The Evolution of Artificial Intelligence in Medical Imaging: From Computer Science to Machine and Deep Learning
Simple Summary
Abstract
1. Introduction
2. AI Before Meeting Medical Imaging: From the Origins to Expert Systems
2.1. Prehistory of AI
2.2. Neural Networks
2.3. Supervised and Unsupervised ML
2.4. First Applications of AI to Medicine: Expert Systems
3. Early Applications of AI to Imaging: Classical ML and ANNs
3.1. Decision Tree Learning
3.2. Support Vector Machines and Other Traditional ML Approaches
3.3. First Uses of Neural Networks for Image Recognition
3.4. Ensemble Machine Learning
3.5. ML Applications to Medical Imaging: CAD and Radiomics
4. The Era of Deep Learning in Medical Imaging
4.1. Medical Images Classification with Deep Learning Models
4.2. Segmentation with Deep Learning Models
4.3. Medical Image Synthesis: Generative Models
4.4. From Natural Language Processing to Large Language Models
4.5. Foundational Models
5. Open Challenges and Pathways for AI in Medical Imaging
5.1. Open-Source Libraries and Databases
5.2. Real World Evaluation
5.3. Explainability/Interpretability
5.4. Ethical Issues
6. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Avanzo, M.; Porzio, M.; Lorenzon, L.; Milan, L.; Sghedoni, R.; Russo, G.; Massafra, R.; Fanizzi, A.; Barucci, A.; Ardu, V.; et al. Artificial Intelligence Applications in Medical Imaging: A Review of the Medical Physics Research in Italy. Phys. Med. 2021, 83, 221–241. [Google Scholar] [CrossRef] [PubMed]
- Dembrower, K.; Crippa, A.; Colón, E.; Eklund, M.; Strand, F. Artificial Intelligence for Breast Cancer Detection in Screening Mammography in Sweden: A Prospective, Population-Based, Paired-Reader, Non-Inferiority Study. Lancet Digit. Health 2023, 5, e703–e711. [Google Scholar] [CrossRef] [PubMed]
- Zanca, F.; Brusasco, C.; Pesapane, F.; Kwade, Z.; Beckers, R.; Avanzo, M. Regulatory Aspects of the Use of Artificial Intelligence Medical Software. Semin. Radiat. Oncol. 2022, 32, 432–441. [Google Scholar] [CrossRef] [PubMed]
- Armato, S.G.; Drukker, K.; Hadjiiski, L. AI in Medical Imaging Grand Challenges: Translation from Competition to Research Benefit and Patient Care. Br. J. Radiol. 2023, 96, 20221152. [Google Scholar] [CrossRef] [PubMed]
- Radanliev, P.; de Roure, D. Review of Algorithms for Artificial Intelligence on Low Memory Devices. IEEE Access 2021, 9, 109986–109993. [Google Scholar] [CrossRef]
- Samuel, A. Some Studies in Machine Learning Using the Game of Checkers. IBM J. Res. Dev. 1959, 3, 210–229. [Google Scholar] [CrossRef]
- Hassabis, D. Artificial Intelligence: Chess Match of the Century. Nature 2017, 544, 413–414. [Google Scholar] [CrossRef]
- Fron, C.; Korn, O. A Short History of the Perception of Robots and Automata from Antiquity to Modern Times. In Social Robots: Technological, Societal and Ethical Aspects of Human-Robot Interaction; Korn, O., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 1–12. ISBN 978-3-030-17107-0. [Google Scholar]
- Common Sense, the Turing Test, and the Quest for Real AI. The MIT Press. Available online: https://mitpress.mit.edu/books/common-sense-turing-test-and-quest-real-ai (accessed on 7 July 2022).
- Haenlein, M.; Kaplan, A. A Brief History of Artificial Intelligence: On the Past, Present, and Future of Artificial Intelligence. Calif. Manag. Rev. 2019, 61, 000812561986492. [Google Scholar] [CrossRef]
- Muggleton, S. Alan Turing and the Development of Artificial Intelligence. AI Commun. 2014, 27, 3–10. [Google Scholar] [CrossRef]
- Turing, A. Lecture on the Automatic Computing Engine (1947); Oxford University Press: Oxford, UK, 2004. [Google Scholar]
- Turing, A.M. I.—Computing Machinery and Intelligence. Mind 1950, LIX, 433–460. [Google Scholar] [CrossRef]
- Reaching for Artificial Intelligence: A Personal Memoir on Learning Machines and Machine Learning Pioneers—UNESCO Digital Library. Available online: https://unesdoc.unesco.org/ark:/48223/pf0000367501?posInSet=38&queryId=2deebfb4-e631-4723-a7fb-82590e5c3eb8 (accessed on 24 August 2022).
- Understanding AI—Part 3: Methods of Symbolic AI. Available online: https://divis.io/en/2019/04/understanding-ai-part-3-methods-of-symbolic-ai/ (accessed on 20 July 2022).
- Garnelo, M.; Shanahan, M. Reconciling Deep Learning with Symbolic Artificial Intelligence: Representing Objects and Relations. Curr. Opin. Behav. Sci. 2019, 29, 17–23. [Google Scholar] [CrossRef]
- Sorantin, E.; Grasser, M.G.; Hemmelmayr, A.; Tschauner, S.; Hrzic, F.; Weiss, V.; Lacekova, J.; Holzinger, A. The Augmented Radiologist: Artificial Intelligence in the Practice of Radiology. Pediatr. Radiol. 2021, 52, 2074–2086. [Google Scholar] [CrossRef] [PubMed]
- McCarthy, J.; Minsky, M.L.; Rochester, N.; Shannon, C.E. A Proposal for the Dartmouth Summer Research Project on Artificial Intelligence, August 31, 1955. AI Mag. 2006, 27, 12. [Google Scholar] [CrossRef]
- Wang, P. On Defining Artificial Intelligence. J. Artif. Gen. Intell. 2019, 10, 1–37. [Google Scholar] [CrossRef]
- McCulloch, W.S.; Pitts, W. A Logical Calculus of the Ideas Immanent in Nervous Activity. Bull. Math. Biophys. 1943, 5, 115–133. [Google Scholar] [CrossRef]
- Basheer, I.A.; Hajmeer, M. Artificial Neural Networks: Fundamentals, Computing, Design, and Application. J. Microbiol. Methods 2000, 43, 3–31. [Google Scholar] [CrossRef]
- Piccinini, G. The First Computational Theory of Mind and Brain: A Close Look at Mcculloch and Pitts’s “Logical Calculus of Ideas Immanent in Nervous Activity”. Synthese 2004, 141, 175–215. [Google Scholar] [CrossRef]
- Schmidhuber, J. Deep Learning in Neural Networks: An Overview. Neural Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef]
- Wang, H.; Raj, B. On the Origin of Deep Learning. arXiv 2017, arXiv:1702.07800. [Google Scholar] [CrossRef]
- Hebb, D.O. Organization of Behavior. New York: Wiley, 1949, Pp. 335, $4.00. J. Clin. Psychol. 1950, 6, 307. [Google Scholar] [CrossRef]
- Chakraverty, S.; Sahoo, D.M.; Mahato, N.R. Hebbian Learning Rule. In Concepts of Soft Computing: Fuzzy and ANN with Programming; Chakraverty, S., Sahoo, D.M., Mahato, N.R., Eds.; Springer: Singapore, 2019; pp. 175–182. ISBN 9789811374302. [Google Scholar]
- Toosi, A.; Bottino, A.G.; Saboury, B.; Siegel, E.; Rahmim, A. A Brief History of AI: How to Prevent Another Winter (A Critical Review). PET Clin. 2021, 16, 449–469. [Google Scholar] [CrossRef] [PubMed]
- Rosenblatt, F. The Perceptron: A Probabilistic Model for Information Storage and Organization in the Brain. Psychol. Rev. 1958, 65, 386–408. [Google Scholar] [CrossRef] [PubMed]
- Parhi, K.; Unnikrishnan, N. Brain-Inspired Computing: Models and Architectures. IEEE Open J. Circuits Syst. 2020, 1, 185–204. [Google Scholar] [CrossRef]
- Dawson, M.R.W. Connectionism and Classical Conditioning. Comp. Cogn. Behav. Rev. 2008, 3, 115–133. [Google Scholar] [CrossRef]
- Macukow, B. Neural Networks—State of Art, Brief History, Basic Models and Architecture. In Proceedings of the Computer Information Systems and Industrial Management; Saeed, K., Homenda, W., Eds.; Springer International Publishing: Cham, Switzerland, 2016; pp. 3–14. [Google Scholar]
- Raschka, S. What Is the Difference Between a Perceptron, Adaline, and Neural Network Model? Available online: https://sebastianraschka.com/faq/docs/diff-perceptron-adaline-neuralnet.html (accessed on 8 July 2022).
- Butterworth, M. The ICO and Artificial Intelligence: The Role of Fairness in the GDPR Framework. Comput. Law Secur. Rev. 2018, 34, 257–268. [Google Scholar] [CrossRef]
- Avanzo, M.; Wei, L.; Stancanello, J.; Vallières, M.; Rao, A.; Morin, O.; Mattonen, S.A.; El Naqa, I. Machine and Deep Learning Methods for Radiomics. Med. Phys. 2020, 47, e185–e202. [Google Scholar] [CrossRef]
- Wold, S.; Esbensen, K.; Geladi, P. Principal Component Analysis. Proc. Multivar. Stat. Workshop Geol. Geochem. 1987, 2, 37–52. [Google Scholar] [CrossRef]
- Dayan, P.; Sahani, M.; Deback, G. Unsupervised Learning. In Proceedings of the MIT Encyclopedia of the Cognitive Sciences; The MIT Press: Cambridge, MA, USA, 1999. [Google Scholar]
- Minsky, M.; Papert, S. Perceptrons; an Introduction to Computational Geometry; MIT Press: Cambridge, MA, USA, 1969; ISBN 978-0-262-13043-1. [Google Scholar]
- Spears, B. Contemporary Machine Learning: A Guide for Practitioners in the Physical Sciences. arXiv 2017, arXiv:1712.08523. [Google Scholar] [CrossRef]
- The Dendral Project (Chapter 15)—The Quest for Artificial Intelligence. Available online: https://www.cambridge.org/core/books/abs/quest-for-artificial-intelligence/dendral-project/7791DA5FAAF8D57E4B27E4EE387758E1 (accessed on 14 July 2022).
- Rediscovering Some Problems of Artificial Intelligence in the Context of Organic Chemistry—Digital Collections—National Library of Medicine. Available online: https://collections.nlm.nih.gov/catalog/nlm:nlmuid-101584906X921-doc (accessed on 25 August 2022).
- Weiss, S.; Kulikowski, C.A.; Safir, A. Glaucoma Consultation by Computer. Comput. Biol. Med. 1978, 8, 25–40. [Google Scholar] [CrossRef]
- Miller, R.A.; Pople, H.E.; Myers, J.D. Internist-I, an Experimental Computer-Based Diagnostic Consultant for General Internal Medicine. N. Engl. J. Med. 1982, 307, 468–476. [Google Scholar] [CrossRef]
- Sutton, R.T.; Pincock, D.; Baumgart, D.C.; Sadowski, D.C.; Fedorak, R.N.; Kroeker, K.I. An Overview of Clinical Decision Support Systems: Benefits, Risks, and Strategies for Success. NPJ Digit. Med. 2020, 3, 1–10. [Google Scholar] [CrossRef] [PubMed]
- Bone Tumor Diagnosis. Available online: http://uwmsk.org/bayes/bonetumor.html (accessed on 29 July 2022).
- Lodwick, G.S.; Haun, C.L.; Smith, W.E.; Keller, R.F.; Robertson, E.D. Computer Diagnosis of Primary Bone Tumors. Radiology 1963, 80, 273–275. [Google Scholar] [CrossRef]
- Belson, W.A. A Technique for Studying the Effects of a Television Broadcast. J. R. Stat. Soc. Ser. C (Appl. Stat.) 1956, 5, 195–202. [Google Scholar] [CrossRef]
- de Ville, B. Decision Trees. WIREs Comput. Stat. 2013, 5, 448–455. [Google Scholar] [CrossRef]
- Belson, W.A. Matching and Prediction on the Principle of Biological Classification. J. R. Stat. Soc. Ser. C 1959, 8, 65–75. [Google Scholar] [CrossRef]
- Ritschard, G. CHAID and Earlier Supervised Tree Methods; Routledge/Taylor & Francis Group: London, UK, 2010; p. 74. ISBN 978-0-415-81706-6. [Google Scholar]
- Morgan, J.N.; Sonquist, J.A. Problems in the Analysis of Survey Data, and a Proposal. J. Am. Stat. Assoc. 1963, 58, 415–434. [Google Scholar] [CrossRef]
- Gini, C. Variabilità e Mutabilità: Contributo allo Studio delle Distribuzioni e delle Relazioni Statistiche; Tipogr. di P. Cuppini: Bologna, Italy, 1912; Available online: https://books.google.it/books?id=fqjaBPMxB9kC (accessed on 10 July 2022).
- Podgorelec, V.; Kokol, P.; Stiglic, B.; Rozman, I. Decision Trees: An Overview and Their Use in Medicine. J. Med. Syst. 2002, 26, 445–463. [Google Scholar] [CrossRef]
- Breiman, L.; Friedman, J.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees. Available online: https://www.taylorfrancis.com/books/mono/10.1201/9781315139470/classification-regression-trees-leo-breiman-jerome-friedman-richard-olshen-charles-stone (accessed on 10 July 2022).
- Shim, E.J.; Yoon, M.A.; Yoo, H.J.; Chee, C.G.; Lee, M.H.; Lee, S.H.; Chung, H.W.; Shin, M.J. An MRI-Based Decision Tree to Distinguish Lipomas and Lipoma Variants from Well-Differentiated Liposarcoma of the Extremity and Superficial Trunk: Classification and Regression Tree (CART) Analysis. Eur. J. Radiol. 2020, 127, 109012. [Google Scholar] [CrossRef]
- Convex Hull—An Overview. ScienceDirect Topics. Available online: https://www.sciencedirect.com/topics/mathematics/convex-hull (accessed on 20 July 2022).
- Vapnik, V.N.; Chervonenkis, A.Y. A Class of Algorithms for Pattern Recognition Learning. Avtomat. Telemekh. 1964, 25, 937–945. Available online: http://www.mathnet.ru/php/archive.phtml?wshow=paper&jrnid=at&paperid=11678&option_lang=eng (accessed on 22 July 2022).
- Boser, B.E.; Guyon, I.M.; Vapnik, V.N. A Training Algorithm for Optimal Margin Classifiers. In Proceedings of the Proceedings of the Fifth Annual Workshop on Computational Learning Theory, Pittsburgh, PA, USA, 27–29 July 1992; Association for Computing Machinery: New York, NY, USA, 1992; pp. 144–152. [Google Scholar]
- Guido, R.; Ferrisi, S.; Lofaro, D.; Conforti, D. An Overview on the Advancements of Support Vector Machine Models in Healthcare Applications: A Review. Information 2024, 15, 235. [Google Scholar] [CrossRef]
- Xing, X.; Zhao, X.; Wei, H.; Li, Y. Diagnostic Accuracy of Different Computer-Aided Diagnostic Systems for Prostate Cancer Based on Magnetic Resonance Imaging. Medicine 2021, 100, e23817. [Google Scholar] [CrossRef] [PubMed]
- Retico, A.; Gori, I.; Giuliano, A.; Muratori, F.; Calderoni, S. One-Class Support Vector Machines Identify the Language and Default Mode Regions As Common Patterns of Structural Alterations in Young Children with Autism Spectrum Disorders. Front. Neurosci. 2016, 10, 306. [Google Scholar] [CrossRef] [PubMed]
- Retico, A.; Bosco, P.; Cerello, P.; Fiorina, E.; Chincarini, A.; Fantacci, M.E. Predictive Models Based on Support Vector Machines: Whole-Brain versus Regional Analysis of Structural MRI in the Alzheimer’s Disease. J. Neuroimaging 2015, 25, 552–563. [Google Scholar] [CrossRef] [PubMed]
- Berrar, D. Bayes’ Theorem and Naive Bayes Classifier; Elsevier: Amsterdam, The Netherlands, 2019; pp. 403–412. [Google Scholar]
- Kepka, J. The Current Approaches in Pattern Recognition. Kybernetika 1994, 30, 159–176. [Google Scholar]
- Cover, T.; Hart, P. Nearest Neighbor Pattern Classification. IEEE Trans. Inf. Theory 1967, 13, 21–27. [Google Scholar] [CrossRef]
- Fix, E.; Hodges, J.L. Discriminatory Analysis: Nonparametric Discrimination, Consistency Properties; USAF School of Aviation Medicine: Randolph Field, TX, USA, 1951. [Google Scholar]
- Hassani, C.; Varghese, B.A.; Nieva, J.; Duddalwar, V. Radiomics in Pulmonary Lesion Imaging. AJR Am. J. Roentgenol. 2019, 212, 497–504. [Google Scholar] [CrossRef]
- Blum, A.L.; Langley, P. Selection of Relevant Features and Examples in Machine Learning. Artif. Intell. 1997, 97, 245–271. [Google Scholar] [CrossRef]
- Hall, M. Correlation-Based Feature Selection for Machine Learning. Ph.D. Thesis, The University of Waikato, Hamilton, New Zealand, 1999. [Google Scholar]
- Huang, S.H. Supervised Feature Selection: A Tutorial. Artif. Intell. Res. 2015, 4, 22. [Google Scholar] [CrossRef]
- Esmeir, S.; Markovitch, S. Occam’s Razor Just Got Sharper. In Proceedings of the 20th International Joint Conference on Artificial Intelligence, Hyderabad, India, 6–12 January 2007; pp. 768–773. [Google Scholar]
- Probst, P.; Wright, M.N.; Boulesteix, A.-L. Hyperparameters and Tuning Strategies for Random Forest. WIREs Data Min. Knowl. Discov. 2019, 9, e1301. [Google Scholar] [CrossRef]
- Akaike, H. A New Look at the Statistical Model Identification. IEEE Trans. Autom. Control 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Bergstra, J.; Bengio, Y. Random Search for Hyper-Parameter Optimization. J. Mach. Learn. Res. 2012, 13, 281–305. [Google Scholar]
- Fukushima, K. Neocognitron: A Self-Organizing Neural Network Model for a Mechanism of Pattern Recognition Unaffected by Shift in Position. Biol. Cybern. 1980, 36, 193–202. [Google Scholar] [CrossRef] [PubMed]
- Fukushima, K. Neocognitron: A Hierarchical Neural Network Capable of Visual Pattern Recognition. Neural Netw. 1988, 1, 119–130. [Google Scholar] [CrossRef]
- Dechter, R. Learning While Searching in Constraint-Satisfaction-Problems. In Proceedings of the Fifth AAAI National Conference on Artificial Intelligence, Philadelphia, PA, USA, 11–15 August 1986; pp. 178–183. [Google Scholar]
- Fradkov, A.L. Early History of Machine Learning. IFAC-PapersOnLine 2020, 53, 1385–1390. [Google Scholar] [CrossRef]
- Rumelhart, D.; Hinton, G.E.; Williams, R.J. Learning Representations by Back-Propagating Errors. Nature 1986, 323, 533–536. [Google Scholar] [CrossRef]
- Nielsen, M.A. Neural Networks and Deep Learning; Determination Press: San Francisco, CA, USA, 2015. [Google Scholar]
- LeCun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [Google Scholar] [CrossRef]
- Kononenko, I. Machine Learning for Medical Diagnosis: History, State of the Art and Perspective. Artif. Intell. Med. 2001, 23, 89–109. [Google Scholar] [CrossRef]
- Glorot, X.; Bordes, A.; Bengio, Y. Deep Sparse Rectifier Neural Networks. In Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, JMLR Workshop and Conference Proceedings, Fort Lauderdale, FL, USA, 11–13 April 2011; pp. 315–323. [Google Scholar]
- Simard, P.Y.; Steinkraus, D.; Platt, J.C. Best Practices for Convolutional Neural Networks Applied to Visual Document Analysis. In Proceedings of the Seventh International Conference on Document Analysis and Recognition, Edinburgh, UK, 3–6 August 2003; pp. 958–963. [Google Scholar]
- Breiman, L. Bagging Predictors. Mach. Learn. 1996, 24, 123–140. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Efron, B. Bootstrap Methods: Another Look at the Jackknife. Ann. Stat. 1979, 7, 1–26. [Google Scholar] [CrossRef]
- Avanzo, M.; Pirrone, G.; Mileto, M.; Massarut, S.; Stancanello, J.; Baradaran-Ghahfarokhi, M.; Rink, A.; Barresi, L.; Vinante, L.; Piccoli, E.; et al. Prediction of Skin Dose in Low-kV Intraoperative Radiotherapy Using Machine Learning Models Trained on Results of in Vivo Dosimetry. Med. Phys. 2019, 46, 1447–1454. [Google Scholar] [CrossRef] [PubMed]
- Ho, T.K. Random Decision Forests. In Proceedings of the Third International Conference on Document Analysis and Recognition, Montreal, QC, Canada, 14–16 August 1995; p. 278. [Google Scholar]
- Schapire, R.E. The Strength of Weak Learnability. Mach. Learn. 1990, 5, 197–227. [Google Scholar] [CrossRef]
- Freund, Y.; Schapire, R.E. A Desicion-Theoretic Generalization of on-Line Learning and an Application to Boosting. In Proceedings of the Computational Learning Theory; Vitányi, P., Ed.; Springer: Berlin/Heidelberg, Germany, 1995; pp. 23–37. [Google Scholar]
- Giger, M.L.; Chan, H.-P.; Boone, J. Anniversary Paper: History and Status of CAD and Quantitative Image Analysis: The Role of Medical Physics and AAPM. Med. Phys. 2008, 35, 5799–5820. [Google Scholar] [CrossRef] [PubMed]
- Doi, K.; Giger, M.L.; Nishikawa, R.M.; Schmidt, R.A. Computer Aided Diagnosis of Breast Cancer on Mammograms. Breast Cancer 1997, 4, 228–233. [Google Scholar] [CrossRef]
- Le, E.P.V.; Wang, Y.; Huang, Y.; Hickman, S.; Gilbert, F.J. Artificial Intelligence in Breast Imaging. Clin. Radiol. 2019, 74, 357–366. [Google Scholar] [CrossRef]
- Ackerman, L.V.; Gose, E.E. Breast Lesion Classification by Computer and Xeroradiograph. Cancer 1972, 30, 1025–1035. [Google Scholar] [CrossRef]
- Asada, N.; Doi, K.; MacMahon, H.; Montner, S.M.; Giger, M.L.; Abe, C.; Wu, Y. Potential Usefulness of an Artificial Neural Network for Differential Diagnosis of Interstitial Lung Diseases: Pilot Study. Radiology 1990, 177, 857–860. [Google Scholar] [CrossRef]
- U. S. Food and Drug Administration. Summary of Safety and Effectiveness Data: R2 Technologies (P970058). 1998. Available online: https://www.accessdata.fda.gov/cdrh_docs/pdf/p970058.pdf (accessed on 28 October 2024).
- Gilbert Fiona, J.; Astley Susan, M.; Gillan Maureen, G.C.; Agbaje Olorunsola, F.; Wallis Matthew, G.; James, J.; Boggis Caroline, R.M.; Duffy Stephen, W. Single Reading with Computer-Aided Detection for Screening Mammography. N. Engl. J. Med. 2008, 359, 1675–1684. [Google Scholar] [CrossRef]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 1973, 3, 610–621. [Google Scholar] [CrossRef]
- Cavouras, D.; Prassopoulos, P. Computer Image Analysis of Brain CT Images for Discriminating Hypodense Cerebral Lesions in Children. Med. Inform. 1994, 19, 13–20. [Google Scholar] [CrossRef]
- Gillies, R.J.; Anderson, A.R.; Gatenby, R.A.; Morse, D.L. The Biology Underlying Molecular Imaging in Oncology: From Genome to Anatome and Back Again. Clin. Radiol. 2010, 65, 517–521. [Google Scholar] [CrossRef] [PubMed]
- Proceedings of the 2010 World Molecular Imaging Congress, Kyoto, Japan, 8—11 September 2010. Mol. Imaging Biol. 2010, 12, 500–1636. [CrossRef]
- Falk, M.; Hausmann, M.; Lukasova, E.; Biswas, A.; Hildenbrand, G.; Davidkova, M.; Krasavin, E.; Kleibl, Z.; Falkova, I.; Jezkova, L.; et al. Determining Omics Spatiotemporal Dimensions Using Exciting New Nanoscopy Techniques to Assess Complex Cell Responses to DNA Damage: Part B--Structuromics. Crit. Rev. Eukaryot. Gene Expr. 2014, 24, 225–247. [Google Scholar] [CrossRef]
- Avanzo, M.; Gagliardi, V.; Stancanello, J.; Blanck, O.; Pirrone, G.; El Naqa, I.; Revelant, A.; Sartor, G. Combining Computed Tomography and Biologically Effective Dose in Radiomics and Deep Learning Improves Prediction of Tumor Response to Robotic Lung Stereotactic Body Radiation Therapy. Med. Phys. 2021, 48, 6257–6269. [Google Scholar] [CrossRef] [PubMed]
- Gillies, R.J.; Kinahan, P.E.; Hricak, H. Radiomics: Images Are More than Pictures, They Are Data. Radiology 2016, 278, 563–577. [Google Scholar] [CrossRef]
- Quartuccio, N.; Marrale, M.; Laudicella, R.; Alongi, P.; Siracusa, M.; Sturiale, L.; Arnone, G.; Cutaia, G.; Salvaggio, G.; Midiri, M.; et al. The Role of PET Radiomic Features in Prostate Cancer: A Systematic Review. Clin. Transl. Imaging 2021, 9, 579–588. [Google Scholar] [CrossRef]
- Ubaldi, L.; Valenti, V.; Borgese, R.F.; Collura, G.; Fantacci, M.E.; Ferrera, G.; Iacoviello, G.; Abbate, B.F.; Laruina, F.; Tripoli, A.; et al. Strategies to Develop Radiomics and Machine Learning Models for Lung Cancer Stage and Histology Prediction Using Small Data Samples. Phys. Med. 2021, 90, 13–22. [Google Scholar] [CrossRef]
- Pirrone, G.; Matrone, F.; Chiovati, P.; Manente, S.; Drigo, A.; Donofrio, A.; Cappelletto, C.; Borsatti, E.; Dassie, A.; Bortolus, R.; et al. Predicting Local Failure after Partial Prostate Re-Irradiation Using a Dosiomic-Based Machine Learning Model. J. Pers. Med. 2022, 12, 1491. [Google Scholar] [CrossRef]
- Avanzo, M.; Stancanello, J.; Pirrone, G.; Sartor, G. Radiomics and Deep Learning in Lung Cancer. Strahlenther. Onkol. 2020, 196, 879–887. [Google Scholar] [CrossRef]
- Peira, E.; Sensi, F.; Rei, L.; Gianeri, R.; Tortora, D.; Fiz, F.; Piccardo, A.; Bottoni, G.; Morana, G.; Chincarini, A. Towards an Automated Approach to the Semi-Quantification of [18F]F-DOPA PET in Pediatric-Type Diffuse Gliomas. J. Clin. Med. 2023, 12, 2765. [Google Scholar] [CrossRef]
- Ubaldi, L.; Saponaro, S.; Giuliano, A.; Talamonti, C.; Retico, A. Deriving Quantitative Information from Multiparametric MRI via Radiomics: Evaluation of the Robustness and Predictive Value of Radiomic Features in the Discrimination of Low-Grade versus High-Grade Gliomas with Machine Learning. Phys. Med. 2023, 107, 102538. [Google Scholar] [CrossRef] [PubMed]
- Traverso, A.; Wee, L.; Dekker, A.; Gillies, R. Repeatability and Reproducibility of Radiomic Features: A Systematic Review. Int. J. Radiat. Oncol. *Biol. *Phys. 2018, 102, 1143–1158. [Google Scholar] [CrossRef] [PubMed]
- LeCun, Y.; Boser, B.; Denker, J.S.; Henderson, D.; Howard, R.E.; Hubbard, W.; Jackel, L.D. Backpropagation Applied to Handwritten Zip Code Recognition. Neural Comput. 1989, 1, 541–551. [Google Scholar] [CrossRef]
- Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A Simple Way to Prevent Neural Networks from Overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet Classification with Deep Convolutional Neural Networks. In Proceedings of the Advances in Neural Information Processing Systems; Curran Associates, Inc.: Red Hook, NY, USA, 2012; Volume 25. [Google Scholar]
- Reinke, A.; Tizabi, M.D.; Eisenmann, M.; Maier-Hein, L. Common Pitfalls and Recommendations for Grand Challenges in Medical Artificial Intelligence. Eur. Urol. Focus 2021, 7, 710–712. [Google Scholar] [CrossRef]
- Castiglioni, I.; Rundo, L.; Codari, M.; Di Leo, G.; Salvatore, C.; Interlenghi, M.; Gallivanone, F.; Cozzi, A.; D’Amico, N.C.; Sardanelli, F. AI Applications to Medical Images: From Machine Learning to Deep Learning. Phys. Med. 2021, 83, 9–24. [Google Scholar] [CrossRef]
- Yu, K.-H.; Beam, A.L.; Kohane, I.S. Artificial Intelligence in Healthcare. Nat. Biomed. Eng. 2018, 2, 719–731. [Google Scholar] [CrossRef]
- Chan, H.-P.; Hadjiiski, L.M.; Samala, R.K. Computer-Aided Diagnosis in the Era of Deep Learning. Med. Phys. 2020, 47, e218–e227. [Google Scholar] [CrossRef]
- Fujita, H. AI-Based Computer-Aided Diagnosis (AI-CAD): The Latest Review to Read First. Radiol. Phys. Technol. 2020, 13, 6–19. [Google Scholar] [CrossRef]
- Wu, Y.C.; Doi, K.; Giger, M.L. Detection of Lung Nodules in Digital Chest Radiographs Using Artificial Neural Networks: A Pilot Study. J. Digit. Imaging 1995, 8, 88–94. [Google Scholar] [CrossRef]
- Lo, S.C.; Lou, S.L.; Lin, J.S.; Freedman, M.T.; Chien, M.V.; Mun, S.K. Artificial Convolution Neural Network Techniques and Applications for Lung Nodule Detection. IEEE Trans. Med. Imaging 1995, 14, 711–718. [Google Scholar] [CrossRef] [PubMed]
- Lo, S.-C.B.; Lin, J.-S.; Freedman, M.T.; Mun, S.K. Computer-Assisted Diagnosis of Lung Nodule Detection Using Artificial Convoultion Neural Network. In Proceedings of the Medical Imaging 1993: Image Processing, Newport Beach, CA, USA, 14–19 February 1993; Volume 1898, pp. 859–869. [Google Scholar]
- Chan, H.P.; Lo, S.C.; Sahiner, B.; Lam, K.L.; Helvie, M.A. Computer-Aided Detection of Mammographic Microcalcifications: Pattern Recognition with an Artificial Neural Network. Med. Phys. 1995, 22, 1555–1567. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.K.; Greenspan, H.; Davatzikos, C.; Duncan, J.S.; Van Ginneken, B.; Madabhushi, A.; Prince, J.L.; Rueckert, D.; Summers, R.M. A Review of Deep Learning in Medical Imaging: Imaging Traits, Technology Trends, Case Studies With Progress Highlights, and Future Promises. Proc. IEEE 2021, 109, 820–838. [Google Scholar] [CrossRef] [PubMed]
- Kaul, V.; Enslin, S.; Gross, S.A. History of Artificial Intelligence in Medicine. Gastrointest. Endosc. 2020, 92, 807–812. [Google Scholar] [CrossRef]
- Lipkova, J.; Chen, R.J.; Chen, B.; Lu, M.Y.; Barbieri, M.; Shao, D.; Vaidya, A.J.; Chen, C.; Zhuang, L.; Williamson, D.F.; et al. Artificial Intelligence for Multimodal Data Integration in Oncology. Cancer Cell 2022, 40, 1095–1110. [Google Scholar] [CrossRef]
- Eixelberger, T.; Wolkenstein, G.; Hackner, R.; Bruns, V.; Mühldorfer, S.; Geissler, U.; Belle, S.; Wittenberg, T. YOLO Networks for Polyp Detection: A Human-in-the-Loop Training Approach. Curr. Dir. Biomed. Eng. 2022, 8, 277–280. [Google Scholar] [CrossRef]
- Ragab, M.G.; Abdulkadir, S.J.; Muneer, A.; Alqushaibi, A.; Sumiea, E.H.; Qureshi, R.; Al-Selwi, S.M.; Alhussian, H. A Comprehensive Systematic Review of YOLO for Medical Object Detection (2018 to 2023). IEEE Access 2024, 12, 57815–57836. [Google Scholar] [CrossRef]
- Gong, D.; Wu, L.; Zhang, J.; Mu, G.; Shen, L.; Liu, J.; Wang, Z.; Zhou, W.; An, P.; Huang, X.; et al. Detection of Colorectal Adenomas with a Real-Time Computer-Aided System (ENDOANGEL): A Randomised Controlled Study. Lancet Gastroenterol. Hepatol. 2020, 5, 352–361. [Google Scholar] [CrossRef]
- Wang, Y.; Lombardo, E.; Avanzo, M.; Zschaek, S.; Weingärtner, J.; Holzgreve, A.; Albert, N.L.; Marschner, S.; Fanetti, G.; Franchin, G.; et al. Deep Learning Based Time-to-Event Analysis with PET, CT and Joint PET/CT for Head and Neck Cancer Prognosis. Comput. Methods Programs Biomed. 2022, 222, 106948. [Google Scholar] [CrossRef]
- Perkins, D.; Salomon, G. Transfer of Learning. In The International Encyclopedia of Education, 2nd ed.; Husén, T., Postlethwaite, T.N., Eds.; Pergamon: Oxford, UK, 1994; pp. 425–441. [Google Scholar]
- Kim, H.E.; Cosa-Linan, A.; Santhanam, N.; Jannesari, M.; Maros, M.E.; Ganslandt, T. Transfer Learning for Medical Image Classification: A Literature Review. BMC Med. Imaging 2022, 22, 69. [Google Scholar] [CrossRef]
- Weiss, K.; Khoshgoftaar, T.M.; Wang, D. A Survey of Transfer Learning. J. Big Data 2016, 3, 9. [Google Scholar] [CrossRef]
- Michael, E.; Ma, H.; Li, H.; Kulwa, F.; Li, J. Breast Cancer Segmentation Methods: Current Status and Future Potentials. Biomed. Res. Int. 2021, 2021, 9962109. [Google Scholar] [CrossRef] [PubMed]
- O’Donnell, M.; Gore, J.C.; Adams, W.J. Toward an Automated Analysis System for Nuclear Magnetic Resonance Imaging. II. Initial Segmentation Algorithm. Med. Phys. 1986, 13, 293–297. [Google Scholar] [CrossRef] [PubMed]
- Bezdek, J.C.; Hall, L.O.; Clarke, L.P. Review of MR Image Segmentation Techniques Using Pattern Recognition. Med. Phys. 1993, 20, 1033–1048. [Google Scholar] [CrossRef] [PubMed]
- Comelli, A.; Stefano, A.; Russo, G.; Bignardi, S.; Sabini, M.G.; Petrucci, G.; Ippolito, M.; Yezzi, A. K-Nearest Neighbor Driving Active Contours to Delineate Biological Tumor Volumes. Eng. Appl. Artif. Intell. 2019, 81, 133–144. [Google Scholar] [CrossRef]
- Ronneberger, O.; Fischer, P.; Brox, T. U-Net: Convolutional Networks for Biomedical Image Segmentation; Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 234–241. [Google Scholar]
- Oktay, O.; Schlemper, J.; Folgoc, L.L.; Lee, M.; Heinrich, M.; Misawa, K.; Mori, K.; McDonagh, S.; Hammerla, N.Y.; Kainz, B.; et al. Attention U-Net: Learning Where to Look for the Pancreas. arXiv, 2018; arXiv:1804.03999. [Google Scholar] [CrossRef]
- Lizzi, F.; Agosti, A.; Brero, F.; Cabini, R.F.; Fantacci, M.E.; Figini, S.; Lascialfari, A.; Laruina, F.; Oliva, P.; Piffer, S.; et al. Quantification of Pulmonary Involvement in COVID-19 Pneumonia by Means of a Cascade of Two U-Nets: Training and Assessment on Multiple Datasets Using Different Annotation Criteria. Int. J. CARS 2022, 17, 229–237. [Google Scholar] [CrossRef]
- Li, X.; Chen, H.; Qi, X.; Dou, Q.; Fu, C.-W.; Heng, P.A. H-DenseUNet: Hybrid Densely Connected UNet for Liver and Tumor Segmentation from CT Volumes. IEEE Trans. Med. Imaging 2018, 37, 2663–2674. [Google Scholar] [CrossRef]
- Khaled, R.; Vidal, J.; Vilanova, J.C.; Martí, R. A U-Net Ensemble for Breast Lesion Segmentation in DCE MRI. Comput. Biol. Med. 2022, 140, 105093. [Google Scholar] [CrossRef]
- Moradi, S.; Oghli, M.G.; Alizadehasl, A.; Shiri, I.; Oveisi, N.; Oveisi, M.; Maleki, M.; Dhooge, J. MFP-Unet: A Novel Deep Learning Based Approach for Left Ventricle Segmentation in Echocardiography. Phys. Medica 2019, 67, 58–69. [Google Scholar] [CrossRef]
- Yi, X.; Walia, E.; Babyn, P. Generative Adversarial Network in Medical Imaging: A Review. Med. Image Anal. 2019, 58, 101552. [Google Scholar] [CrossRef]
- Singh, S.P.; Wang, L.; Gupta, S.; Goli, H.; Padmanabhan, P.; Gulyás, B. 3D Deep Learning on Medical Images: A Review. Sensors 2020, 20, 5097. [Google Scholar] [CrossRef] [PubMed]
- Çiçek, Ö.; Abdulkadir, A.; Lienkamp, S.S.; Brox, T.; Ronneberger, O. 3D U-Net: Learning Dense Volumetric Segmentation from Sparse Annotation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention—MICCAI 2016; Ourselin, S., Joskowicz, L., Sabuncu, M.R., Unal, G., Wells, W., Eds.; Springer International Publishing: Cham, Swizerland, 2016; pp. 424–432. [Google Scholar]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative Adversarial Nets. In Proceedings of the Advances in Neural Information Processing Systems; Curran Associates, Inc.: Red Hook, NY, USA, 2014; Volume 27. [Google Scholar]
- Shavlokhova, V.; Vollmer, A.; Zouboulis, C.C.; Vollmer, M.; Wollborn, J.; Lang, G.; Kübler, A.; Hartmann, S.; Stoll, C.; Roider, E.; et al. Finetuning of GLIDE Stable Diffusion Model for AI-Based Text-Conditional Image Synthesis of Dermoscopic Images. Front. Med. 2023, 10, 1231436. [Google Scholar] [CrossRef] [PubMed]
- Toda, R.; Teramoto, A.; Tsujimoto, M.; Toyama, H.; Imaizumi, K.; Saito, K.; Fujita, H. Synthetic CT Image Generation of Shape-Controlled Lung Cancer Using Semi-Conditional InfoGAN and Its Applicability for Type Classification. Int. J. Comput. Assist. Radiol. Surg. 2021, 16, 241–251. [Google Scholar] [CrossRef] [PubMed]
- Chlap, P.; Min, H.; Vandenberg, N.; Dowling, J.; Holloway, L.; Haworth, A. A Review of Medical Image Data Augmentation Techniques for Deep Learning Applications. J. Med. Imaging Radiat. Oncol. 2021, 65, 545–563. [Google Scholar] [CrossRef]
- Wolterink, J.M.; Mukhopadhyay, A.; Leiner, T.; Vogl, T.J.; Bucher, A.M.; Išgum, I. Generative Adversarial Networks: A Primer for Radiologists. RadioGraphics 2021, 41, 840–857. [Google Scholar] [CrossRef]
- Acosta, J.N.; Falcone, G.J.; Rajpurkar, P.; Topol, E.J. Multimodal Biomedical AI. Nat. Med. 2022, 28, 1773–1784. [Google Scholar] [CrossRef]
- Gong, Y.; Shan, H.; Teng, Y.; Tu, N.; Li, M.; Liang, G.; Wang, G.; Wang, S. Parameter-Transferred Wasserstein Generative Adversarial Network (PT-WGAN) for Low-Dose PET Image Denoising. IEEE Trans. Radiat. Plasma Med. Sci. 2021, 5, 213–223. [Google Scholar] [CrossRef]
- Lee, J. A Review of Deep Learning-Based Approaches for Attenuation Correction in Positron Emission Tomography. IEEE Trans. Radiat. Plasma Med. Sci. 2020, 5, 160–184. [Google Scholar] [CrossRef]
- Liu, M.; Zhu, A.H.; Maiti, P.; Thomopoulos, S.I.; Gadewar, S.; Chai, Y.; Kim, H.; Jahanshad, N.; for the Alzheimer’s Disease Neuroimaging Initiative. Style Transfer Generative Adversarial Networks to Harmonize Multisite MRI to a Single Reference Image to Avoid Overcorrection. Hum. Brain Mapp. 2023, 44, 4875–4892. [Google Scholar] [CrossRef]
- Eo, T.; Jun, Y.; Kim, T.; Jang, J.; Lee, H.-J.; Hwang, D. KIKI-Net: Cross-Domain Convolutional Neural Networks for Reconstructing Undersampled Magnetic Resonance Images. Magn. Reson. Med. 2018, 80, 2188–2201. [Google Scholar] [CrossRef]
- Zhao, X.; Yang, T.; Li, B. A Review on Generative Based Methods for MRI Reconstruction. J. Phys. Conf. Ser. 2022, 2330, 012002. [Google Scholar] [CrossRef]
- Sloan, J.M.; Goatman, K.A.; Siebert, J.P. Learning Rigid Image Registration—Utilizing Convolutional Neural Networks for Medical Image Registration. In Proceedings of the 11th International Joint Conference on Biomedical Engineering Systems and Technologies, Funchal, Madeira, Portugal, 19–21 January 2018; pp. 89–99. [Google Scholar]
- Fourcade, C.; Ferrer, L.; Moreau, N.; Santini, G.; Brennan, A.; Rousseau, C.; Lacombe, M.; Fleury, V.; Colombié, M.; Jézéquel, P.; et al. Deformable Image Registration with Deep Network Priors: A Study on Longitudinal PET Images. Phys. Med. Biol. 2022, 67, 155011. [Google Scholar] [CrossRef] [PubMed]
- Avanzo, M.; Barbiero, S.; Trovo, M.; Bissonnette, J.P.; Jena, R.; Stancanello, J.; Pirrone, G.; Matrone, F.; Minatel, E.; Cappelletto, C.; et al. Voxel-by-Voxel Correlation between Radiologically Radiation Induced Lung Injury and Dose after Image-Guided, Intensity Modulated Radiotherapy for Lung Tumors. Phys. Med. 2017, 42, 150–156. [Google Scholar] [CrossRef] [PubMed]
- Xie, Y.; Takikawa, T.; Saito, S.; Litany, O.; Yan, S.; Khan, N.; Tombari, F.; Tompkin, J.; Sitzmann, V.; Sridhar, S. Neural Fields in Visual Computing and Beyond. Comput. Graph. Forum 2022, 41, 641–676. [Google Scholar] [CrossRef]
- Mao, S.; Sejdic, E. A Review of Recurrent Neural Network-Based Methods in Computational Physiology. IEEE Trans. Neural Netw. Learn. Syst. 2023, 34, 6983–7003. [Google Scholar] [CrossRef]
- Majumdar, A. and Gupta M. Recurrent Transfer Learning. Neural. Netw. 2019, 118, 271–279. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Gers, F.A.; Schmidhuber, J.; Cummins, F. Learning to Forget: Continual Prediction with LSTM. Neural Comput. 2000, 12, 2451–2471. [Google Scholar] [CrossRef]
- Greff, K.; Srivastava, R.K.; Koutník, J.; Steunebrink, B.R.; Schmidhuber, J. LSTM: A Search Space Odyssey. IEEE Trans. Neural Netw. Learn. Syst. 2017, 28, 2222–2232. [Google Scholar] [CrossRef]
- Steinkamp, J.; Cook, T.S. Basic Artificial Intelligence Techniques: Natural Language Processing of Radiology Reports. Radiol. Clin. N. Am. 2021, 59, 919–931. [Google Scholar] [CrossRef]
- Kreimeyer, K.; Foster, M.; Pandey, A.; Arya, N.; Halford, G.; Jones, S.F.; Forshee, R.; Walderhaug, M.; Botsis, T. Natural Language Processing Systems for Capturing and Standardizing Unstructured Clinical Information: A Systematic Review. J. Biomed. Inform. 2017, 73, 14–29. [Google Scholar] [CrossRef] [PubMed]
- Gultepe, E.; Green, J.P.; Nguyen, H.; Adams, J.; Albertson, T.; Tagkopoulos, I. From Vital Signs to Clinical Outcomes for Patients with Sepsis: A Machine Learning Basis for a Clinical Decision Support System. J. Am. Med. Inform. Assoc. 2013, 21, 315–325. [Google Scholar] [CrossRef] [PubMed]
- Ravuri, M.; Kannan, A.; Tso, G.J.; Amatriain, X. Learning from the Experts: From Expert Systems to Machine-Learned Diagnosis Models. In Proceedings of the 3rd Machine Learning for Healthcare Conference, Palo Alto, CA, USA, 17–18 August 2018; pp. 227–243. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, L.; Polosukhin, I. Attention Is All You Need. arXiv 2023, arXiv:1706.03762v7. [Google Scholar] [CrossRef]
- Bajaj, S.; Gandhi, D.; Nayar, D. Potential Applications and Impact of ChatGPT in Radiology. Acad. Radiol. 2023, 31, 1256–1261. [Google Scholar] [CrossRef]
- Langlotz, C.P. The Future of AI and Informatics in Radiology: 10 Predictions. Radiology 2023, 309, e231114. [Google Scholar] [CrossRef]
- Huang, J.; Neill, L.; Wittbrodt, M.; Melnick, D.; Klug, M.; Thompson, M.; Bailitz, J.; Loftus, T.; Malik, S.; Phull, A.; et al. Generative Artificial Intelligence for Chest Radiograph Interpretation in the Emergency Department. JAMA Netw. Open 2023, 6, e2336100. [Google Scholar] [CrossRef]
- Ismail, A.; Ghorashi, N.S.; Javan, R. New Horizons: The Potential Role of OpenAI’s ChatGPT in Clinical Radiology. J. Am. Coll. Radiol. 2023, 20, 696–698. [Google Scholar] [CrossRef]
- Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.; Gelly, S.; et al. An Image Is Worth 16x16 Words: Transformers for Image Recognition at Scale. arXiv 2021, arXiv:2010.11929. [Google Scholar] [CrossRef]
- Akbari, H.; Yuan, L.; Qian, R.; Chuang, W.-H.; Chang, S.-F.; Cui, Y.; Gong, B. VATT: Transformers for Multimodal Self-Supervised Learning from Raw Video, Audio and Text. arXiv 2021, arXiv:2104.11178. [Google Scholar] [CrossRef]
- Oren, O.; Gersh, B.J.; Bhatt, D.L. Artificial Intelligence in Medical Imaging: Switching from Radiographic Pathological Data to Clinically Meaningful Endpoints. Lancet Digit. Health 2020, 2, e486–e488. [Google Scholar] [CrossRef]
- Hafezi-Nejad, N.; Trivedi, P. Foundation AI Models and Data Extraction from Unlabeled Radiology Reports: Navigating Uncharted Territory. Radiology 2023, 308, e232308. [Google Scholar] [CrossRef] [PubMed]
- Moor, M.; Banerjee, O.; Abad, Z.S.H.; Krumholz, H.M.; Leskovec, J.; Topol, E.J.; Rajpurkar, P. Foundation Models for Generalist Medical Artificial Intelligence. Nature 2023, 616, 259–265. [Google Scholar] [CrossRef] [PubMed]
- Bluethgen, C.; Chambon, P.; Delbrouck, J.-B.; van der Sluijs, R.; Połacin, M.; Zambrano Chaves, J.M.; Abraham, T.M.; Purohit, S.; Langlotz, C.P.; Chaudhari, A.S. A Vision-Language Foundation Model for the Generation of Realistic Chest X-Ray Images. Nat. Biomed. Eng. 2024. [Google Scholar] [CrossRef] [PubMed]
- Chen, R.J.; Ding, T.; Lu, M.Y.; Williamson, D.F.K.; Jaume, G.; Song, A.H.; Chen, B.; Zhang, A.; Shao, D.; Shaban, M.; et al. Towards a General-Purpose Foundation Model for Computational Pathology. Nat. Med. 2024, 30, 850–862. [Google Scholar] [CrossRef]
- Fink, M.A.; Bischoff, A.; Fink, C.A.; Moll, M.; Kroschke, J.; Dulz, L.; Heußel, C.P.; Kauczor, H.-U.; Weber, T.F. Potential of ChatGPT and GPT-4 for Data Mining of Free-Text CT Reports on Lung Cancer. Radiology 2023, 308, e231362. [Google Scholar] [CrossRef]
- Schäfer, R.; Nicke, T.; Höfener, H.; Lange, A.; Merhof, D.; Feuerhake, F.; Schulz, V.; Lotz, J.; Kiessling, F. Overcoming Data Scarcity in Biomedical Imaging with a Foundational Multi-Task Model. Nat. Comput. Sci. 2024, 4, 495–509. [Google Scholar] [CrossRef]
- Chen, X.; Wang, X.; Zhang, K.; Fung, K.-M.; Thai, T.C.; Moore, K.; Mannel, R.S.; Liu, H.; Zheng, B.; Qiu, Y. Recent Advances and Clinical Applications of Deep Learning in Medical Image Analysis. Med. Image Anal. 2022, 79, 102444. [Google Scholar] [CrossRef]
- Silver, D.; Schrittwieser, J.; Simonyan, K.; Antonoglou, I.; Huang, A.; Guez, A.; Hubert, T.; Baker, L.; Lai, M.; Bolton, A.; et al. Mastering the Game of Go without Human Knowledge. Nature 2017, 550, 354–359. [Google Scholar] [CrossRef]
- Esteva, A.; Robicquet, A.; Ramsundar, B.; Kuleshov, V.; DePristo, M.; Chou, K.; Cui, C.; Corrado, G.; Thrun, S.; Dean, J. A Guide to Deep Learning in Healthcare. Nat. Med. 2019, 25, 24–29. [Google Scholar] [CrossRef]
- Antropova, N.; Huynh, B.Q.; Giger, M.L. A Deep Feature Fusion Methodology for Breast Cancer Diagnosis Demonstrated on Three Imaging Modality Datasets. Med. Phys. 2017, 44, 5162–5171. [Google Scholar] [CrossRef]
- Terpstra, M.L.; Maspero, M.; D’Agata, F.; Stemkens, B.; Intven, M.P.W.; Lagendijk, J.J.W.; Van den Berg, C.A.T.; Tijssen, R.H.N. Deep Learning-Based Image Reconstruction and Motion Estimation from Undersampled Radial k-Space for Real-Time MRI-Guided Radiotherapy. Phys. Med. Biol. 2020, 65, 155015. [Google Scholar] [CrossRef] [PubMed]
- Furlong, J.W.; Dupuy, M.E.; Heinsimer, J.A. Neural Network Analysis of Serial Cardiac Enzyme Data A Clinical Application of Artificial Machine Intelligence. Am. J. Clin. Pathol. 1991, 96, 134–141. [Google Scholar] [CrossRef]
- Baxt, W.G. Use of an Artificial Neural Network for the Diagnosis of Myocardial Infarction. Ann. Intern. Med. 1991, 115, 843–848. [Google Scholar] [CrossRef] [PubMed]
- Gross, G.W.; Boone, J.M.; Greco-Hunt, V.; Greenberg, B. Neural Networks in Radiologic Diagnosis. II. Interpretation of Neonatal Chest Radiographs. Investig. Radiol. 1990, 25, 1017–1023. [Google Scholar] [CrossRef] [PubMed]
- Romagnoni, A.; Jégou, S.; Van Steen, K.; Wainrib, G.; Hugot, J.-P. Comparative Performances of Machine Learning Methods for Classifying Crohn Disease Patients Using Genome-Wide Genotyping Data. Sci. Rep. 2019, 9, 10351. [Google Scholar] [CrossRef] [PubMed]
- Vântu, A.; Vasilescu, A.; Băicoianu, A. Medical Emergency Department Triage Data Processing Using a Machine-Learning Solution. Heliyon 2023, 9, e18402. [Google Scholar] [CrossRef]
- Momenzadeh, M.; Vard, A.; Talebi, A.; Mehri Dehnavi, A.; Rabbani, H. Computer-Aided Diagnosis Software for Vulvovaginal Candidiasis Detection from Pap Smear Images. Microsc. Res. Tech. 2018, 81, 13–21. [Google Scholar] [CrossRef]
- Girdhar, R.; El-Nouby, A.; Liu, Z.; Singh, M.; Alwala, K.V.; Joulin, A.; Misra, I. ImageBind One Embedding Space to Bind Them All. In Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Vancouver, BC, Canada, 18–22 June 2023; pp. 15180–15190. [Google Scholar]
- Choi, K.-H.; Ha, J.-E. Semantic Segmentation with Perceiver IO. In Proceedings of the 2022 22nd International Conference on Control, Automation and Systems (ICCAS), Jeju, Republic of Korea, 27 November–1 December 2022; pp. 1607–1610. [Google Scholar]
- Mancosu, P.; Lambri, N.; Castiglioni, I.; Dei, D.; Iori, M.; Loiacono, D.; Russo, S.; Talamonti, C.; Villaggi, E.; Scorsetti, M. Applications of artificial intelligence in stereotactic body radiation therapy. Phys. Med. Biol. 2022, 67. [Google Scholar] [CrossRef]
- Robust machine learning challenge: An AIFM multicentric competition to spread knowledge, identify common pitfalls and recommend best practice. Phys. Med. 2024, 127, 104834. [CrossRef]
- Egger, J.; Gsaxner, C.; Pepe, A.; Pomykala, K.L.; Jonske, F.; Kurz, M.; Li, J.; Kleesiek, J. Medical Deep Learning—A Systematic Meta-Review. Comput. Methods Programs Biomed. 2022, 221, 106874. [Google Scholar] [CrossRef]
- Stollmayer, R.; Budai, B.K.; Rónaszéki, A.; Zsombor, Z.; Kalina, I.; Hartmann, E.; Tóth, G.; Szoldán, P.; Bérczi, V.; Maurovich-Horvat, P.; et al. Focal Liver Lesion MRI Feature Identification Using Efficientnet and MONAI: A Feasibility Study. Cells 2022, 11, 1558. [Google Scholar] [CrossRef] [PubMed]
- Gillot, M.; Baquero, B.; Le, C.; Deleat-Besson, R.; Bianchi, J.; Ruellas, A.; Gurgel, M.; Yatabe, M.; Turkestani, N.A.; Najarian, K.; et al. Automatic Multi-Anatomical Skull Structure Segmentation of Cone-Beam Computed Tomography Scans Using 3D UNETR. PLoS ONE 2022, 17, e0275033. [Google Scholar] [CrossRef] [PubMed]
- Termine, A.; Fabrizio, C.; Caltagirone, C.; Petrosini, L.; on behalf of the Frontotemporal Lobar Degeneration Neuroimaging Initiative. A Reproducible Deep-Learning-Based Computer-Aided Diagnosis Tool for Frontotemporal Dementia Using MONAI and Clinica Frameworks. Life 2022, 12, 947. [Google Scholar] [CrossRef] [PubMed]
- Vallieres, M.; Zwanenburg, A.; Badic, B.; Cheze Le Rest, C.; Visvikis, D.; Hatt, M. Responsible Radiomics Research for Faster Clinical Translation. J. Nucl. Med. 2018, 59, 189–193. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, R.; Wang, Y.; Zhang, Y.; Li, M.; Wang, Y.; Wang, S.; Ma, N.; Ren, J. Ultrasound-Base Radiomics for Discerning Lymph Node Metastasis in Thyroid Cancer: A Systematic Review and Meta-Analysis. Acad. Radiol. 2024, 31, 3118–3130. [Google Scholar] [CrossRef]
- Kocak, B.B.B.; Bakas, S.; Cuocolo, R.; Fedorov, A.; Maier-Hein, L.; Mercaldo, N.; Müller, H.; Orlhac, F.; Pinto Dos Santos, D.; Stanzione, A.; et al. CheckList for EvaluAtion of Radiomics Research (CLEAR): A Step-by-Step Reporting Guideline for Authors and Reviewers Endorsed by ESR and EuSoMII. Insights Imaging 2023, 14, 75. [Google Scholar] [CrossRef]
- Acharya, U.R.; Hagiwara, Y.; Sudarshan, V.K.; Chan, W.Y.; Ng, K.H. Towards Precision Medicine: From Quantitative Imaging to Radiomics. J. Zhejiang Univ. Sci. B 2018, 19, 6–24. [Google Scholar] [CrossRef]
- Park, C.J.; Park, Y.W.; Ahn, S.S.; Kim, D.; Kim, E.H.; Kang, S.-G.; Chang, J.H.; Kim, S.H.; Lee, S.-K. Quality of Radiomics Research on Brain Metastasis: A Roadmap to Promote Clinical Translation. Korean J. Radiol. 2022, 23, 77–88. [Google Scholar] [CrossRef]
- Avery, E.W.; Behland, J.; Mak, A.; Haider, S.P.; Zeevi, T.; Sanelli, P.C.; Filippi, C.G.; Malhotra, A.; Matouk, C.C.; Griessenauer, C.J.; et al. Dataset on Acute Stroke Risk Stratification from CT Angiographic Radiomics. Data Brief. 2022, 44, 108542. [Google Scholar] [CrossRef]
- Prior, F.W.; Clark, K.; Commean, P.; Freymann, J.; Jaffe, C.; Kirby, J.; Moore, S.; Smith, K.; Tarbox, L.; Vendt, B.; et al. TCIA: An Information Resource to Enable Open Science. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2013, 2013, 1282–1285. [Google Scholar] [CrossRef]
- van Leeuwen, K.G.; Schalekamp, S.; Rutten, M.J.C.M.; van Ginneken, B.; de Rooij, M. Artificial Intelligence in Radiology: 100 Commercially Available Products and Their Scientific Evidence. Eur. Radiol. 2021, 31, 3797–3804. [Google Scholar] [CrossRef] [PubMed]
- Park, S.H.; Han, K.; Jang, H.Y.; Park, J.E.; Lee, J.-G.; Kim, D.W.; Choi, J. Methods for Clinical Evaluation of Artificial Intelligence Algorithms for Medical Diagnosis. Radiology 2023, 306, 20–31. [Google Scholar] [CrossRef] [PubMed]
- Wu, E.; Wu, K.; Daneshjou, R.; Ouyang, D.; Ho, D.E.; Zou, J. How Medical AI Devices Are Evaluated: Limitations and Recommendations from an Analysis of FDA Approvals. Nat. Med. 2021, 27, 582–584. [Google Scholar] [CrossRef] [PubMed]
- Han, R.; Acosta, J.N.; Shakeri, Z.; Ioannidis, J.P.A.; Topol, E.J.; Rajpurkar, P. Randomised Controlled Trials Evaluating Artificial Intelligence in Clinical Practice: A Scoping Review. Lancet Digit. Health 2024, 6, e367–e373. [Google Scholar] [CrossRef] [PubMed]
- Fazal, M.I.; Patel, M.E.; Tye, J.; Gupta, Y. The Past, Present and Future Role of Artificial Intelligence in Imaging. Eur. J. Radiol. 2018, 105, 246–250. [Google Scholar] [CrossRef]
- Neri, E.; Aghakhanyan, G.; Zerunian, M.; Gandolfo, N.; Grassi, R.; Miele, V.; Giovagnoni, A.; Laghi, A.; SIRM expert group on Artificial Intelligence. Explainable AI in Radiology: A White Paper of the Italian Society of Medical and Interventional Radiology. Radiol. Med. 2023, 128, 755–764. [Google Scholar] [CrossRef]
- Avanzo, M.; Pirrone, G.; Vinante, L.; Caroli, A.; Stancanello, J.; Drigo, A.; Massarut, S.; Mileto, M.; Urbani, M.; Trovo, M.; et al. Electron Density and Biologically Effective Dose (BED) Radiomics-Based Machine Learning Models to Predict Late Radiation-Induced Subcutaneous Fibrosis. Front. Oncol. 2020, 10, 490. [Google Scholar] [CrossRef]
- Murdoch, W.J.; Singh, C.; Kumbier, K.; Abbasi-Asl, R.; Yu, B. Definitions, Methods, and Applications in Interpretable Machine Learning. Proc. Natl. Acad. Sci. USA 2019, 116, 22071–22080. [Google Scholar] [CrossRef]
- Neves, J.; Hsieh, C.; Nobre, I.B.; Sousa, S.C.; Ouyang, C.; Maciel, A.; Duchowski, A.; Jorge, J.; Moreira, C. Shedding Light on Ai in Radiology: A Systematic Review and Taxonomy of Eye Gaze-Driven Interpretability in Deep Learning. Eur. J. Radiol. 2024, 172, 111341. [Google Scholar] [CrossRef]
- Champendal, M.; Müller, H.; Prior, J.O.; dos Reis, C.S. A Scoping Review of Interpretability and Explainability Concerning Artificial Intelligence Methods in Medical Imaging. Eur. J. Radiol. 2023, 169, 111159. [Google Scholar] [CrossRef]
- Ricci Lara, M.A.; Echeveste, R.; Ferrante, E. Addressing Fairness in Artificial Intelligence for Medical Imaging. Nat. Commun. 2022, 13, 4581. [Google Scholar] [CrossRef] [PubMed]
- Burlina, P.; Joshi, N.; Paul, W.; Pacheco, K.D.; Bressler, N.M. Addressing Artificial Intelligence Bias in Retinal Diagnostics. Transl. Vis. Sci. Technol. 2021, 10, 13. [Google Scholar] [CrossRef] [PubMed]
- Mahmood, U.; Shukla-Dave, A.; Chan, H.P.; Drukker, K.; Samala, R.K.; Chen, Q.; Vergara, D.; Greenspan, H.; Petrick, N.; Sahiner, B.; et al. Artificial Intelligence in Medicine: Mitigating Risks and Maximizing Benefits via Quality Assurance, Quality Control, and Acceptance Testing. BJR|Artif. Intell. 2024, 1, ubae003. [Google Scholar] [CrossRef] [PubMed]
- Kelly, B.S.; Quinn, C.; Belton, N.; Lawlor, A.; Killeen, R.P.; Burrell, J. Cybersecurity Considerations for Radiology Departments Involved with Artificial Intelligence. Eur. Radiol. 2023, 33, 8833–8841. [Google Scholar] [CrossRef] [PubMed]
- Mahadevaiah, G.; Rv, P.; Bermejo, I.; Jaffray, D.; Dekker, A.; Wee, L. Artificial Intelligence-Based Clinical Decision Support in Modern Medical Physics: Selection, Acceptance, Commissioning, and Quality Assurance. Med. Phys. 2020, 47, e228–e235. [Google Scholar] [CrossRef]
- COCIR. COCIR Analysis on AI in Medical Device Legislation—May 2021. Available online: https://www.cocir.org/latest-news/publications/article/cocir-analysis-on-ai-in-medical-device-legislation-may-2021 (accessed on 9 April 2024).
- Ebers, M.; Hoch, V.R.S.; Rosenkranz, F.; Ruschemeier, H.; Steinrötter, B. The European Commission’s Proposal for an Artificial Intelligence Act—A Critical Assessment by Members of the Robotics and AI Law Society (RAILS). J 2021, 4, 589–603. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avanzo, M.; Stancanello, J.; Pirrone, G.; Drigo, A.; Retico, A. The Evolution of Artificial Intelligence in Medical Imaging: From Computer Science to Machine and Deep Learning. Cancers 2024, 16, 3702. https://doi.org/10.3390/cancers16213702
Avanzo M, Stancanello J, Pirrone G, Drigo A, Retico A. The Evolution of Artificial Intelligence in Medical Imaging: From Computer Science to Machine and Deep Learning. Cancers. 2024; 16(21):3702. https://doi.org/10.3390/cancers16213702
Chicago/Turabian StyleAvanzo, Michele, Joseph Stancanello, Giovanni Pirrone, Annalisa Drigo, and Alessandra Retico. 2024. "The Evolution of Artificial Intelligence in Medical Imaging: From Computer Science to Machine and Deep Learning" Cancers 16, no. 21: 3702. https://doi.org/10.3390/cancers16213702