Assessment of Different Castration Resistance Definitions and Staging Modalities in Metastatic Castration-Resistant Prostate Cancer
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. mCRPC Definition
2.3. Staging Modalities
2.4. Statistical Analysis
3. Results
3.1. Baseline Characteristics: PSA vs. Radiographic Progression
3.2. Oncological Outcomes: PSA vs. Radiographic Progression
3.3. Baseline Characteristics: Staging at Progression to mCRPC
3.4. Oncological Outcomes: Staging at Progression to mCRPC
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Culp, M.B.; Soerjomataram, I.; Efstathiou, J.A.; Bray, F.; Jemal, A. Recent Global Patterns in Prostate Cancer Incidence and Mortality Rates. Eur. Urol. 2020, 77, 38–52. [Google Scholar] [CrossRef]
- Tannock, I.F.; De Wit, R.; Berry, W.R.; Horti, J.; Pluzanska, A.; Chi, K.N.; Oudard, S.; Théodore, C.; James, N.D.; Turesson, I.; et al. Docetaxel plus Prednisone or Mitoxantrone plus Prednisone for Advanced Prostate Cancer. N. Engl. J. Med. 2004, 351, 1502–1512. [Google Scholar] [CrossRef]
- de Bono, J.S.; Oudard, S.; Ozguroglu, M.; Hansen, S.; Machiels, J.-P.; Kocak, I.; Gravis, G.; Bodrogi, I.; Mackenzie, M.J.; Shen, L.; et al. Prednisone plus cabazitaxel or mitoxantrone for metastatic castration-resistant prostate cancer progressing after docetaxel treatment: A randomised open-label trial. Lancet 2010, 376, 1147–1154. [Google Scholar] [CrossRef]
- Hussain, M.; Mateo, J.; Fizazi, K.; Saad, F.; Shore, N.; Sandhu, S.; Chi, K.N.; Sartor, O.; Agarwal, N.; Olmos, D.; et al. Survival with Olaparib in Metastatic Castration-Resistant Prostate Cancer. N. Engl. J. Med. 2020, 383, 2345–2357. [Google Scholar] [CrossRef]
- De Bono, J.S.; Logothetis, C.J.; Molina, A.; Fizazi, K.; North, S.; Chu, L.; Chi, K.N.; Jones, R.J.; Goodman, O.B., Jr.; Saad, F.; et al. Abiraterone and Increased Survival in Metastatic Prostate Cancer. N. Engl. J. Med. 2011, 364, 1995–2005. [Google Scholar] [CrossRef]
- Scher, H.I.; Fizazi, K.; Saad, F.; Taplin, M.-E.; Sternberg, C.N.; Miller, K.; De Wit, R.; Mulders, P.; Chi, K.N.; Shore, N.D.; et al. Increased Survival with Enzalutamide in Prostate Cancer after Chemotherapy. N. Engl. J. Med. 2012, 367, 1187–1197. [Google Scholar] [CrossRef]
- Sartor, O.; de Bono, J.; Chi, K.N.; Fizazi, K.; Herrmann, K.; Rahbar, K.; Tagawa, S.T.; Nordquist, L.T.; Vaishampayan, N.; El-Haddad, G.; et al. Lutetium-177–PSMA-617 for Metastatic Castration-Resistant Prostate Cancer. N. Engl. J. Med. 2021, 385, 1091–1103. [Google Scholar] [CrossRef]
- Wenzel, M.; Preisser, F.; Hoeh, B.; Schroeder, M.; Würnschimmel, C.; Steuber, T.; Heinzer, H.; Banek, S.; Ahrens, M.; Becker, A.; et al. Impact of Time to Castration Resistance on Survival in Metastatic Hormone Sensitive Prostate Cancer Patients in the Era of Combination Therapies. Front. Oncol. 2021, 11, 659135. [Google Scholar] [CrossRef]
- Mori, K.; Mostafaei, H.; Sari Motlagh, R.; Pradere, B.; Quhal, F.; Laukhtina, E.; Schuettfort, V.M.; Kramer, G.; Abufaraj, M.; Karakiewicz, P.I.; et al. Systemic therapies for metastatic hormone-sensitive prostate cancer: Network meta-analysis. BJU Int. 2022, 129, 423–433. [Google Scholar] [CrossRef]
- Morote, J.; Aguilar, A.; Planas, J.; Trilla, E. Definition of Castrate Resistant Prostate Cancer: New Insights. Biomedicines 2022, 10, 689. [Google Scholar] [CrossRef]
- Shore, N.D.; Morgans, A.K.; Ryan, C.J. Resetting the Bar of Castration Resistance—Understanding Androgen Dynamics in Therapy Resistance and Treatment Choice in Prostate Cancer. Clin. Genitourin. Cancer 2021, 19, 199–207. [Google Scholar] [CrossRef]
- Scher, H.I.; Halabi, S.; Tannock, I.; Morris, M.; Sternberg, C.N.; Carducci, M.A.; Eisenberger, M.A.; Higano, C.; Bubley, G.J.; Dreicer, R.; et al. Design and end points of clinical trials for patients with progressive prostate cancer and castrate levels of testosterone: Recommendations of the prostate cancer clinical trials working group. J. Clin. Oncol. 2008, 26, 1148–1159. [Google Scholar] [CrossRef]
- Cornford, P.; Tilki, D.; van den Bergh, R.C.N.; Bries, E.; Eberli, D.; De Meerleer, M.; De Santis, M.; Gillessen, S.; Henryk, A.M.; vsan Leenders, G.J.L.H.; et al. EAU Guidelines on Prostate Cancer. In Proceedings of the EAU Annual Congress, Paris, France, 5–8 April 2024; ISBN 978-94-92671-23-3. [Google Scholar]
- Gafita, A.; Rauscher, I.; Fendler, W.P.; Murthy, V.; Hui, W.; Armstrong, W.R.; Herrmann, K.; Weber, W.A.; Calais, J.; Eiber, M.; et al. Measuring response in metastatic castration-resistant prostate cancer using PSMA PET/CT: Comparison of RECIST 1.1, aPCWG3, aPERCIST, PPP, and RECIP 1.0 criteria. Eur. J. Nucl. Med. Mol. Imaging 2022, 49, 4271–4281. [Google Scholar] [CrossRef]
- Merseburger, A.S.; Agarwal, N.; Bjartell, A.; Uemura, H.; Soto, A.J.; Bhaumik, A.; Böhm, J.; Tran, N.; Krochmann, N.; Nematian-Samani, M.; et al. Targeted Investigational Treatment Analysis of Novel Anti-androgen (TITAN) study: Ultralow prostate-specific antigen decline with apalutamide plus androgen-deprivation therapy. BJU Int. 2024. [Google Scholar] [CrossRef]
- Wenzel, M.; Siech, C.; Hoeh, B.; Koll, F.; Humke, C.; Tilki, D.; Steuber, T.; Graefen, M.; Banek, S.; Kluth, L.A.; et al. Contemporary Treatment Patterns and Oncological Outcomes of Metastatic Hormone-sensitive Prostate Cancer and First- to Sixth- line Metastatic Castration-resistant Prostate Cancer Patients. Eur. Urol. Open Sci. 2024, 66, 46–54. [Google Scholar] [CrossRef]
- Wenzel, M.; Cano Garcia, C.; Humke, C.; Hoeh, B.; Steuber, T.; Tilki, D.; Merseburger, A.S.; Kluth, L.A.; Chun, F.K.H.; Mandel, P. Prostate-specific Antigen Nadir and Cancer-Control Outcomes in Real-world Apalutamide-treated Metastatic Hormone-Sensitive Prostate Cancer Patients: A Single-Center Analysis. Eur. Urol. Oncol. 2024. [Google Scholar] [CrossRef] [PubMed]
- Saad, F.; Hussain, M.H.A.; Tombal, B.; Fizazi, K.; Sternberg, C.N.; Crawford, E.D.; Nordquist, L.T.; Bögemann, M.; Tutrone, R.; Shore, N.D.; et al. Deep and Durable Prostate-specific Antigen Response to Darolutamide with Androgen Deprivation Therapy and Docetaxel, and Association with Clinical Outcomes for Patients with High- or Low-volume Metastatic Hormone-sensitive Prostate Cancer: Analyses of the Randomized Phase 3 ARASENS Study. Eur. Urol. 2024, 86, 329–339. [Google Scholar] [CrossRef]
- Hofman, M.S.; Lawrentschuk, N.; Francis, R.J.; Tang, C.; Vela, I.; Thomas, P.; Rutherford, N.; Martin, J.M.; Frydenberg, M.; Shakher, R.; et al. Prostate-specific membrane antigen PET-CT in patients with high-risk prostate cancer before curative-intent surgery or radiotherapy (proPSMA): A prospective, randomised, multicentre study. Lancet 2020, 395, 1208–1216. [Google Scholar] [CrossRef]
- Fankhauser, C.D.; Poyet, C.; Kroeze, S.G.C.; Kranzbühler, B.; Schüler, H.I.G.; Guckenberger, M.; Kaufmann, P.A.; Hermanns, T.; Burger, I.A. Current and potential future role of PSMA-PET in patients with castration-resistant prostate cancer. World J. Urol. 2019, 37, 457–467. [Google Scholar] [CrossRef]
- Francini, E.; Gray, K.P.; Xie, W.; Shaw, G.K.; Valença, L.; Bernard, B.; Albiges, L.; Harshman, L.C.; Kantoff, P.W.; Taplin, M.; et al. Time of metastatic disease presentation and volume of disease are prognostic for metastatic hormone sensitive prostate cancer (mHSPC). Prostate 2018, 78, 889–895. [Google Scholar] [CrossRef]
- Davis, I.D.; Martin, A.J.; Zielinski, R.R.; Thomson, A.; Tan, T.H.; Sandhu, S.; Reaume, M.N.; Pook, D.W.; Parnis, F.; North, S.A.; et al. Radiographic progression without PSA progression in metastatic hormone-sensitive prostate cancer (mHSPC): A retrospective analysis from the ENZAMET trial (ANZUP 1304). J. Clin. Oncol. 2024, 42, 151. [Google Scholar] [CrossRef]
- Tashiro, K.; Kimura, S.; Tsuzuki, S.; Urabe, F.; Fukuokaya, W.; Mori, K.; Aikawa, K.; Murakami, M.; Sasaki, H.; Miki, K.; et al. Radiographic Progression at Castration-Resistant Prostate Cancer Diagnosis: A Prognostic Indicator of Metastatic Hormone-Sensitive Prostate Cancer. Clin. Genitourin. Cancer 2024, 22, 102075. [Google Scholar] [CrossRef]
- Hara, T.; Terakawa, T.; Okamura, Y.; Bando, Y.; Furukawa, J.; Harada, K.; Nakano, Y.; Fujisawa, M. Real-world analysis of metastatic prostate cancer demonstrates increased frequency of PSA-imaging discordance with visceral metastases and upfront ARAT/docetaxel therapy. Prostate 2023, 83, 1270–1278. [Google Scholar] [CrossRef]
- Phillips, R.; Shi, W.Y.; Deek, M.; Radwan, N.; Lim, S.J.; Antonarakis, E.S.; Rowe, S.P.; Ross, A.E.; Gorin, M.A.; Deville, C.; et al. Outcomes of Observation vs Stereotactic Ablative Radiation for Oligometastatic Prostate Cancer: The ORIOLE Phase 2 Randomized Clinical Trial. JAMA Oncol. 2020, 6, 650–659. [Google Scholar] [CrossRef]
- Wenzel, M.; Hussein, R.; Maurer, T.; Karakiewicz, P.I.; Tilki, D.; Graefen, M.; Würnschimmel, C. PSMA PET predicts metastasis-free survival in the setting of salvage radiotherapy after radical prostatectomy. Urol. Oncol. 2022, 40, 7.e1–7.e8. [Google Scholar] [CrossRef]
Characteristic | N | Overall, N = 356 1 | PSA N = 126 (35%) 1 | Radiographic, N = 81 (23%) 1 | PSA + Radiographic N = 149 (42%) 1 | p-Value 2 |
---|---|---|---|---|---|---|
Age mHSPC, years | 344 | 69 (62, 75) | 69 (65, 75) | 69 (61, 74) | 67 (61, 75) | 0.3 |
PSA mHSPC, ng/mL | 229 | 65 (12, 280) | 84 (24, 319) | 34 (8, 375) | 64 (12, 236) | 0.2 |
PSA nadir mHSPC | 196 | 0.8 (0.1, 4.0) | 1.4 (0.3, 4.1) | 0.4 (0.06, 1.1) | 0.8 (0.1, 7.7) | 0.013 |
PSA response ≥ 90% mHSPC | 170 | 140 (82%) | 40 (85%) | 37 (88%) | 63 (78%) | 0.3 |
PSA mCRPC, ng/mL | 246 | 15 (4, 64) | 15 (6, 63) | 2 (1, 32) | 21 (8, 71) | <0.001 |
Treatment lines mCRPC | 365 | 2 (1, 3) | 2 (1, 3) | 2 (1, 3) | 2 (1, 4) | 0.029 |
ECOG | 262 | 0.5 | ||||
0 | 159 (61%) | 54 (54%) | 37 (63%) | 68 (66%) | ||
1 | 90 (34%) | 40 (40%) | 20 (34%) | 30 (29%) | ||
≥2 | 13 (5.0%) | 6 (6.0%) | 2 (3.4%) | 5 (4.9%) | ||
Cardiovascular disease | 249 | 85 (34%) | 31 (41%) | 16 (29%) | 38 (32%) | 0.3 |
Gleason Score | 317 | 0.3 | ||||
6–7 | 91 (29%) | 25 (24%) | 21 (29%) | 45 (33%) | ||
8–10 | 226 (71%) | 81 (76%) | 52 (71%) | 93 (67%) | ||
Local therapy | 356 | 131 (37%) | 40 (32%) | 35 (43%) | 56 (38%) | 0.2 |
De novo mHSPC | 351 | 230 (66%) | 92 (74%) | 42 (54%) | 96 (64%) | 0.012 |
High-volume mHSPC | 238 | 131 (55%) | 46 (67%) | 30 (51%) | 55 (50%) | 0.070 |
Metastatic sites mCRPC | 218 | 0.2 | ||||
M1a | 19 (8.7%) | 5 (8.6%) | 5 (8.6%) | 9 (8.8%) | ||
M1b | 171 (78%) | 48 (83%) | 40 (69%) | 83 (81%) | ||
M1c | 28 (13%) | 5 (8.6%) | 13 (22%) | 10 (9.8%) |
Characteristic | N | Overall, N = 356 1 | PSA N = 126 (35%) 1 | Radiographic, N = 81 (23%) 1 | PSA + Radiographic N = 149 (42%) 1 | p-Value 2 |
---|---|---|---|---|---|---|
Treatment mHSPC | 167 | 0.6 | ||||
ADT mono | 12 (7.2%) | 2 (5.0%) | 3 (7.1%) | 7 (8.2%) | ||
ARSI | 88 (53%) | 19 (48%) | 24 (57%) | 45 (53%) | ||
Docetaxel | 55 (33%) | 18 (45%) | 11 (26%) | 26 (31%) | ||
Triplet | 3 (1.8%) | 0 (0%) | 0 (0%) | 3 (3.5%) | ||
Other | 9 (5.4%) | 1 (2.5%) | 4 (9.5%) | 4 (4.7%) | ||
Treatment mCRPC | 356 | 0.13 | ||||
ADT mono | 31 (8.7%) | 18 (14%) | 7 (8.6%) | 6 (4.0%) | ||
Chemotherapy | 64 (18%) | 13 (10%) | 20 (25%) | 31 (21%) | ||
Lu-PSMA | 18 (5.1%) | 3 (2.4%) | 7 (8.6%) | 8 (5.4%) | ||
ARSI | 176 (49%) | 66 (52%) | 28 (35%) | 82 (55%) | ||
Radium | 15 (4.2%) | 7 (5.6%) | 3 (3.7%) | 5 (3.4%) | ||
None/Other/NA | 52 (15%) | 19 (15%) | 16 (20%) | 17 (11%) |
Characteristic | N | Overall N = 352 1 | Conventional, N = 235 (67%) 1 | PSMA, N = 117 (33%) 1 | p-Value 2 |
---|---|---|---|---|---|
Age mHSPC, years | 343 | 71 (64, 77) | 71 (64, 77) | 69 (62, 76) | 0.15 |
PSA mHSPC, ng/mL | 167 | 62 (13, 298) | 75 (13, 417) | 54 (12, 105) | 0.11 |
PSA nadir mHSPC | 159 | 0.8 (0.1, 3.2) | 0.8 (0.1, 4.0) | 1.0 (0.3, 2.7) | 0.7 |
PSA response ≥ 90% mHSPC | 131 | 112 (85%) | 79 (87%) | 33 (83%) | 0.5 |
PSA mCRPC, ng/mL | 259 | 15 (4, 65) | 19 (6, 76) | 10 (3, 51) | 0.073 |
Treatment lines mCRPC | 352 | 2 (1, 3) | 2 (1, 3) | 1 (1, 3) | 0.2 |
ECOG | 274 | 0.010 | |||
0 | 169 (62%) | 105 (56%) | 64 (74%) | ||
1 | 85 (31%) | 64 (34%) | 21 (24%) | ||
≥2 | 20 (7.3%) | 18 (9.6%) | 2 (2.3%) | ||
Cardiovascular disease | 232 | 81 (35%) | 53 (35%) | 28 (34%) | 0.9 |
Reason for CRPC progression | 204 | 0.10 | |||
PSA | 57 (28%) | 44 (32%) | 13 (19%) | ||
Radiographic | 53 (26%) | 31 (23%) | 22 (32%) | ||
Both | 94 (46%) | 61 (45%) | 33 (49%) | ||
Gleason Score | 322 | 0.6 | |||
6–7 | 88 (27%) | 57 (26%) | 31 (29%) | ||
8–10 | 234 (73%) | 159 (74%) | 75 (71%) | ||
Local therapy | 352 | 159 (45%) | 94 (40%) | 65 (56%) | <0.01 |
De novo mHSPC | 347 | 195 (56%) | 141 (60%) | 54 (48%) | 0.028 |
High-volume mHSPC | 190 | 107 (56%) | 82 (64%) | 25 (41%) | <0.01 |
Metastatic sites mCRPC | 338 | 0.002 | |||
M1a | 35 (10%) | 14 (6.2%) | 21 (19%) | ||
M1b | 256 (76%) | 178 (79%) | 78 (69%) | ||
M1c | 47 (14%) | 33 (15%) | 14 (12%) |
Characteristic | N | Overall N = 352 1 | Conventional, N = 235 (67%) 1 | PSMA, N = 117 (33%) 1 | p-Value 2 |
---|---|---|---|---|---|
Treatment mHSPC | 156 | <0.01 | |||
ADT mono | 14 (9.0%) | 8 (7.7%) | 6 (12%) | ||
ARSI | 82 (53%) | 58 (56%) | 24 (46%) | ||
Docetaxel | 44 (28%) | 34 (33%) | 10 (19%) | ||
Triplet | 4 (2.6%) | 0 (0%) | 4 (7.7%) | ||
Other | 12 (7.7%) | 4 (3.8%) | 8 (15%) | ||
Treatment mCRPC | 352 | <0.001 | |||
ADT mono | 23 (6.5%) | 17 (7.2%) | 6 (5.1%) | ||
Chemotherapy | 64 (18%) | 47 (20%) | 17 (15%) | ||
Lu-PSMA | 28 (8.0%) | 4 (1.7%) | 24 (21%) | ||
ARSI | 162 (46%) | 117 (50%) | 45 (38%) | ||
PARPi | 2 (0.6%) | 0 (0%) | 2 (1.7%) | ||
Radium | 16 (4.5%) | 11 (4.7%) | 5 (4.3%) | ||
None/Other/NA | 57 (16%) | 39 (17%) | 18 (15%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wenzel, M.; Hoeh, B.; Humke, C.; Siech, C.; Cano Garcia, C.; Salomon, G.; Maurer, T.; Graefen, M.; Bernatz, S.; Bucher, A.M.; et al. Assessment of Different Castration Resistance Definitions and Staging Modalities in Metastatic Castration-Resistant Prostate Cancer. Cancers 2024, 16, 3506. https://doi.org/10.3390/cancers16203506
Wenzel M, Hoeh B, Humke C, Siech C, Cano Garcia C, Salomon G, Maurer T, Graefen M, Bernatz S, Bucher AM, et al. Assessment of Different Castration Resistance Definitions and Staging Modalities in Metastatic Castration-Resistant Prostate Cancer. Cancers. 2024; 16(20):3506. https://doi.org/10.3390/cancers16203506
Chicago/Turabian StyleWenzel, Mike, Benedikt Hoeh, Clara Humke, Carolin Siech, Cristina Cano Garcia, Georg Salomon, Tobias Maurer, Markus Graefen, Simon Bernatz, Andreas Michael Bucher, and et al. 2024. "Assessment of Different Castration Resistance Definitions and Staging Modalities in Metastatic Castration-Resistant Prostate Cancer" Cancers 16, no. 20: 3506. https://doi.org/10.3390/cancers16203506
APA StyleWenzel, M., Hoeh, B., Humke, C., Siech, C., Cano Garcia, C., Salomon, G., Maurer, T., Graefen, M., Bernatz, S., Bucher, A. M., Kluth, L., Chun, F. K. H., & Mandel, P. (2024). Assessment of Different Castration Resistance Definitions and Staging Modalities in Metastatic Castration-Resistant Prostate Cancer. Cancers, 16(20), 3506. https://doi.org/10.3390/cancers16203506