AI-Guided Cancer Therapy for Patients with Coexisting Migraines
Simple Summary
Abstract
1. Introduction
2. Methods
2.1. Literature Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Data Extraction, Synthesis, and Quality Assessment
2.4. Narrative Synthesis
3. The Role of AI in Anticancer Therapy
3.1. AI in Personalized Medicine
3.2. AI in Predictive Modeling
4. Migraine as a Comorbid Condition in Cancer Patients
4.1. Epidemiology of Migraine and Cancer
4.2. Impact of Migraine on Cancer Treatment
5. AI in Patient Profiling for Migraine and Cancer
5.1. Genetic and Molecular Profiling
5.2. Predictive Analytics for Comorbid Conditions
5.3. AI in Treatment Decision Support
6. Challenges and Future Directions
6.1. Data Integration and Privacy Concerns
6.2. Clinical Implementation and Validation
6.3. Ethical Considerations
6.4. Future of AI in Management and Therapy of Cancer with Comorbid Migraine
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Fidler, M.M.; Bray, F.; Soerjomataram, I. The global cancer burden and human development: A review. Scand. J. Public Health 2018, 46, 27–36. [Google Scholar] [CrossRef] [PubMed]
- Ginsburg, O.; Bray, F.; Coleman, M.P.; Vanderpuye, V.; Eniu, A.; Kotha, S.R.; Sarker, M.; Huong, T.T.; Allemani, C.; Dvaladze, A.; et al. The global burden of women’s cancers: A grand challenge in global health. Lancet 2017, 389, 847–860. [Google Scholar] [CrossRef] [PubMed]
- Ferlay, J.; Colombet, M.; Soerjomataram, I.; Parkin, D.M.; Piñeros, M.; Znaor, A.; Bray, F. Cancer statistics for the year 2020: An overview. Int. J. Cancer 2021, 149, 778–789. [Google Scholar] [CrossRef] [PubMed]
- Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249. [Google Scholar] [CrossRef]
- Brown, J.E.; Royle, K.L.; Gregory, W.; Ralph, C.; Maraveyas, A.; Din, O.; Eisen, T.; Nathan, P.; Powles, T.; Griffiths, R.; et al. Temporary treatment cessation versus continuation of first-line tyrosine kinase inhibitor in patients with advanced clear cell renal cell carcinoma (STAR): An open-label, non-inferiority, randomised, controlled, phase 2/3 trial. Lancet Oncol. 2023, 24, 213–227. [Google Scholar] [CrossRef]
- Dey, A.; Mitra, A.; Pathak, S.; Prasad, S.; Zhang, A.S.; Zhang, H.; Sun, X.F.; Banerjee, A. Recent Advancements, Limitations, and Future Perspectives of the use of Personalized Medicine in Treatment of Colon Cancer. Technol. Cancer Res. Treat. 2023, 22, 15330338231178403. [Google Scholar] [CrossRef]
- Eden, D.; Ghose, A.; Moschetta, M.; Pérez-Fidalgo, J.A.; Rassy, E.; Boussios, S. Immunotherapy Combined with Standard Therapies in Head and Neck Squamous Cell Carcinoma—A Meta-analysis. Anticancer Res. 2024, 44, 861–878. [Google Scholar] [CrossRef]
- Krzyszczyk, P.; Acevedo, A.; Davidoff, E.J.; Timmins, L.M.; Marrero-Berrios, I.; Patel, M.; White, C.; Lowe, C.; Sherba, J.J.; Hartmanshenn, C.; et al. The growing role of precision and personalized medicine for cancer treatment. Technology 2018, 6, 79–100. [Google Scholar] [CrossRef]
- Ganatra, H.; Tan, J.K.; Simmons, A.; Bigogno, C.M.; Khurana, V.; Ghose, A.; Ghosh, A.; Mahajan, I.; Boussios, S.; Maniam, A.; et al. Applying whole-genome and whole-exome sequencing in breast cancer: A review of the landscape. Breast. Cancer 2024, 31, 999–1009. [Google Scholar] [CrossRef]
- Mathew, B.G.; Aliyuda, F.; Taiwo, D.; Adekeye, K.; Agada, G.; Sanchez, E.; Ghose, A.; Rassy, E.; Boussios, S. From Biology to Diagnosis and Treatment: The Ariadne’s Thread in Cancer of Unknown Primary. Int. J. Mol. Sci. 2023, 24, 5588. [Google Scholar] [CrossRef]
- Rassy, E.; Boussios, S.; Pavlidis, N. Genomic correlates of response and resistance to immune checkpoint inhibitors in carcinomas of unknown primary. Eur. J. Clin. Invest. 2021, 51, e13583. [Google Scholar] [CrossRef] [PubMed]
- Coccia, M. Artificial intelligence technology in oncology: A new technological paradigm. arXiv 2019, arXiv:1905.06871. [Google Scholar]
- Kann, B.H.; Hosny, A.; Aerts, H.J.W.L. Artificial intelligence for clinical oncology. Cancer Cell. 2021, 39, 916–927. [Google Scholar] [CrossRef]
- Alqahtani, T.; Badreldin, H.A.; Alrashed, M.; Alshaya, A.I.; Alghamdi, S.S.; Bin Saleh, K.; Alowais, S.A.; Alshaya, O.A.; Rahman, I.; Al Yami, M.S.; et al. The emergent role of artificial intelligence, natural learning processing, and large language models in higher education and research. Res. Social. Adm. Pharm. 2023, 19, 1236–1242. [Google Scholar] [CrossRef]
- Caglayan, A.; Slusarczyk, W.; Rabbani, R.D.; Ghose, A.; Papadopoulos, V.; Boussios, S. Large Language Models in Oncology: Revolution or Cause for Concern? Curr. Oncol. 2024, 31, 1817–1830. [Google Scholar] [CrossRef] [PubMed]
- Rubinger, L.; Gazendam, A.; Ekhtiari, S.; Bhandari, M. Machine learning and artificial intelligence in research and healthcare. Injury 2023, 54, S69–S73. [Google Scholar] [CrossRef]
- Apte, V.; Ghose, A.; Linares, C.A.; Adeleke, S.; Papadopoulos, V.; Rassy, E.; Boussios, S. Paediatric Anatomical Models in Radiotherapy Applications. Clin. Oncol. 2024, 36, 562–575. [Google Scholar] [CrossRef] [PubMed]
- Guo, M.; Peng, Y.; Gao, A.; Du, C.; Herman, J.G. Epigenetic heterogeneity in cancer. Biomark. Res. 2019, 7, 23. [Google Scholar] [CrossRef]
- Zhang, P.; Yang, J.; Zhong, X.; Selistre-de-Araujo, H.S.; Boussios, S.; Ma, Y.; Fang, H. A novel PD-1/PD-L1 pathway-related seven-gene signature for the development and validation of the prognosis prediction model for breast cancer. Transl. Cancer Res. 2024, 13, 1554–1566. [Google Scholar] [CrossRef]
- Linares, C.A.; Varghese, A.; Ghose, A.; Shinde, S.D.; Adeleke, S.; Sanchez, E.; Sheriff, M.; Chargari, C.; Rassy, E.; Boussios, S. Hallmarks of the Tumour Microenvironment of Gliomas and Its Interaction with Emerging Immunotherapy Modalities. Int. J. Mol. Sci. 2023, 24, 13215. [Google Scholar] [CrossRef]
- Osseis, M.; Nehmeh, W.A.; Rassy, N.; Derienne, J.; Noun, R.; Salloum, C.; Rassy, E.; Boussios, S.; Azoulay, D. Surgery for T4 Colorectal Cancer in Older Patients: Determinants of Outcomes. J. Pers. Med. 2022, 12, 1534. [Google Scholar] [CrossRef]
- Boussios, S.; Devo, P.; Goodall, I.C.A.; Sirlantzis, K.; Ghose, A.; Shinde, S.D.; Papadopoulos, V.; Sanchez, E.; Rassy, E.; Ovsepian, S.V. Exosomes in the Diagnosis and Treatment of Renal Cell Cancer. Int. J. Mol. Sci. 2023, 24, 14356. [Google Scholar] [CrossRef]
- Pokorná, M.; Černá, M.; Boussios, S.; Ovsepian, S.V.; O’Leary, V.B. lncRNA Biomarkers of Glioblastoma Multiforme. Biomedicines 2024, 12, 932. [Google Scholar] [CrossRef]
- Ashina, M.; Katsarava, Z.; Do, T.P.; Buse, D.C.; Pozo-Rosich, P.; Özge, A.; Krymchantowski, A.V.; Lebedeva, E.R.; Ravishankar, K.; Yu, S.; et al. Migraine: Epidemiology and systems of care. Lancet 2021, 397, 1485–1495. [Google Scholar] [CrossRef]
- Hansen, J.M.; Lipton, R.B.; Dodick, D.W.; Silberstein, S.D.; Saper, J.R.; Aurora, S.K.; Goadsby, P.J.; Charles, A. Migraine headache is present in the aura phase: A prospective study. Neurology 2012, 79, 2044–2049. [Google Scholar] [CrossRef]
- Palmieri, A.; Valentinis, L.; Zanchin, G. Update on headache and brain tumors. Cephalalgia 2021, 41, 431–437. [Google Scholar] [CrossRef]
- Radovanovic, I.; Zadeh, G. Cancer neurology in clinical practice, neurological complications of cancer and its treatment (2nd Edn). Br. J. Cancer 2009, 100, 1020. [Google Scholar] [CrossRef]
- Savaliya, M.; Surati, D.; Surati, R.; Padmani, S.; Boussios, S. Posterior Reversible Encephalopathy Syndrome after Pazopanib Therapy. Diseases 2023, 11, 76. [Google Scholar] [CrossRef]
- Abd-Elsayed, A.; Pahapill, N. Successful Treatment of Chemotherapy-Induced Headaches with Occipital Nerve Stimulation: A Case Report. Neuromodulation 2020, 23, 881–882. [Google Scholar] [CrossRef]
- Khan, R.B. Migraine-type headaches in children receiving chemotherapy and ondansetron. J. Child Neurol. 2002, 17, 857–858. [Google Scholar] [CrossRef]
- Martelletti, P. Migraine in Medicine: A Machine-Generated Overview of Current Research; Springer Nature: Berlin/Heidelberg, Germany, 2022. [Google Scholar]
- Meier, T.A.; Refahi, M.S.; Hearne, G.; Restifo, D.S.; Munoz-Acuna, R.; Rosen, G.L.; Woloszynek, S. The Role and Applications of Artificial Intelligence in the Treatment of Chronic Pain. Curr. Pain. Headache Rep. 2024, 28, 769–784. [Google Scholar] [CrossRef] [PubMed]
- Rainero, I.; Roveta, F.; Vacca, A.; Noviello, C.; Rubino, E. Migraine pathways and the identification of novel therapeutic targets. Expert. Opin. Ther. Targets 2020, 24, 245–253. [Google Scholar] [CrossRef] [PubMed]
- An, Y.C.; Tsai, C.L.; Liang, C.S.; Lin, Y.K.; Lin, G.Y.; Tsai, C.K.; Liu, Y.; Chen, S.J.; Tsai, S.H.; Hung, K.S.; et al. Identification of Novel Genetic Variants Associated with Insomnia and Migraine Comorbidity. Nat. Sci. Sleep 2022, 14, 1075–1087. [Google Scholar] [CrossRef]
- Snyder, H. Literature review as a research methodology: An overview and guidelines. J. Bus. Res. 2019, 104, 333–339. [Google Scholar] [CrossRef]
- Rehman, A.; Naz, S.; Razzak, I. Leveraging big data analytics in healthcare enhancement: Trends, challenges and opportunities. Multimed. Syst. 2022, 28, 1339–1371. [Google Scholar] [CrossRef]
- Tapper, W.; Carneiro, G.; Mikropoulos, C.; Thomas, S.A.; Evans, P.M.; Boussios, S. The Application of Radiomics and AI to Molecular Imaging for Prostate Cancer. J. Pers. Med. 2024, 14, 287. [Google Scholar] [CrossRef]
- Malone, E.R.; Oliva, M.; Sabatini, P.J.B.; Stockley, T.L.; Siu, L.L. Molecular profiling for precision cancer therapies. Genome Med. 2020, 12, 8. [Google Scholar] [CrossRef]
- Sicklick, J.K.; Kato, S.; Okamura, R.; Schwaederle, M.; Hahn, M.E.; Williams, C.B.; De, P.; Krie, A.; Piccioni, D.E.; Miller, V.A.; et al. Molecular profiling of cancer patients enables personalized combination therapy: The I-PREDICT study. Nat. Med. 2019, 25, 744–750. [Google Scholar] [CrossRef]
- Gupta, P.; Pandey, M.K. Role of AI for Smart Health Diagnosis and Treatment. In Smart Medical Imaging for Diagnosis and Treatment Planning; Chapman and Hall/CRC: Boca Raton, FL, USA, 2024; pp. 23–45. [Google Scholar]
- Nazi, F.; Abbas, A. Personalized Medicine and Health Data Integration: Transforming Chronic Disease Monitoring with AI. Available online: https://www.researchgate.net/profile/Asad-Abbas-35/publication/382853245_Personalized_Medicine_and_Health_Data_Integration_Transforming_Chronic_Disease_Monitoring_with_AI/links/66af28aa299c327096ac1dc9/Personalized-Medicine-and-Health-Data-Integration-Transforming-Chronic-Disease-Monitoring-with-AI.pdf (accessed on 7 October 2024).
- Sufyan, M.; Shokat, Z.; Ashfaq, U.A. Artificial intelligence in cancer diagnosis and therapy: Current status and future perspective. Comput. Biol. Med. 2023, 165, 107356. [Google Scholar] [CrossRef] [PubMed]
- Majnarić, L.T.; Babič, F.; O’Sullivan, S.; Holzinger, A. AI and Big Data in Healthcare: Towards a More Comprehensive Research Framework for Multimorbidity. J. Clin. Med. 2021, 10, 766. [Google Scholar] [CrossRef]
- Stafie, C.S.; Sufaru, I.G.; Ghiciuc, C.M.; Stafie, I.I.; Sufaru, E.C.; Solomon, S.M.; Hancianu, M. Exploring the Intersection of Artificial Intelligence and Clinical Healthcare: A Multidisciplinary Review. Diagnostics 2023, 13, 1995. [Google Scholar] [CrossRef] [PubMed]
- Amiri, P.; Kazeminasab, S.; Nejadghaderi, S.A.; Mohammadinasab, R.; Pourfathi, H.; Araj-Khodaei, M.; Sullman, M.J.M.; Kolahi, A.A.; Safiri, S. Migraine: A Review on Its History, Global Epidemiology, Risk Factors, and Comorbidities. Front. Neurol. 2022, 12, 800605. [Google Scholar] [CrossRef]
- Winter, A.C.; Rexrode, K.M.; Lee, I.M.; Buring, J.E.; Tamimi, R.M.; Kurth, T. Migraine and subsequent risk of breast cancer: A prospective cohort study. Cancer Causes. Control. 2013, 24, 81–89. [Google Scholar] [CrossRef]
- Chen, C.H.; Sheu, J.J.; Lin, Y.C.; Lin, H.C. Association of migraines with brain tumors: A nationwide population-based study. J. Headache Pain 2018, 19, 111. [Google Scholar] [CrossRef]
- Rice, M.S.; Rist, P.M.; Winter, A.C.; Kurth, T.; Tworoger, S.S. Migraine and invasive epithelial ovarian cancer risk in the Nurses’ Health Study II and the Women’s Health Study. Int. J. Cancer 2018, 142, 534–539. [Google Scholar] [CrossRef]
- Hesari, E.; Ahmadinezhad, M.; Arshadi, M.; Azizi, H.; Khodamoradi, F. The association between migraine and breast cancer risk: A systematic review and meta-analysis. PLoS ONE 2022, 17, e0263628. [Google Scholar] [CrossRef] [PubMed]
- Peng, C.; Wu, K.; Chen, X.; Lang, H.; Li, C.; He, L.; Chen, N. Migraine and Risk of Breast Cancer: A Systematic Review and Meta-analysis. Clin. Breast. Cancer 2023, 23, e122–e130. [Google Scholar] [CrossRef] [PubMed]
- Todd, C.; Lagman-Bartolome, A.M.; Lay, C. Women and Migraine: The Role of Hormones. Curr. Neurol. Neurosci. Rep. 2018, 18, 42. [Google Scholar] [CrossRef] [PubMed]
- Kursun, O.; Yemisci, M.; van den Maagdenberg, A.M.J.M.; Karatas, H. Migraine and neuroinflammation: The inflammasome perspective. J. Headache Pain 2021, 22, 55. [Google Scholar] [CrossRef]
- Conti, P.; D’Ovidio, C.; Conti, C.; Gallenga, C.E.; Lauritano, D.; Caraffa, A.; Kritas, S.K.; Ronconi, G. Progression in migraine: Role of mast cells and pro-inflammatory and anti-inflammatory cytokines. Eur. J. Pharmacol. 2019, 844, 87–94. [Google Scholar] [CrossRef]
- Sudershan, A.; Younis, M.; Sudershan, S.; Kumar, P. Migraine as an inflammatory disorder with microglial activation as a prime candidate. Neurol. Res. 2023, 45, 200–215. [Google Scholar] [CrossRef] [PubMed]
- Stone, J.B.; DeAngelis, L.M. Cancer-treatment-induced neurotoxicity--focus on newer treatments. Nat. Rev. Clin. Oncol. 2016, 13, 92–105. [Google Scholar] [CrossRef] [PubMed]
- Key, R.G.; Liebling, D.; Malhotra, V.T.; Passik, S.D.; Moryl, N.; Breitbart, W.S. Cancer-related pain. In PsychoOncology, 4th ed.; Breitbart, W., Butow, P., Jacobsen, P., Lam, W., Lazenby, M., Loscalzo, M., Eds.; Oxford University Press: New York, NY, USA, 2021; pp. 235–254. [Google Scholar]
- Nesbit, S.; Browner, I.; Grossman, S.A. Cancer-Related Pain. In Abeloff’s Clinical Oncology; Elsevier: Amsterdam, The Netherlands, 2019; pp. 581–592.e2. [Google Scholar]
- Jordan, B.; Margulies, A.; Cardoso, F.; Cavaletti, G.; Haugnes, H.S.; Jahn, P.; Le Rhun, E.; Preusser, M.; Scotté, F.; Taphoorn, M.J.B.; et al. Systemic anticancer therapy-induced peripheral and central neurotoxicity: ESMO–EONS–EANO Clinical Practice Guidelines for diagnosis, prevention, treatment and follow-up. Ann. Oncol. 2020, 31, 1306–1319. [Google Scholar] [CrossRef]
- Woldeamanuel, Y.W.; Cowan, R.P. Computerized migraine diagnostic tools: A systematic review. Ther. Adv. Chronic. Dis. 2022, 13, 20406223211065235. [Google Scholar] [CrossRef]
- Johnson, K.B.; Wei, W.Q.; Weeraratne, D.; Frisse, M.E.; Misulis, K.; Rhee, K.; Zhao, J.; Snowdon, J.L. Precision Medicine, AI, and the Future of Personalized Health Care. Clin. Transl. Sci. 2021, 14, 86–93. [Google Scholar] [CrossRef]
- Ferroni, P.; Zanzotto, F.M.; Scarpato, N.; Spila, A.; Fofi, L.; Egeo, G.; Rullo, A.; Palmirotta, R.; Barbanti, P.; Guadagni, F. Machine learning approach to predict medication overuse in migraine patients. Comput. Struct. Biotechnol. J. 2020, 18, 1487–1496. [Google Scholar] [CrossRef]
- Shah, D.; Zheng, W.; Allen, L.; Wei, W.; LeMasters, T.; Madhavan, S.; Sambamoorthi, U. Using a machine learning approach to investigate factors associated with treatment-resistant depression among adults with chronic non-cancer pain conditions and major depressive disorder. Curr. Med. Res. Opin. 2021, 37, 847–859. [Google Scholar] [CrossRef]
- Katsuki, M.; Narita, N.; Matsumori, Y.; Ishida, N.; Watanabe, O.; Cai, S.; Tominaga, T. Preliminary development of a deep learning-based automated primary headache diagnosis model using Japanese natural language processing of medical questionnaire. Surg. Neurol. Int. 2020, 11, 475. [Google Scholar] [CrossRef]
- Wei, H.L.; Wei, C.; Feng, Y.; Yan, W.; Yu, Y.S.; Chen, Y.C.; Yin, X.; Li, J.; Zhang, H. Predicting the efficacy of non-steroidal anti-inflammatory drugs in migraine using deep learning and three-dimensional T1-weighted images. iScience 2023, 26, 108107. [Google Scholar] [CrossRef]
- Vandenbussche, N.; Van Hee, C.; Hoste, V.; Paemeleire, K. Using natural language processing to automatically classify written self-reported narratives by patients with migraine or cluster headache. J. Headache Pain 2022, 23, 129. [Google Scholar] [CrossRef]
- Nie, W.; Zeng, W.; Yang, J.; Zhao, L.; Shi, Y. Classification of Migraine Using Static Functional Connectivity Strength and Dynamic Functional Connectome Patterns: A Resting-State fMRI Study. Brain. Sci. 2023, 13, 596. [Google Scholar] [CrossRef] [PubMed]
- Demartini, C.; Francavilla, M.; Zanaboni, A.M.; Facchetti, S.; De Icco, R.; Martinelli, D.; Allena, M.; Greco, R.; Tassorelli, C. Biomarkers of Migraine: An Integrated Evaluation of Preclinical and Clinical Findings. Int. J. Mol. Sci. 2023, 24, 5334. [Google Scholar] [CrossRef] [PubMed]
- Ashina, M.; Terwindt, G.M.; Al-Karagholi, M.A.; de Boer, I.; Lee, M.J.; Hay, D.L.; Schulte, L.H.; Hadjikhani, N.; Sinclair, A.J.; Ashina, H.; et al. Migraine: Disease characterisation, biomarkers, and precision medicine. Lancet 2021, 397, 1496–1504. [Google Scholar] [CrossRef] [PubMed]
- Watson, J.; Salisbury, C.; Banks, J.; Whiting, P.; Hamilton, W. Predictive value of inflammatory markers for cancer diagnosis in primary care: A prospective cohort study using electronic health records. Br. J. Cancer 2019, 120, 1045–1051. [Google Scholar] [CrossRef]
- Chaturvedi, P.; Khan, R.; Sahu, P.; Ludhiadch, A.; Singh, G.; Munshi, A. Role of Omics in Migraine Research and Management: A Narrative Review. Mol. Neurobiol. 2022, 59, 5809–5834. [Google Scholar] [CrossRef]
- Davis, K.D.; Aghaeepour, N.; Ahn, A.H.; Angst, M.S.; Borsook, D.; Brenton, A.; Burczynski, M.E.; Crean, C.; Edwards, R.; Gaudilliere, B.; et al. Discovery and validation of biomarkers to aid the development of safe and effective pain therapeutics: Challenges and opportunities. Nat. Rev. Neurol. 2020, 16, 381–400. [Google Scholar] [CrossRef]
- Nagireddi, J.N.; Vyas, A.K.; Sanapati, M.R.; Soin, A.; Manchikanti, L. The Analysis of Pain Research through the Lens of Artificial Intelligence and Machine Learning. Pain Physician 2022, 25, E211–E243. [Google Scholar]
- Chen, E.; Prakash, S.; Janapa Reddi, V.; Kim, D.; Rajpurkar, P. A framework for integrating artificial intelligence for clinical care with continuous therapeutic monitoring. Nat. Biomed. Eng. 2023. Epub ahead of print. [Google Scholar] [CrossRef]
- Thapa, C.; Camtepe, S. Precision health data: Requirements, challenges and existing techniques for data security and privacy. Comput. Biol. Med. 2021, 129, 104130. [Google Scholar] [CrossRef]
- Balthazar, P.; Harri, P.; Prater, A.; Safdar, N.M. Protecting Your Patients’ Interests in the Era of Big Data, Artificial Intelligence, and Predictive Analytics. J. Am. Coll. Radiol. 2018, 15, 580–586. [Google Scholar] [CrossRef]
- Forcier, M.B.; Gallois, H.; Mullan, S.; Joly, Y. Integrating artificial intelligence into health care through data access: Can the GDPR act as a beacon for policymakers? J. Law. Biosci. 2019, 6, 317–335. [Google Scholar] [CrossRef] [PubMed]
- Forti, M. The Deployment of Artificial Intelligence Tools in the Health Sector: Privacy Concerns and Regulatory Answers within the GDPR. Eur. J. Leg. Stud. 2021, 13, 29–44. [Google Scholar]
- Freymann, J.B.; Kirby, J.S.; Perry, J.H.; Clunie, D.A.; Jaffe, C.C. Image data sharing for biomedical research--meeting HIPAA requirements for De-identification. J. Digit. Imaging 2012, 25, 14–24. [Google Scholar] [CrossRef]
- Aggarwal, N.; Ahmed, M.; Basu, S.; Curtin, J.J.; Evans, B.J.; Matheny, M.E.; Nundy, S.; Sendak, M.P.; Shachar, C.; Shah, R.U.; et al. Advancing Artificial Intelligence in Health Settings Outside the Hospital and Clinic. NAM. Perspect. 2020, 2020. [Google Scholar] [CrossRef] [PubMed]
- Kelly, C.J.; Karthikesalingam, A.; Suleyman, M.; Corrado, G.; King, D. Key challenges for delivering clinical impact with artificial intelligence. BMC. Med. 2019, 17, 195. [Google Scholar] [CrossRef]
- Chander, B.; John, C.; Warrier, L.; Gopalakrishnan, K. Toward Trustworthy Artificial Intelligence (TAI) in the Context of Explainability and Robustness. ACM. Comput. Surv. 2024. [Google Scholar] [CrossRef]
- Winter, P.M.; Eder, S.; Weissenböck, J.; Schwald, C.; Doms, T.; Vogt, T.; Hochreiter, S.; Nessler, B. Trusted Artificial Intelligence: Towards Certification of Machine Learning Applications. arXiv 2021, arXiv:2103.16910. [Google Scholar]
- Khanna, S.; Srivastava, S.; Khanna, I.; Pandey, V. Ethical Challenges Arising from the Integration of Artificial Intelligence (AI) in Oncological Management. Int. J. Artif. Intell. 2020, 10, 34–44. [Google Scholar]
- Naik, N.; Hameed, B.M.Z.; Shetty, D.K.; Swain, D.; Shah, M.; Paul, R.; Aggarwal, K.; Ibrahim, S.; Patil, V.; Smriti, K.; et al. Legal and Ethical Consideration in Artificial Intelligence in Healthcare: Who Takes Responsibility? Front. Surg. 2022, 9, 862322. [Google Scholar] [CrossRef]
- Daneshjou, R.; Smith, M.P.; Sun, M.D.; Rotemberg, V.; Zou, J. Lack of Transparency and Potential Bias in Artificial Intelligence Data Sets and Algorithms: A Scoping Review. JAMA. Dermatol. 2021, 157, 1362–1369. [Google Scholar] [CrossRef]
- Moore, C.M. The challenges of health inequities and AI. Intell.-Based Med. 2022, 6, 100067. [Google Scholar] [CrossRef]
Cancer Type | Prevalence of Migraine (%) | Study Reference | Population Demographics | Migraine Characteristics | Potential Mechanisms | Impact on Cancer Treatment |
---|---|---|---|---|---|---|
Breast Cancer | 15–20% | [46] | Female, 54.8 ± 7.2 years | Higher prevalence in ER-positive tumors, often aura | Hormonal fluctuations, estrogen receptor interaction | Increased sensitivity to chemotherapy-induced nausea, the potential need for adjusted hormonal therapies |
Glioma | 10–15% | [47] | Male-gender, 57.1 ± 16.8 years | Frequent, with aura, often associated with neurological symptoms | Shared genetic markers, inflammatory pathways | Complicates symptom management, especially neurological side effects, possible interaction with anticonvulsants used in treatment |
Ovarian Cancer | 12–18% | [48] | Female, 25–42 years | Migraine with aura more common, linked to hormonal cycles | Estrogen and progesterone influence, genetic predisposition | Affects response to hormone-based therapies, and increases the need for personalized pain management strategies |
AI Technology | Application in Cancer Therapy | Application in Migraine Management | Combined Application in Cancer & Migraine | Benefits |
---|---|---|---|---|
ML [61,62] |
|
|
|
|
DL [63,64] |
|
|
|
|
NLP [63,65] |
|
|
|
|
SVM [66] |
|
|
|
|
Random Forests [66] |
|
|
|
|
Explainable AI (XAI) [65] |
|
|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Olawade, D.B.; Teke, J.; Adeleye, K.K.; Egbon, E.; Weerasinghe, K.; Ovsepian, S.V.; Boussios, S. AI-Guided Cancer Therapy for Patients with Coexisting Migraines. Cancers 2024, 16, 3690. https://doi.org/10.3390/cancers16213690
Olawade DB, Teke J, Adeleye KK, Egbon E, Weerasinghe K, Ovsepian SV, Boussios S. AI-Guided Cancer Therapy for Patients with Coexisting Migraines. Cancers. 2024; 16(21):3690. https://doi.org/10.3390/cancers16213690
Chicago/Turabian StyleOlawade, David B., Jennifer Teke, Khadijat K. Adeleye, Eghosasere Egbon, Kusal Weerasinghe, Saak V. Ovsepian, and Stergios Boussios. 2024. "AI-Guided Cancer Therapy for Patients with Coexisting Migraines" Cancers 16, no. 21: 3690. https://doi.org/10.3390/cancers16213690
APA StyleOlawade, D. B., Teke, J., Adeleye, K. K., Egbon, E., Weerasinghe, K., Ovsepian, S. V., & Boussios, S. (2024). AI-Guided Cancer Therapy for Patients with Coexisting Migraines. Cancers, 16(21), 3690. https://doi.org/10.3390/cancers16213690