
Dimension post-NAC (mm) | ||||
- ≤18 | 69 (62.2%) | 41 (38.0%) | <0.0001 a | 0.022 a 2.013 (1.108–3.655) |
- >18 | 42 (37.8%) | 67 (62.0%) | - | - |
Stage post-NAC | ||||
- ypT1-2 | 103 (92.8%) | 85 (78.7%) | 0.003 a | 0.074 2.328 (0.923–5.875) |
- ypT3-4 | 8 (7.2%) | 23 (21.3%) | - | - |
Vascular invasion | ||||
- Yes | 45 (40.5%) | 44 (40.7%) | 0.976 | - |
- No | 66 (59.5%) | 64 (59.3%) | - |
Outcomes | Scattered | Circumscribed | p-Value |
---|---|---|---|
DFS rate | |||
- 3-year | 77.20% | 65.40% | 0.117 |
- 5-year | 70.30% | 59.30% | |
- 10-year | 64.20% | 54.20% | |
DDFS rate | |||
- 3-year | 81.70% | 70.10% | 0.155 |
- 5-year | 73.90% | 65.00% | |
- 10-year | 64.60% | 54.80% | |
OS rate | |||
- 3-year | 87.10% | 84.10% | 0.022 a |
- 5-year | 83.20% | 72.10% | |
- 10-year | 75.30% | 61.80% |
Independent Factors | DFS | DDFS | OS |
---|---|---|---|
HR (95%CI) p-Value | HR (95%CI) p-Value | HR (95%CI) p-Value | |
Patient | |||
Age (years) | |||
- ≤50 | Reference | Reference | Reference |
- >50 | 0.787 (0.304–2.035) 0.621 | 0.622 (0.234–1.649) 0.340 | 1.401 (0.379–5.172) 0.613 |
Menopausal status | |||
- Pre-menopausal | Reference | Reference | Reference |
- Postmenopausal | 1.204 (0.472–3.072) 0.697 | 1.264 (0.491–3.255) 0.627 | 0.732 (0.212–2.524) 0.622 |
Preoperative staging | |||
Dimension pre-NAC (mm) | |||
- ≤33 | Reference | Reference | Reference |
- >33 | 0.733 (0.355–1.516) 0.402 | 0.642 (0.322–1.282) 0.209 | 0.570 (0.244–1.331) 0.194 |
Single nodule | |||
- Yes | Reference | Reference | Reference |
- No | 0.729 (0.348–1.527) 0.402 | 0.812 (0.383–1.722) 0.586 | 0.692 (0.275–1.737) 0.433 |
Stage pre-NAC | |||
- cT1-2 | Reference | Reference | Reference |
- cT3-4 | 1.507 (0.676–3.360) 0.316 | 1.467 (0.650–3.311) 0.356 | 0.709 (0.256–1.966) 0.509 |
NAC | |||
- With anthracycline | Reference | Reference | Reference |
- Without anthracycline | 0.829 (0.594–1.157) 0.270 | 0.929 (0.666–1.298) 0.667 | 0.876 (0.593–1.294) 0.506 |
Complete NAC cycles | |||
- Yes | Reference | Reference | Reference |
- No | 2.846 (1.002–8.085) 0.050 a | 3.181 (1.112–9.101) 0.031 a | 1.800 (0.555–55) 0.327 |
Tumor | |||
Histotype | |||
- Ductal | Reference | Reference | Reference |
- Other | 0.941 (0.359–2.468) 0.902 | 1.003 (0.380–2.651) 0.995 | 1.523 (0.518–4.479) 0.445 |
Pattern of response | |||
- Scattered | Reference | Reference | Reference |
- Circumscribed | 1.423 (0.741–2.732) 0.290 | 1.302 (0.684–2.482) 0.422 | 1.410 (0.601–3.307) 0.429 |
Subtype | |||
- HR+HER− | Reference | Reference | Reference |
- Other | 1.892 (0.381–9.411) 0.436 | 2.113 (0.426–10.484) 0.360 | 2.360 (0.221–25.177) 0.477 |
- Triple negative | Reference | Reference | Reference |
- Other | 14.645 (1.630–131.553) 0.017 a | 12.063 (1.401–103.864) 0.023 a | 29.146 (1.327–639.945) 0.032 a |
Dimension post-NAC (mm) | |||
- ≤18 | Reference | Reference | Reference |
- >18 | 2.691 (1.335–5.427) 0.006 a | 3.130 (1.536–6.376) 0.002 a | 2.159 (0.892–5.224) 0.088 |
Stage post-NAC | |||
- ypT1-2 | Reference | Reference | Reference |
- ypT3-4 | 0.930 (0.393–2.198) 0.868 | 0.990 (0.417–2.352) 0.982 | 2.424 (0.911–6.448) 0.076 |
- ypN0 | Reference | Reference | Reference |
- ypN+ | 3.566 (1.655–7.687) 0.001 a | 3.873 (1.724–8.704) 0.001 a | 2.565 (1.002–6.569) 0.050 a |
Vascular invasion | |||
- Yes | Reference | Reference | Reference |
- No | 1.660 (0.889–3.101) 0.112 | 1.625 (0.849–3.112) 0.143 | 2.134 (0.973–4.679) 0.058 |
Treatment | |||
Operation | |||
- BCS | Reference | Reference | Reference |
- Mastectomy | 1.101 (0.539–2.249) 0.793 | 1.108 (0.531–2.314) 0.784 | 1.265 (0.509–3.142) 0.612 |
Adjuvant radiotherapy | |||
- Yes | Reference | Reference | Reference |
- No | 1.111 (0.499–2.475) 0.796 | 1.045 (0.470–2.323) 0.913 | 1.110 (0.410–2.952) 0.796 |
Adjuvant chemotherapy | |||
- Yes | Reference | Reference | Reference |
- No | 1.370 (0.701–2.677) 0.357 | 1.257 (0.633–2.497) 0.514 | 1.271 (0.563–2.870) 0.564 |
Endocrine therapy | |||
- Yes | Reference | Reference | Reference |
- No | 1.385 (0.304–5.109) 0.608 | 1.278 (0.345–4736) 0.713 | 2.188 (0.259–18.477) 0.472 |
T-DM1 | |||
- Yes | Reference | Reference | Reference |
- No | 2.703 (0.531–13.764) 0.231 | 2.409 (0.488–11.901) 0.281 | 1.574 (0.173–14.327) 0.687 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tinterri, C.; Fernandes, B.; Zambelli, A.; Sagona, A.; Barbieri, E.; Di Maria Grimaldi, S.; Darwish, S.S.; Jacobs, F.; De Carlo, C.; Iuzzolino, M.; et al. The Impact of Different Patterns of Residual Disease on Long-Term Oncological Outcomes in Breast Cancer Patients Treated with Neo-Adjuvant Chemotherapy. Cancers 2024, 16, 376. https://doi.org/10.3390/cancers16020376
Tinterri C, Fernandes B, Zambelli A, Sagona A, Barbieri E, Di Maria Grimaldi S, Darwish SS, Jacobs F, De Carlo C, Iuzzolino M, et al. The Impact of Different Patterns of Residual Disease on Long-Term Oncological Outcomes in Breast Cancer Patients Treated with Neo-Adjuvant Chemotherapy. Cancers. 2024; 16(2):376. https://doi.org/10.3390/cancers16020376
Chicago/Turabian StyleTinterri, Corrado, Bethania Fernandes, Alberto Zambelli, Andrea Sagona, Erika Barbieri, Simone Di Maria Grimaldi, Shadya Sara Darwish, Flavia Jacobs, Camilla De Carlo, Martina Iuzzolino, and et al. 2024. "The Impact of Different Patterns of Residual Disease on Long-Term Oncological Outcomes in Breast Cancer Patients Treated with Neo-Adjuvant Chemotherapy" Cancers 16, no. 2: 376. https://doi.org/10.3390/cancers16020376
APA StyleTinterri, C., Fernandes, B., Zambelli, A., Sagona, A., Barbieri, E., Di Maria Grimaldi, S., Darwish, S. S., Jacobs, F., De Carlo, C., Iuzzolino, M., & Gentile, D. (2024). The Impact of Different Patterns of Residual Disease on Long-Term Oncological Outcomes in Breast Cancer Patients Treated with Neo-Adjuvant Chemotherapy. Cancers, 16(2), 376. https://doi.org/10.3390/cancers16020376