The Influence of the Microbiome on the Complications of Radiotherapy and Its Effectiveness in Patients with Laryngeal Cancer
Simple Summary
Abstract
1. Introduction
2. Material and Method
2.1. Study Group
2.2. Microbiome Profiling
- DNA isolation from cotton swab samples using a commercial kit following the manufacturer’s protocol (GeneMATRIX Swab-Extract DNA Purification Kit, Eurx, Gdańsk, Poland).
- Quality control of isolated DNA—concentration and purity evaluation (Qubit 4 Fluorometer, Invitrogen, St. Bend, OR, USA and DeNovix DS-11 spectrophotometer, West Haven, Connecticut, USA); DNA integrity check by electrophoresis on 1.5% agarose gel.
- Amplifier library construction after rounds of PCR amplification.
- Amplification of specific target DNA region of bacterial 16S ribosomal RNA (V3–V4) using universal primers connected with Illumina sequencing adapters; PCR Clean-Up using AMPure XP beads, Beckman Coulter, Inc., Indianapolis, IN, USA.
- Index PCR attaching dual indices and Illumina sequencing adapters using the Nextera XT Index Kit; PCR Clean-Up using AMPure XP beads, Indianapolis, IN, USA.
- Library QC, quantification, normalization and pooling.
- Sequencing on MiSeq–Using paired 300 bp reads.
2.3. Statistical Analysis
3. Results
4. Discussion
Limitations of the Study and Suggestions for Future Research
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bray, F.; Ferlay, J.; Soerjomataram, I.; Siegel, R.L.; Torre, L.A.; Jemal, A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2018, 68, 394–424. [Google Scholar] [CrossRef]
- Gatta, G.; Botta, L.; Sánchez, M.J.; Anderson, L.A.; Pierannunzio, D.; Licitra, L. EUROCARE Working Group: Prognoses and improvement for head and neck cancers diagnosed in Europe in early 2000s: The EUROCARE-5 population-based study. Eur. J. Cancer 2015, 51, 2130–2143. [Google Scholar] [CrossRef] [PubMed]
- Ferlay, J.; Ervik, M.; Lam, F.; Colombet, M.; Mery, L.; Pineros, M.; Znaor, A.; Soerjomataram, I.; Bray, F. Global Cancer Observatory: Cancer Today; International Agency for Research on Cancer: Lyon, France, 2018. [Google Scholar]
- Parkin, D.M.; Bray, F.; Ferlay, J.; Pisani, P. Global Cancer Statistics, 2002. CA Cancer J. Clin. 2005, 55, 74–108. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Li, L.; Ou, Y.; Gao, Z.; Li, E.; Li, X.; Zhang, W.; Wang, J.; Xu, L.; Zhou, Y.; et al. Identification of genomic alterations in oesophageal squamous cell cancer. Nature 2014, 509, 91–95. [Google Scholar] [CrossRef]
- Huang, T.-T.; Lai, J.-B.; Du, Y.-L.; Xu, Y.; Ruan, L.-M.; Hu, S.-H. Current Understanding of Gut Microbiota in Mood Disorders: An Update of Human Studies. Front. Genet. 2019, 10, 98. [Google Scholar] [CrossRef] [PubMed]
- Tornesello, M.L.; Annunziata, C.; Tornesello, A.L.; Buonaguro, L.; Buonaguro, F.M. Human Oncoviruses and p53 Tumor Suppressor Pathway Deregulation at the Origin of Human Cancers. Cancers 2018, 10, 213. [Google Scholar] [CrossRef] [PubMed]
- Delaney, G.; Jacob, S.; Featherstone, C.; Barton, M. The role of radiotherapy in cancer treatment: Estimating optimal utilization from a review of evidence-based clinical guidelines. Cancer 2005, 104, 1129–1137. [Google Scholar] [CrossRef]
- Jafray, D.A. Image-guided radiotherapy: From current concept to future perspectives. Nat. Rev. Clin. Oncol. 2012, 9, 688–699. [Google Scholar] [CrossRef]
- Delaby, N.; Barateau, A.; Chiavassa, S.; Biston, M.-C.; Chartier, P.; Graulières, E.; Guinement, L.; Huger, S.; Lacornerie, T.; Millardet-Martin, C.; et al. Practical and technical key challenges in head and neck adaptive radiotherapy: The GORTEC point of view. Phys. Med. 2023, 109, 102568. [Google Scholar] [CrossRef]
- Barnett, G.C.; West, C.M.L.; Dunning, A.M.; Elliott, R.M.; Coles, C.E.; Pharoah, P.D.P.; Burnet, N.G. Normal tissue reactions to radiotherapy: Towards tailoring treatment dose by genotype. Nat. Rev. Cancer 2009, 9, 134–142. [Google Scholar] [CrossRef]
- Bentzen, S.M.; Overgaard, J. Patient-to-patient variability in the expression of radiation-induced normal tissue injury. Semin. Radiat. Oncol. 1994, 4, 68–80. [Google Scholar] [CrossRef] [PubMed]
- Park, S.Y.; Lee, C.J.; Choi, J.H.; Kim, J.H.; Kim, J.W.; Kim, J.Y.; Nam, J.S. The JAK2/STAT3/ CCND2 axis promotes colorectal cancer stem cell persistence and radioresistance. J. Exp. Clin. Cancer Res. 2019, 38, 399. [Google Scholar] [CrossRef] [PubMed]
- Marchesi, J.R.; Ravel, J. The vocabulary of microbiome research: A proposal. Microbiome 2015, 3, 31. [Google Scholar] [CrossRef]
- Dominguez-Bello, M.G.; Costello, E.K.; Contreras, M.; Magris, M.; Hidalgo, G.; Fierer, N.; Knight, R. Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc. Natl. Acad. Sci. USA 2010, 107, 11971–11975. [Google Scholar] [CrossRef]
- Palmer, C.; Bik, E.M.; DiGiulio, D.B.; Relman, D.A.; Brown, P.O. Development of the Human Infant Intestinal Microbiota. PLoS Biol. 2007, 5, e177. [Google Scholar] [CrossRef]
- Forbes, J.D.; Van Domselaar, G.; Bernstein, C.N. Microbiome Survey of the Inflamed and Noninflamed Gut at Different Compartments Within the Gastrointestinal Tract of Inflammatory Bowel Disease Patients. Inflamm. Bowel Dis. 2016, 22, 817–825. [Google Scholar] [CrossRef]
- Liu, J.; Liu, C.; Yue, J. Radiotherapy and the gut microbiome: Facts and fiction. Radiat. Oncol. 2021, 16, 9. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Rodriguez, M.; Wootla, B.; Anderson, G. Multiple sclerosis, gut microbiota and permeability: Role of tryptophan catabolites, depression and the driving down of local melatonin. Curr. Pharm. Des. 2016, 22, 6134–6141. [Google Scholar] [CrossRef]
- Mitsuhashi, A.; Okuma, Y. Perspective on immune oncology with liquid biopsy, peripheral blood mononuclear cells, and microbiome with non-invasive biomarkers in cancer patients. Clin. Transl. Oncol. 2018, 20, 966–974. [Google Scholar] [CrossRef]
- Floch, P.; Mégraud, F.; Lehours, P. Helicobacter pylori Strains and Gastric MALT Lymphoma. Toxins 2017, 9, 132. [Google Scholar] [CrossRef]
- Baskar, R.; Dai, J.; Wenlong, N.; Yeo, R.; Yeoh, K.-W. Biological response of cancer cells to radiation treatment. Front. Mol. Biosci. 2014, 1, 24. [Google Scholar] [CrossRef] [PubMed]
- Kareva, I. Metabolism and gut microbiota in cancer immunoediting, CD8/Treg Ratios, immune cell homeostasis, and cancer (immuno) therapy: Concise review. Stem Cells. 2019, 37, 1273–1280. [Google Scholar] [CrossRef] [PubMed]
- Roy, S.; Trinchieri, G. Microbiota: A key orchestrator of cancer therapy. Nat. Rev. Cancer 2017, 17, 271–285. [Google Scholar] [CrossRef]
- Riquelme, E.; Zhang, Y.; Zhang, L.; Montiel, M.; Zoltan, M.; Dong, W.; Quesada, P.; Sahin, I.; Chandra, V.; San Lucas, A.; et al. Tumor microbiome diversity and composition infuence pancreatic cancer outcomes. Cell 2019, 178, 795–806. [Google Scholar] [CrossRef]
- Manichanh, C.; Varela, E.; Martinez, C.; Antolin, M.; Llopis, M.; Doré, J.; Giralt, J.; Guarner, F.; Malagelada, J.-R. The gut microbiota predispose to the pathophysiology of acute postradiotherapy diarrhea. Am. J. Gastroenterol. 2008, 103, 1754–1761. [Google Scholar] [CrossRef]
- Nam, Y.D.; Kim, H.J.; Seo, J.G.; Kang, S.W.; Bae, J.-W. Impact of Pelvic Radiotherapy on Gut Microbiota of Gynecological Cancer Patients Revealed by Massive Pyrosequencing. PLoS ONE 2013, 8, e82659. [Google Scholar] [CrossRef]
- Wang, A.; Ling, Z.; Yang, Z.; Kiela, P.R.; Wang, T.; Wang, C.; Cao, L.; Geng, F.; Shen, M.; Ran, X.; et al. Gut Microbial Dysbiosis May Predict Diarrhea and Fatigue in Patients Undergoing Pelvic Cancer Radiotherapy: A Pilot Study. PLoS ONE 2015, 10, e0126312. [Google Scholar] [CrossRef]
- Scott, A.J.; Merrifield, A.C.; Younes, A.J.; Pekelharing, E.P. Pre-, pro- and synbiotics in cancer prevention and treatment—A review of basic and clinical research. Ecancermedicalscience 2018, 12, 869. [Google Scholar] [CrossRef]
- Gugnacki, P.; Sierko, E. Is there an interplay between oral microbiome, head and neck carcinoma and radiation-induced oral mucositis? Cancers 2021, 13, 5902. [Google Scholar] [CrossRef]
- Touchefeu, Y.; Montassier, E.; Nieman, K.; Gastinne, T.; Potel, G.; Bruley des Varannes, S.; Le Vacon, F.; de La Cochetière, M. Systematic review: The role of the gut microbiota in chemotherapy- or radiation-induced gastrointestinal mucositis: Current evidence and potential clinical applications. Aliment. Pharmacol. Ther. 2014, 40, 409–421. [Google Scholar] [CrossRef]
- Yu, T.; Guo, F.; Yu, Y.; Sun, T.; Ma, D.; Han, J.; Qian, Y.; Kryczek, I.; Sun, D.; Nagarsheth, N.; et al. Fusobacterium nucleatum Promotes Chemoresistance to Colorectal Cancer by Modulating Autophagy. Cell 2017, 170, 548–563.e16. [Google Scholar] [CrossRef] [PubMed]
- Abed, J.; Emgård, J.E.; Zamir, G.; Faroja, M.; Almogy, G.; Grenov, A.; Sol, A.; Naor, R.; Pikarsky, E.; Atlan, K.A.; et al. Fap2 Mediates Fusobacterium nucleatum Colorectal Adenocarcinoma Enrichment by Binding to Tumor-Expressed Gal-GalNAc. Cell Host Microbe 2016, 20, 215–225. [Google Scholar] [CrossRef] [PubMed]
- Kostic, A.D.; Gevers, D.; Pedamallu, C.S.; Michaud, M.; Duke, F.; Earl, A.M.; Ojesina, A.I.; Jung, J.; Bass, A.J.; Tabernero, J.; et al. Genomic analysis identifies association of Fusobacterium with colorectal carcinoma. Genome Res. 2012, 22, 292–298. [Google Scholar] [CrossRef] [PubMed]
- Serna, G.; Ruiz-Pace, F.; Hernando, J.; Alonso, L.; Fasani, R.; Landolfi, S.; Comas, R.; Jimenez, J.; Elez, E.; Bullman, S.; et al. Fusobacterium nucleatum persistence and risk of recurrence after preoperative treatment in locally advanced rectal cancer. Ann. Oncol. 2020, 31, 1366–1375. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, M.R.; Muls, A.; Dearnaley, D.P.; Andreyev, H.J. Microbiota and radiation-induced bowel toxicity: Lessons from infammatory bowel disease for the radiation oncologist. Lancet Oncol. 2014, 15, e139–e147. [Google Scholar] [CrossRef]
- Elad, S.; Cheng, K.K.F.; Lalla, R.V.; Yarom, N.; Hong, C.; Logan, R.M.; Bowen, J.; Gibson, R.; Saunders, D.P.; Zadik, Y.; et al. MASCC/ISOO clinical practice guidelines for the management of mucositis secondary to cancer therapy. Cancer 2020, 126, 4423–4431. [Google Scholar] [CrossRef]
- Graboyes, E.M.; Kompelli, A.R.; Neskey, D.M.; Brennan, E.; Nguyen, S.; Sterba, K.R.; Warren, G.W.; Hughes-Halbert, C.; Nussenbaum, B.; Day, T.A. Association of Treatment Delays with Survival for Patients with Head and Neck Cancer: A Systematic Review. JAMA Otolaryngol. Head Neck Surg. 2019, 145, 166–177. [Google Scholar] [CrossRef]
- Sanguineti, G.; Gunn, G.B.; Parker, B.C.; Endres, E.J.; Zeng, J.; Fiorino, C. Weekly dosevolume parameters of mucosa and constrictor muscles predict the use of percutaneous endoscopic gastrostomy during exclusive intensity-modulated radiotherapy for oropharyngeal cancer. Int. J. Radiat. Oncol. Biol. Phys. 2011, 79, 52–59. [Google Scholar] [CrossRef]
- Mortensen, H.R.; Overgaard, J.; Specht, L.; Overgaard, M.; Johansen, J.; Evensen, J.F.; Andersen, L.J.; Andersen, E.; Grau, C. Prevalence and peak incidence of acute and late normal tissue morbidity in the DAHANCA 6&7 randomised trial with accelerated radiotherapy for head and neck cancer. Radiother. Oncol. 2012, 103, 69–75. [Google Scholar]
- Saraniti, C.; Speciale, R.; Santangelo, M.; Massaro, N.; Maniaci, A.; Gallina, S.; Serra, A.; Cocuzza, S. Functional outcomes after supracricoid modified partial laryngectomy. J. Biol. Regul. Homeost. Agents 2019, 33, 1903–1907. [Google Scholar]
- Ozsoy, S.; Besirli, A.; Unal, D.; Abdulrezzak, U.; Orhan, O. The association between depression, weight loss and leptin/ghrelin levels in male patients with head and neck cancer undergoing radiotherapy. Gen. Hosp. Psychiatry 2015, 37, 31–35. [Google Scholar] [CrossRef] [PubMed]
- Elad, S.; Zadik, Y. Chronic oral mucositis after radiotherapy to the head and neck: A new insight. Support. Care Cancer 2016, 24, 4825–4830. [Google Scholar] [CrossRef] [PubMed]
- Tao, Z.; Gao, J.; Qian, L.; Huang, Y.; Zhou, Y.; Yang, L.; He, J.; Yang, J.; Wang, R.; Zhang, Y. Factors associated with acute oral mucosal reaction induced by radiotherapy in head and neck squamous cell carcinoma: A retrospective single-center experience. Medicine 2017, 96, 50. [Google Scholar] [CrossRef] [PubMed]
- Maji, A.; Mandal, B.; Basu, A. A prospective study to assess the predictive factors of radiation-induced oral mucositis in head-and-neck carcinoma and its impact on treatment outcome: Long-term results and lessons learned. Int. J. Med. Sci. Public Health 2020, 9, 209–213. [Google Scholar] [CrossRef]
- Hansen, C.; Bertelsen, A.; Zukauskaite, R.; Johnsen, L.; Bernchou, U.; Thwaites, D.; Eriksen, J.; Johansen, J.; Brink, C. Prediction of radiation-induced mucositis of H&N cancer patients based on a large patient cohort. Radiother. Oncol. 2020, 147, 15–21. [Google Scholar]
- Chen, S.-C.; Lai, Y.-H.; Huang, B.-S.; Lin, C.-Y.; Fan, K.-H.; Chang, J.T.-C. Changes and predictors of radiation-induced oral mucositis in patients with oral cavity cancer during active treatment. Eur. J. Oncol. Nurs. 2015, 19, 214–219. [Google Scholar] [CrossRef]
- Al-Ansari, S.; Zecha, J.A.E.M.; Barasch, A.; de Lange, J.; Rozema, F.R.; Raber-Durlacher, J.E. Oral Mucositis Induced by Anticancer Therapies. Curr. Oral Health Rep. 2015, 2, 202–211. [Google Scholar] [CrossRef]
- Mizuno, H.; Miyai, H.; Yokoi, A.; Kobayashi, T.; Inabu, C.; Maruyama, T.; Ekuni, D.; Mizukawa, N.; Kariya, S.; Nishizaki, K.; et al. Relationship between renal dysfunction and oral mucositis in patients undergoing concurrent chemoradiotherapy for pharyngeal cancer: A retrospective cohort study. In Vivo 2019, 33, 183–189. [Google Scholar] [CrossRef]
- Eilers, J.; Million, R. Prevention and Management of Oral Mucositis in Patients with Cancer. Semin. Oncol. Nurs. 2007, 23, 201–212. [Google Scholar] [CrossRef]
- Willis, J.R.; Gabaldon, T. The human oral microbiome in health and disease: From sequences to ecosystems. Microorganisms 2020, 8, 308. [Google Scholar] [CrossRef]
- Willis, J.R.; González-Torres, P.; Pittis, A.A.; Bejarano, L.A.; Cozzuto, L.; Andreu-Somavilla, N.; Alloza-Trabado, M.; Valentín, A.; Ksiezopolska, E.; Company, C.; et al. Citizen science charts two major “stomatotypes” in the oral microbiome of adolescents and reveals links with habits and drinking water composition. Microbiome 2018, 6, 218. [Google Scholar] [CrossRef] [PubMed]
- Lassalle, F.; Spagnoletti, M.; Fumagalli, M.; Shaw, L.; Dyble, M.; Walker, C.; Thomas, M.G.; Migliano, A.B.; Balloux, F. Oral microbiomes from hunter-gatherers and traditional farmers reveal shifts in commensal balance and pathogen load linked to diet. Mol. Ecol. 2018, 27, 182–195. [Google Scholar] [CrossRef] [PubMed]
- Haubek, D. The highly leukotoxic JP2 clone of Aggregatibacter actinomycetemcomitans: Evolutionary aspects, epidemiology and etiological role in aggressive periodontitis. APMIS Suppl. 2010, 130, 1–53. [Google Scholar] [CrossRef] [PubMed]
- Matarazzo, F.; Ribeiro, A.C.; Feres, M.; Faveri, M.; Mayer, M.P.A. Diversity and quantitative analysis of Archaea in aggressive periodontitis and periodontally healthy subjects. J. Clin. Periodontol. 2011, 38, 621–627. [Google Scholar] [CrossRef]
- Fernández Forné, Á.; García Anaya, M.J.; Segado Guillot, S.J.; Plaza Andrade, I.; de la Peña Fernández, L.; Lorca Ocón, M.J.; Lupiáñez Pérez, Y.; Queipo-Ortuño, M.I.; Gómez-Millán, J. Influence of the microbiome on radiotherapy-induced oral mucositis and its management: A comprehensive review. Oral Oncol. 2023, 144, 106488. [Google Scholar] [CrossRef]
- Zhu, X.X.; Yang, X.J.; Chao, Y.L.; Zheng, H.M.; Sheng, H.F.; Liu, H.Y.; He, Y.; Zhou, H.W. The Potential Effect of Oral Microbiota in the Prediction of Mucositis During Radiotherapy for Nasopharyngeal Carcinoma. EBioMedicine 2017, 18, 23–31. [Google Scholar] [CrossRef]
- Vesty, A.; Gear, K.; Biswas, K.; Mackenzie, B.W.; Taylor, M.W.; Douglas, R.G. Oral microbial influences on oral mucositis during radiotherapy treatment of head and neck cancer. Support. Care Cancer 2020, 28, 2683–2691. [Google Scholar] [CrossRef]
- Al-Qadami, G.; Van Sebille, Y.; Bowen, J.; Wardill, H. Oral-Gut Microbiome Axis in the Pathogenesis of Cancer Treatment-Induced Oral Mucositis. Front. Oral Health 2022, 3, 881949. [Google Scholar] [CrossRef]
- Reyes-Gibby, C.C.; Wang, J.; Zhang, L.; Peterson, C.B.; Do, K.; Jenq, R.R.; Shelburne, S.; Shah, D.P.; Chambers, M.S.; Hanna, E.Y.; et al. Oral microbiome and onset of oral mucositis in patients with squamous cell carcinoma of the head and neck. Cancer 2020, 126, 5124–5136. [Google Scholar] [CrossRef]
- Gupta, N.; Quah, S.; Yeo, J.; Ferreira, J.; Tan, K.; Hong, C. Role of oral flora in chemotherapy-induced oral mucositis in vivo. Arch. Oral Biol. 2019, 101, 51–56. [Google Scholar] [CrossRef]
- Schuurhuis, J.M.; Stokman, M.A.; Witjes, M.J.; Langendijk, J.A.; van Winkelhoff, A.J.; Vissink, A.; Spijkervet, F.K. Head and neck intensity modulated radiation therapy leads to an increase of opportunistic oral pathogens. Oral Oncol. 2016, 58, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.; Li, Y.; Xiao, H.; Zhang, S.; Wang, B.; Wang, H.; Li, Y.; Fan, S.; Cui, M. Oral microbiota affects the efficacy and prognosis of radiotherapy for colorectal cancer in mouse models. Cell Rep. 2021, 37, 109886. [Google Scholar] [CrossRef] [PubMed]
- De Sanctis, V.; Bossi, P.; Sanguineti, G.; Trippa, F.; Ferrari, D.; Bacigalupo, A.; Ripamonti, C.I.; Buglione, M.; Pergolizzi, S.; Langendjik, J.A.; et al. Mucositis in head and neck cancer patients treated with radiotherapy and systemic therapies: Literature review and consensus statements. Crit. Rev. Oncol. 2016, 100, 147–166. [Google Scholar] [CrossRef]
- Ehrnrooth, E.; Grau, C.; Zachariae, R.; Andersen, J. Randomized trial of opioids versus tricyclic antidepressants for radiation-induced mucositis pain in head and neck cancer. Acta Oncol. 2001, 40, 745–750. [Google Scholar] [CrossRef]
- Sayed, R.; el Wakeel, L.; Saad, A.S.; Kelany, M.; El-Hamamsy, M. Pentoxifylline and vitamin E reduce the severity of radiotherapy-induced oral mucositis and dysphagia in head and neck cancer patients: A randomized, controlled study. Med. Oncol. 2020, 37, 8. [Google Scholar] [CrossRef]
- Kang, W.X.; Li, W.; Huang, S.G.; Dang, Y.; Gao, H. Effects of nutritional intervention in head and neck cancer patients undergoing radiotherapy: A prospective randomized clinical trial. Mol. Clin. Oncol. 2016, 5, 279–282. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Alhambra Expósito, M.R.; Herrera-Martínez, A.D.; Manzano García, G.; Espinosa Calvo, M.; Bueno Serrano, C.M.; Gálvez Moreno, M.Á. Early nutrition support therapy in patients with head-neck cancer. Nutr. Hosp. 2018, 35, 505–510. [Google Scholar] [CrossRef] [PubMed]
- Wei, J.; Wu, J.; Meng, L.; Zhu, B.; Wang, H.; Xin, Y.; Chen, Y.; Cui, S.; Sun, Y.; Dong, L.; et al. Effects of early nutritional intervention on oral mucositis in patients with radiotherapy for head and neck cancer. QJM Int. J. Med. 2019, 113, 37–42. [Google Scholar] [CrossRef]
- Uribe-Herranz, M.; Rafail, S.; Beghi, S.; Gil-De-Gómez, L.; Verginadis, I.; Bittinger, K.; Pustylnikov, S.; Pierini, S.; Perales-Linares, R.; Blair, I.A.; et al. Gut microbiota modulate dendritic cell antigen presentation and radiotherapy-induced antitumor immune response. J. Clin. Investig. 2020, 130, 466–479. [Google Scholar] [CrossRef]
- Cui, M.; Xiao, H.; Li, Y.; Zhou, L.; Zhao, S.; Luo, D.; Zheng, Q.; Dong, J.; Zhao, Y.; Zhang, X.; et al. Faecal microbiota transplantation protects against radiation-induced toxicity. EMBO Mol. Med. 2017, 9, 448–461. [Google Scholar] [CrossRef]
- Bullman, S.; Pedamallu, C.S.; Sicinska, E.; Clancy, T.E.; Zhang, X.; Cai, D.; Neuberg, D.; Huang, K.; Guevara, F.; Nelson, T.; et al. Analysis of Fusobacterium persistence and antibiotic response in colorectal cancer. Science 2017, 358, 1443–1448. [Google Scholar] [CrossRef] [PubMed]
- Pandey, K.R.; Naik, S.R.; Vakil, B.V. Probiotics, prebiotics and synbiotics—A review. J. Food Sci. Technol. 2015, 52, 7577–7587. [Google Scholar] [CrossRef]
- Zhang, M.; Sun, K.; Wu, Y.; Yang, Y.; Tso, P.; Wu, Z. Interactions between intestinal microbiota and host immune response in infammatory bowel disease. Front. Immunol. 2017, 8, 942. [Google Scholar] [CrossRef]
- Ho, C.L.; Tan, H.Q.; Chua, K.J.; Kang, A.; Lim, K.H.; Ling, K.L.; Yew, W.S.; Lee, Y.S.; Thiery, J.P.; Chang, M.W. Engineered commensal microbes for diet-mediated colorectal-cancer chemoprevention. Nat. Biomed. Eng. 2018, 2, 27–37. [Google Scholar] [CrossRef]
- Shu, Z.; Li, P.; Yu, B.; Huang, S.; Chen, Y. The effectiveness of probiotics in prevention and treatment of cancer therapy-induced oral mucositis: A systematic review and meta-analysis. Oral Oncol. 2020, 102, 104559. [Google Scholar] [CrossRef]
- Krebs, B. Prebiotic and synbiotic treatment before colorectal surgery—Randomised double blind trial. Coll. Antropol. 2016, 40, 35–40. [Google Scholar]
- Krebs, B.; Horvat, M.; Golle, A.; Krznaric, Z.; Papeš, D.; Augustin, G.; Arslani, N.; Potrč, S. A randomized clinical trial of synbiotic treatment before colorectal cancer surgery. Am. Surg. 2013, 79, E340–E342. [Google Scholar] [CrossRef]
- Cao, H.; Xu, M.; Dong, W.; Deng, B.; Wang, S.; Zhang, Y.; Wang, S.; Luo, S.; Wang, W.; Qi, Y.; et al. Secondary bile acid-induced dysbiosis promotes intestinal carcinogenesis. Int. J. Cancer 2017, 140, 2545–2556. [Google Scholar] [CrossRef]
- Castellarin, M.; Warren, R.L.; Freeman, J.D.; Dreolini, L.; Krzywinski, M.; Strauss, J.; Barnes, R.; Watson, P.; Allen-Vercoe, E.; Moore, R.A.; et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res. 2012, 22, 299–306. [Google Scholar] [CrossRef]
- Sola-Oladokun, B.; Culligan, E.P.; Sleator, R.D. Engineered Probiotics: Applications and Biological Containment. Annu. Rev. Food Sci. Technol. 2017, 8, 353–370. [Google Scholar] [CrossRef]
- Suwan, K.; Yata, T.; Waramit, S.; Przystal, J.M.; Stoneham, C.A.; Bentayebi, K.; Asavarut, P.; Chongchai, A.; Pothachareon, P.; Lee, K.-Y.; et al. Next-generation of targeted AAVP vectors for systemic transgene delivery against cancer. Proc. Natl. Acad. Sci. USA 2019, 116, 18571–18577. [Google Scholar] [CrossRef] [PubMed]
- Kingwell, K. Bacteriophage therapies re-enter clinical trials. Nat. Rev. Drug Discov. 2015, 14, 515–516. [Google Scholar] [CrossRef] [PubMed]
Variable | RIOM | p-Value | |
---|---|---|---|
Yes n = 8 | No n = 32 | ||
Gender: | 0.309 a | ||
Male, n (%) | 8 (100.0) | 25 (78.1) | |
Female, n (%) | 0 (0.0) | 7 (21.9) | |
Age (years), M ± SD | 62.8 ± 8.8 | 64.2 ± 9.3 | 0.696 b |
Education: | 0.163 a | ||
Primary, n (%) | 3 (37.5) | 10 (31.3) | |
Secondary, n (%) | 4 (50.0) | 18 (56.2) | |
Incomplete higher, n (%) | 1 (12.5) | 0 (0.0) | |
Higher, n (%) | 0 (0.0) | 4 (12.5) | |
Place of residence: | 0.727 a | ||
Village, n (%) | 1 (12.5) | 8 (25.0) | |
Town up to 20,000, n (%) | 2 (25.0) | 4 (12.5) | |
21–50,000 inhabitants, n (%) | 1 (12.5) | 6 (18.8) | |
Over 50,000, n (%) | 4 (50.0) | 14 (43.7) | |
Economic zone/urban area: | 1.000 a | ||
Yes, n (%) | 5 (62.5) | 19 (59.4) | |
No, n (%) | 3 (37.5) | 13 (40.6) | |
Marital status: | 0.230 a | ||
Singles, n (%) | 3 (37.5) | 12 (37.5) | |
Partner/married relationship, n (%) | 5 (62.5) | 12 (37.5) | |
With family support, n (%) | 0 (0.0) | 8 (25.0) | |
BMI (kg/m2), Me [Q1–Q3] | 23.3 [22.7–24.6] | 22.3 [21.3–24.2] | 0.161 c |
Variable | RIOM-Yes n = 8 | RIOM-No n = 32 | p-Value |
---|---|---|---|
ECOG scale (score): | 0.547 | ||
0—asymptomatic, n (%) | 3 (37.5) | 7 (21.9) | |
1—symptomatic but completely ambulatory, n (%) | 5 (62.5) | 23 (71.9) | |
2—Symptomatic, <50% in bed during the day, n (%) | 0 (0.0) | 2 (6.2) | |
Swallowing disorders (yes) | 2 (25.0) | 13 (40.6) | 0.686 |
Percutaneous endoscopic gastrostomy (yes) | 1 (12.5) | 9 (28.1) | 0.653 |
Chronic diseases (yes) | 5 (62.5) | 13 (40.6) | 0.430 |
Tuxedo (yes) | 8 (100.0) | 31 (96.9) | 1.000 |
Drinking alcohol regularly (yes) | 4 (50.0) | 19 (55.4) | 0.702 |
Dental conditions: | 0.335 | ||
1—Normal, n (%) | 0 (0.0) | 7 (21.9) | |
2—Cavities, caries, periodontal diseases, n (%) | 7 (87.5) | 21 (65.6) | |
3—Edentulism, n (%) | 1 (12.5) | 4 (12.5) | |
Nutritional status : | 0.440 | ||
1—Satisfactory, n (%) | 2 (25.0) | 5 (15.6) | |
2—Risk of malnutrition, n (%) | 3 (37.5) | 7 (21.9) | |
3—Malnutrition, n (%) | 3 (37.5) | 20 (62.5) |
Clinical Parameters | RIOM | p-Value | |
---|---|---|---|
Yes n = 8 | No n = 32 | ||
Tumor location: | 1.000 | ||
Glottis, n (%) | 6 (75.0) | 23 (71.9) | |
Epiglottis, n (%) | 2 (25.0) | 9 (28.1) | |
Tumor: | 0.624 | ||
Tx, n (%) | 1 (12.5) | 4 (12.5) | |
T1a, n (%) | 0 (0.0) | 5 (15.6) | |
T1b, n (%) | 4 (50.0) | 12 (37.5) | |
T2, n (%) | 3 (37.5) | 8 (25.0) | |
T3, n (%) | 0 (0.0) | 3 (9.4) | |
Node: | 0.975 | ||
N0, n (%) | 5 (62.5) | 16 (50.0) | |
N1, n (%) | 1 (12.5) | 4 (12.5) | |
N2a, n (%) | 0 (0.00) | 1 (3.1) | |
N2b, n (%) | 1 (12.5) | 6 (18.8) | |
N2c, n (%) | 1 (12.5) | 4 (12.5) | |
N3a, n (%) | 0 (0.00) | 1 (3.1) | |
Stage: | 0.605 | ||
I, n (%) | 1 (12.5) | 9 (28.1) | |
II, n (%) | 2 (25.0) | 6 (18.8) | |
III, n (%) | 3 (37.5) | 5 (15.6) | |
IVa, n (%) | 1 (12.5) | 4 (12.5) | |
IVb, n (%) | 1 (12.5) | 8 (25.0) | |
Cervical lymph node groups *: | |||
I, n (%) | 0 (0.0) | 1 (3.1) | 1.000 |
II, n (%) | 3 (37.5) | 16 (50.0) | 0.698 |
III, n (%) | 1 (12.5) | 13 (40.6) | 0.222 |
IV, n (%) | 0 (0.0) | 3 (9.4) | 1.000 |
Not applicable, n (%) | 5 (62.5) | 16 (50.0) | 0.698 |
Treatment: | 0.333 | ||
Radiotherapy, n (%) | 3 (37.5) | 16 (50.0) | |
Surgery + radiotherapy, n (%) | 2 (25.0) | 2 (6.2) | |
Chemotherapy + radiotherapy, n (%) | 2 (25.0) | 5 (15.6) | |
Surgery + chemotherapy + radiotherapy, n (%) | 1 (12.5) | 9 (28.2) |
Culture Result—Genus (Positive) | RIOM | p-Value | |
---|---|---|---|
Yes n = 8 | No n = 32 | ||
Streptococcus oralis, n (%) | 3 (37.5) | 12 (37.5) | 1.000 |
Staphylococcus aureus, n (%) | 0 (0.0) | 3 (9.4) | 1.000 |
Candida albicans, n (%) | 2 (25.0) | 15 (46.9) | 0.428 |
Neisseria, n (%) | 0 (0.0) | 4 (12.5) | 0.566 |
Pseudomonas, n (%) | 0 (0.0) | 5 (15.6) | 0.563 |
Serratia mercescens, n (%) | 0 (0.0) | 3 (9.4) | 1.000 |
Bifidobacterium longum, n (%) | 1 (12.5) | 1 (3.1) | 0.364 |
Corynebacterium, n (%) | 0 (0.0) | 1 (3.1) | 1.000 |
Enterococcus faecalis, n (%) | 0 (0.0) | 1 (3.1) | 1.000 |
Klebsiella, Enterobacter and Serratia, n (%) | 1 (12.5) | 2 (6.2) | 0.498 |
Citrobacter freundii, n (%) | 0 (0.0) | 1 (3.1) | 1.000 |
Lacticaseibicillus paracasei, n (%) | 0 (0.0) | 2 (6.2) | 1.000 |
Morganella morganii, n (%) | 1 (12.5) | 1 (3.1) | 0.364 |
Streptococcus dysgalactiae, n (%) | 0 (0.0) | 1 (3.1) | 1.000 |
Veillonella parvula, n (%) | 1 (12.5) | 0 (0.0) | 0.200 |
Escherichia coli, n (%) | 0 (0.0) | 1 (3.1) | 1.000 |
Absent, n (%) | 4 (50.0) | 5 (15.6) | 0.059 |
Culture Result—Genus (%) | RIOM | p-Value | |
---|---|---|---|
Yes n = 8 | No n = 32 | ||
Streptococcus | 5.1 [4.8–8.1] | 7.6 [4.1–9.8] | 0.636 |
Prevotella melaninogenica | 16.2 [11.2–19.0] | 11.3 [2.8–18.7] | 0.287 |
Prevotella | 18.6 [12.7–23.2] | 14.3 [6.8–25.7] | 0.748 |
Rothia micilaginosa | 4.4 [2.1–6.5] | 3.2 [1.4–8.3] | 0.697 |
Aggregatibacter | 0.0 [0.0–0.6] | 0.0 [0.0–0.2] | 0.839 |
Gemella | 0.9 [0.5–1.4] | 0.0 [0.0–0.6] | 0.023 |
Porphyromonas | 7.9 [7.1–8.5] | 0.8 [0.0–2.0] | <0.001 |
Fusobacterium | 4.3 [2.7–6.9] | 0.8 [0.0–1.6] | <0.001 |
Firmicutes | 0.2 [0.0–0.3] | 0.0 [0.0–0.2] | 0.319 |
Corynebacterium matruchotii | 0.0 [0.0–1.2] | 0.0 [0.0–0.4] | 0.800 |
Neiseria | 6.8 [0.4–9.9] | 1.4 [0.1–6.0] | 0.352 |
Lacto bacillales | 2.4 [1.9–2.9] | 3.9 [1.5–6.3] | 0.176 |
Actinobacteria | 1.9 [1.1–2.8] | 2.1 [0.0–5.5] | 0.852 |
Actinomyces | 2.4 [1.5–4.6] | 3.8 [1.0–6.6] | 0.735 |
Haemophilus | 5.8 [3.8–10.9] | 2.7 [0.0–11.1] | 0.335 |
Capnocytophaga granulosa/gingivalis | 0.8 [0.3–2.2] | 0.0 [0.0–1.0] | 0.124 |
Clostridiales | 0.7 [0.5–0.8] | 0.3 [0.0–0.8] | 0.193 |
Veilonella | 0.0 [0.0–0.1] | 0.0 [0.0–0.2] | 0.946 |
Campylobacter | 1.9 [1.3–2.7] | 1.8 [0.0–3.8] | 0.723 |
Granulicatella | 0.0 [0.0–0.6] | 0.0 [0.0–0.0] | 0.302 |
Lautropia | 0.0 [0.0–2.5] | 0.0 [0.0–1.2] | 0.852 |
Shaalia odontolytica | 1.2 [0.9–2.4] | 0.4 [0.0–3.0] | 0.565 |
Leptotricha | 0.9 [0.6–2.0] | 0.5 [0.0–1.8] | 0.187 |
Stomatobaculum longum | 0.3 [0.1–0.4] | 0.2 [0.0–0.5] | 0.774 |
Tannerell | 0.0 [0.0–0.2] | 0.0 [0.0–0.3] | 0.826 |
Pasteurellaceae | 0.4 [0.2–0.8] | 0.0 [0.0–0.7] | 0.398 |
Bifidobacteriaceae | 0.0 [0.0–0.0] | 0.0 [0.0–0.3] | 0.182 |
Atopobium | 0.0 [0.0–0.1] | 0.0 [0.0–0.0] | 0.879 |
Oribacterium | 0.3 [0.0–0.4] | 0.0 [0.0–0.3] | 0.352 |
Cardiobacterium hominis | 0.0 [0.0–0.2] | 0.0 [0.0–0.0] | 0.447 |
Bergeyella cardium | 0.2 [0.0–0.3] | 0.0 [0.0–0.1] | 0.193 |
Catonella | 0.3 [0.0–0.4] | 0.0 [0.0–0.0] | 0.046 |
Mogibacterium | 0.0 [0.0–0.1] | 0.0 [0.0–0.0] | 0.800 |
Eubacterium | 0.2 [0.0–0.3] | 0.0 [0.0–0.0] | 0.137 |
Sulfurihydrogenibium | 0.0 [0.0–1.5] | 0.0 [0.0–0.0] | 0.182 |
Peptostreptococcus anaerobius | 0.0 [0.0–2.0] | 0.0 [0.0–0.5] | 0.685 |
Filifactor alocis | 0.0 [0.0–0.2] | 0.0 [0.0–0.0] | 0.554 |
Other genus | 1.8 [0.7–3.1] | 0.6 [0.3–2.9] | 0.295 |
Parameter | Cut-Off | Sensitivity | Specificity | AUC [95% CI] |
---|---|---|---|---|
Gemella | ≥1.3% | 0.375 | 0.906 | 0.764 [0.612–0.915] |
Porphyromonas | ≥6.7% | 0.875 | 0.969 | 0.975 [0.928–1.000] |
Fusobacterium | ≥2.6% | 0.875 | 0.906 | 0.904 [0.802–1.000] |
Catonella | ≥0.2% | 0.625 | 0.844 | 0.732 [0.518–0.947] |
Risk Factors | b | p | beta | p | OR [95% CI] |
---|---|---|---|---|---|
Gemella (%) | 0.411 | 0.287 | - | - | - |
Porphyromonas (%) | 1.089 | 0.013 | 0.860 | 0.013 | 2.97 [1.27–6.93] |
Fusobacterium (%) | 0.552 | 0.005 | 0.521 | 0.045 | 1.68 [1/08–3/61] |
Catonella (%) | 1.853 | 0.231 | - | - | - |
Risk Factors | RIOM | p-Value | RR [95% CI] | |
---|---|---|---|---|
Yes n = 8 | No n = 32 | |||
Gemella ≥ 1.3% | 3 (37.5%) | 3 (9.4%) | 0.082 | 3.40 [0.64–18.1] |
Porphyromonas ≥ 6.7% | 7 (87.5%) | 1 (3.1%) | <0.001 | 28.0 [3.00–261] |
Fusobacterium ≥ 2.6% | 7 (87.5%) | 3 (9.4%) | <0.001 | 21.0 [2.23–192] |
Catonella ≥ 0.2% | 5 (62.5%) | 5 (15.6%) | 0.015 | 5.00 [1.01–24.8] |
logit model Pr > 0.11 | 7 (87.5%) | 2 (6.2%) | <0.001 | 24.1 [2.61–223] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dorobisz, K.; Dorobisz, T.; Pazdro-Zastawny, K.; Czyż, K.; Janczak, M. The Influence of the Microbiome on the Complications of Radiotherapy and Its Effectiveness in Patients with Laryngeal Cancer. Cancers 2024, 16, 3707. https://doi.org/10.3390/cancers16213707
Dorobisz K, Dorobisz T, Pazdro-Zastawny K, Czyż K, Janczak M. The Influence of the Microbiome on the Complications of Radiotherapy and Its Effectiveness in Patients with Laryngeal Cancer. Cancers. 2024; 16(21):3707. https://doi.org/10.3390/cancers16213707
Chicago/Turabian StyleDorobisz, Karolina, Tadeusz Dorobisz, Katarzyna Pazdro-Zastawny, Katarzyna Czyż, and Marzena Janczak. 2024. "The Influence of the Microbiome on the Complications of Radiotherapy and Its Effectiveness in Patients with Laryngeal Cancer" Cancers 16, no. 21: 3707. https://doi.org/10.3390/cancers16213707
APA StyleDorobisz, K., Dorobisz, T., Pazdro-Zastawny, K., Czyż, K., & Janczak, M. (2024). The Influence of the Microbiome on the Complications of Radiotherapy and Its Effectiveness in Patients with Laryngeal Cancer. Cancers, 16(21), 3707. https://doi.org/10.3390/cancers16213707