The Evolution of Treatment Policies and Outcomes for Patients Aged 60 and Older with Acute Myeloid Leukemia: A Population-Based Analysis over Two Decades
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Stratification of the Inclusion Period
2.3. Handling of the MDS-EB2 Population
2.4. Collection of Baseline, Treatment, and Outcome Data
2.5. Endpoints and Statistical Analysis
3. Results
4. Discussion
4.1. Policy and Survival
4.2. Distribution of Baseline Characteristics
4.3. Choice of First-Line Therapy
4.4. The Onset of Venetoclax
4.5. Strengths
4.6. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Appelbaum, F.R.; Gundacker, H.; Head, D.R.; Slovak, M.L.; Willman, C.L.; Godwin, J.E.; Anderson, J.E.; Petersdorf, S.H. Age and acute myeloid leukemia. Blood 2006, 107, 3481–3485. [Google Scholar] [CrossRef] [PubMed]
- Almeida, A.M.; Ramos, F. Acute myeloid leukemia in the older adults. Leuk. Res. Rep. 2016, 6, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Döhner, H.; Estey, E.; Grimwade, D.; Amadori, S.; Appelbaum, F.R.; Büchner, T.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Larson, R.A.; et al. Diagnosis and management of AML in adults: 2017 ELN recommendations from an international expert panel. Blood 2017, 129, 424–447. [Google Scholar] [CrossRef]
- Döhner, H.; Wei, A.H.; Appelbaum, F.R.; Craddock, C.; DiNardo, C.D.; Dombret, H.; Ebert, B.L.; Fenaux, P.; Godley, L.A.; Hasserjian, R.P.; et al. Diagnosis and management of AML in adults: 2022 recommendations from an international expert panel on behalf of the ELN. Blood 2022, 140, 1345–1377. [Google Scholar] [CrossRef] [PubMed]
- De Kouchkovsky, I.; Abdul-Hay, M. Acute myeloid leukemia: A comprehensive review and 2016 update. Blood Cancer J. 2016, 6, e441. [Google Scholar] [CrossRef]
- Weinberg, O.K.; Porwit, A.; Orazi, A.; Hasserjian, R.P.; Foucar, K.; Duncavage, E.J.; Arber, D.A. The International Consensus Classification of acute myeloid leukemia. Virchows Arch. 2023, 482, 27–37. [Google Scholar] [CrossRef]
- Estey, E.H. Acute myeloid leukemia: 2019 update on risk-stratification and management. Am. J. Hematol. 2018, 93, 1267–1291. [Google Scholar] [CrossRef]
- Aparicio-Pérez, C.; de la Torre, E.P.; Sanchez-Garcia, J.; Martín-Calvo, C.; Martínez-Losada, C.; Casaño-Sanchez, J.; Serrano-López, J.; Serrano, J. Evolving Risk Classifications in AML in a Real-Life Scenario: After Changes upon Changes, Is It More and More Adverse? Cancers 2023, 15, 1425. [Google Scholar] [CrossRef]
- Dinardo, C.D.; Jonas, B.A.; Pullarkat, V.; Thirman, M.J.; Garcia, J.S.; Wei, A.H.; Konopleva, M.; Döhner, H.; Letai, A.; Fenaux, P.; et al. Azacitidine and Venetoclax in Previously Untreated Acute Myeloid Leukemia. N. Engl. J. Med. 2020, 383, 617–629. [Google Scholar] [CrossRef]
- DiNardo, C.D.; Maiti, A.; Rausch, C.R.; Pemmaraju, N.; Naqvi, K.; Daver, N.G.; Kadia, T.M.; Borthakur, G.; Ohanian, M.; Alvarado, Y.; et al. 10-day decitabine with venetoclax for newly diagnosed intensive chemotherapy ineligible, and relapsed or refractory acute myeloid leukaemia: A single-centre, phase 2 trial. Lancet Haematol. 2020, 7, e724–e736. [Google Scholar] [CrossRef]
- Ucciero, A.; Pagnoni, F.; Scotti, L.; Pisterna, A.; Barone-Adesi, F.; Gaidano, G.; Patriarca, A.; Lunghi, M. Venetoclax with Hypomethylating Agents in Newly Diagnosed Acute Myeloid Leukemia: A Systematic Review and Meta-Analysis of Survival Data from Real-World Studies. Cancers 2023, 15, 4618. [Google Scholar] [CrossRef] [PubMed]
- Alsouqi, A.; Geramita, E.; Im, A. Treatment of Acute Myeloid Leukemia in Older Adults. Cancers 2023, 15, 5409. [Google Scholar] [CrossRef] [PubMed]
- Diekmann, B.; Timmerman, M.; Hempenius, L.; van Roon, E.; Franken, B.; Hoogendoorn, M. New treatment opportunities for older patients with acute myeloid leukemia and the increasing importance of frailty assessment—An oncogeriatric perspective. J. Geriatr. Oncol. 2024, 15, 101631. [Google Scholar] [CrossRef] [PubMed]
- DiNardo, C.D.; Stein, E.M.; de Botton, S.; Roboz, G.J.; Altman, J.K.; Mims, A.S.; Swords, R.; Collins, R.H.; Mannis, G.N.; Pollyea, D.A.; et al. Durable Remissions with Ivosidenib in IDH1-Mutated Relapsed or Refractory AML. N. Engl. J. Med. 2018, 378, 2386–2398. [Google Scholar] [CrossRef]
- Adès, L.; Girshova, L.; Doronin, V.A.; Díez-Campelo, M.; Valcárcel, D.; Kambhampati, S.; Viniou, N.-A.; Woszczyk, D.; Arias, R.D.P.; Symeonidis, A.; et al. Pevonedistat plus azacitidine vs azacitidine alone in higher-risk MDS/chronic myelomonocytic leukemia or low-blast-percentage AML. Blood Adv. 2022, 6, 5132–5145. [Google Scholar] [CrossRef]
- Cortes, J.E.; Heidel, F.H.; Hellmann, A.; Fiedler, W.; Smith, B.D.; Robak, T.; Montesinos, P.; Pollyea, D.A.; DesJardins, P.; Ottmann, O.; et al. Randomized comparison of low dose cytarabine with or without glasdegib in patients with newly diagnosed acute myeloid leukemia or high-risk myelodysplastic syndrome. Leukemia 2019, 33, 379–389. [Google Scholar] [CrossRef]
- Huls, G.; Chitu, D.A.; Pabst, T.; Klein, S.K.; Stussi, G.; Griskevicius, L.; Valk, P.J.M.; Cloos, J.; van de Loosdrecht, A.A.; Breems, D.; et al. Ibrutinib added to 10-day decitabine for older patients with AML and higher risk MDS. Blood Adv. 2020, 4, 4267–4277. [Google Scholar] [CrossRef]
- Montesinos, P.; Recher, C.; Vives, S.; Zarzycka, E.; Wang, J.; Bertani, G.; Heuser, M.; Calado, R.T.; Schuh, A.C.; Yeh, S.-P.; et al. Ivosidenib and Azacitidine in IDH1-Mutated Acute Myeloid Leukemia. N. Engl. J. Med. 2022, 386, 1519–1531. [Google Scholar] [CrossRef]
- Nilius-Eliliwi, V.; Gerding, W.M.; Schroers, R.; Nguyen, H.P.; Vangala, D.B. Optical Genome Mapping for Cytogenetic Diagnostics in AML. Cancers 2023, 15, 1684. [Google Scholar] [CrossRef]
- Bazinet, A.; Kadia, T.M. Changing paradigms in the treatment of acute myeloid leukemia in older patients. Clin. Adv. Hematol. Oncol. 2022, 20, 37–46. Available online: https://www.ncbi.nlm.nih.gov/pubmed/35060961 (accessed on 29 August 2024).
- Bullinger, L.; Döhner, K.; Döhner, H. Genomics of Acute Myeloid Leukemia Diagnosis and Pathways. J. Clin. Oncol. 2017, 35, 934–946. [Google Scholar] [CrossRef] [PubMed]
- Kibbelaar, R.; Oortgiesen, B.; van der Wal-Oost, A.; Boslooper, K.; Coebergh, J.; Veeger, N.; Joosten, P.; Storm, H.; van Roon, E.; Hoogendoorn, M. Bridging the gap between the randomised clinical trial world and the real world by combination of population-based registry and electronic health record data: A case study in haemato-oncology. Eur. J. Cancer 2017, 86, 178–185. [Google Scholar] [CrossRef] [PubMed]
- Kalin, B.; Pijnappel, E.N.; van Gelder, M.; Visser, O.; van de Loosdrecht, A.A.; Ossenkoppele, G.J.; Cornelissen, J.J.; Dinmohamed, A.G.; Jongen-Lavrencic, M. Intensive treatment and trial participation in elderly acute myeloid leukemia patients: A population-based analysis in The Netherlands. Cancer Epidemiol. 2018, 57, 90–96. [Google Scholar] [CrossRef] [PubMed]
- Klepin, H.D.; Estey, E.; Kadia, T. More Versus Less Therapy for Older Adults With Acute Myeloid Leukemia: New Perspectives on an Old Debate. Am. Soc. Clin. Oncol. Educ. Book 2019, 39, 421–432. [Google Scholar] [CrossRef]
- Juliusson, G.; Lazarevic, V.; Hörstedt, A.-S.; Hagberg, O.; Höglund, M.; Swedish Acute Leukemia Registry, G. Acute myeloid leukemia in the real world: Why population-based registries are needed. Blood 2012, 119, 3890–3899. [Google Scholar] [CrossRef]
- Estey, E.; Thall, P.; Beran, M.; Kantarjian, H.; Pierce, S.; Keating, M. Effect of Diagnosis (Refractory Anemia With Excess Blasts, Refractory Anemia With Excess Blasts in Transformation, or Acute Myeloid Leukemia [AML]) on Outcome of AML-Type Chemotherapy. Blood 1997, 90, 2969–2977. Available online: https://www.ncbi.nlm.nih.gov/pubmed/9376577 (accessed on 29 August 2024). [CrossRef]
- Estey, E.H.; Hasserjian, R.P.; Döhner, H. Distinguishing AML from MDS: A fixed blast percentage may no longer be optimal. Blood 2021, 139, 323–332. [Google Scholar] [CrossRef]
- DiNardo, C.D.; Garcia-Manero, G.; Kantarjian, H.M. Time to blur the blast boundaries. Cancer 2022, 128, 1568–1570. [Google Scholar] [CrossRef]
- van der Helm, L.H.; Scheepers, E.R.; Veeger, N.J.; Daenen, S.M.; Mulder, A.B.; Berg, E.v.D.; Vellenga, E.; Huls, G. Azacitidine might be beneficial in a subgroup of older AML patients compared to intensive chemotherapy: A single centre retrospective study of 227 consecutive patients. J. Hematol. Oncol. 2013, 6, 29. [Google Scholar] [CrossRef]
- SoPHIA-GENETICS. Extended Myeloid Solution, a98-Gene Panel for the Illumia NextSeq. Available online: https://www.sophiagenetics.com/wp-content/uploads/2021/08/RUO_B.1.2.2.21_EXT-MYS_V9.pdf (accessed on 29 August 2024).
- Sorror, M.L.; Maris, M.B.; Storb, R.; Baron, F.; Sandmaier, B.M.; Maloney, D.G.; Storer, B. Hematopoietic cell transplantation (HCT)-specific comorbidity index: A new tool for risk assessment before allogeneic HCT. Blood 2005, 106, 2912–2919. [Google Scholar] [CrossRef]
- Schemper, M.; Smith, T.L. A note on quantifying follow-up in studies of failure time. Control. Clin. Trials 1996, 17, 343–346. [Google Scholar] [CrossRef] [PubMed]
- Canva-UK-Operations-Limited. Flourish Software Developer Kit. Available online: https://flourish.studio (accessed on 29 August 2024).
- Lübbert, M.; Wijermans, P.W.; Kicinski, M.; Chantepie, S.; Van der Velden, W.J.F.M.; Noppeney, R.; Griškevičius, L.; Neubauer, A.; Crysandt, M.; Vrhovac, R.; et al. 10-day decitabine versus 3 + 7 chemotherapy followed by allografting in older patients with acute myeloid leukaemia: An open-label, randomised, controlled, phase 3 trial. Lancet Haematol. 2023, 10, e879–e889. [Google Scholar] [CrossRef] [PubMed]
- Hemminki, K.; Hemminki, J.; Försti, A.; Sud, A. Survival in hematological malignancies in the Nordic countries through a half century with correlation to treatment. Leukemia 2023, 37, 854–863. [Google Scholar] [CrossRef] [PubMed]
- Pulte, D.; Jansen, L.; Brenner, H. Changes in long term survival after diagnosis with common hematologic malignancies in the early 21st century. Blood Cancer J. 2020, 10, 56. [Google Scholar] [CrossRef]
- Kaplan, Z.L.R.; van Leeuwen, N.; Posthuma, E.F.M.; Visser, O.; Huls, G.; van de Loosdrecht, A.A.; Dinmohamed, A.G. Improved relative survival in older patients with acute myeloid leukemia over a 30-year period in the Netherlands: A long haul is needed to change nothing into something. Leukemia 2022, 36, 596–598. [Google Scholar] [CrossRef]
- Nagel, G.; Weber, D.; Fromm, E.; Erhardt, S.; Lübbert, M.; Fiedler, W.; Kindler, T.; Krauter, J.; Brossart, P.; Kündgen, A.; et al. Epidemiological, genetic, and clinical characterization by age of newly diagnosed acute myeloid leukemia based on an academic population-based registry study (AMLSG BiO). Ann. Hematol. 2017, 96, 1993–2003. [Google Scholar] [CrossRef]
- Metzeler, K.H.; Herold, T.; Rothenberg-Thurley, M.; Amler, S.; Sauerland, M.C.; Görlich, D.; Schneider, S.; Konstandin, N.P.; Dufour, A.; Bräundl, K.; et al. Spectrum and prognostic relevance of driver gene mutations in acute myeloid leukemia. Blood 2016, 128, 686–698. [Google Scholar] [CrossRef]
- Winters, A.C.; Gutman, J.A.; Purev, E.; Nakic, M.; Tobin, J.; Chase, S.; Kaiser, J.; Lyle, L.; Boggs, C.; Halsema, K.; et al. Real-world experience of venetoclax with azacitidine for untreated patients with acute myeloid leukemia. Blood Adv. 2019, 3, 2911–2919. [Google Scholar] [CrossRef]
- Janssen, J.J.W.M.; Löwenberg, B.; Manz, M.; Biemond, B.J.; Westerweel, P.E.; Klein, S.K.; Fehr, M.; Sinnige, H.A.M.; Efthymiou, A.; Legdeur, M.C.J.C.; et al. Addition of the nuclear export inhibitor selinexor to standard intensive treatment for elderly patients with acute myeloid leukemia and high risk myelodysplastic syndrome. Leukemia 2022, 36, 2189–2195. [Google Scholar] [CrossRef]
- Tettero, J.M.; Al-Badri, W.K.W.; Ngai, L.L.; Bachas, C.; Breems, D.A.; van Elssen, C.H.M.J.; Fischer, T.; Gjertsen, B.T.; van Gorkom, G.N.Y.; Gradowska, P.; et al. Concordance in measurable residual disease result after first and second induction cycle in acute myeloid leukemia: An outcome- and cost-analysis. Front. Oncol. 2022, 12, 999822. [Google Scholar] [CrossRef]
- Bocchia, M.; Candoni, A.; Borlenghi, E.; Defina, M.; Filì, C.; Cattaneo, C.; Sammartano, V.; Fanin, R.; Sciumè, M.; Sicuranza, A.; et al. Real-world experience with decitabine as a first-line treatment in 306 elderly acute myeloid leukaemia patients unfit for intensive chemotherapy. Hematol. Oncol. 2019, 37, 447–455. [Google Scholar] [CrossRef] [PubMed]
- Mozessohn, L.; Cheung, M.C.; Fallahpour, S.; Gill, T.; Maloul, A.; Zhang, L.; Lau, O.; Buckstein, R. Azacitidine in the ‘real-world’: An evaluation of 1101 higher-risk myelodysplastic syndrome/low blast count acute myeloid leukaemia patients in Ontario, Canada. Br. J. Haematol. 2018, 181, 803–815. [Google Scholar] [CrossRef] [PubMed]
- CentraalBureauStatistiek. Inhabitants Province Friesland Between 2005 and 2023. 2024. Available online: https://opendata.cbs.nl/statline/#/CBS/nl/dataset/70072ned/table?ts=1727602172107 (accessed on 29 August 2024).
Period | 2005–2011 | 2012–2016 | 2017–2021 | 2022–2023 | Total |
---|---|---|---|---|---|
Demographics | |||||
n (%) | 101 (27%) | 106 (29%) | 105 (28%) | 58 (16%) | 370 (100%) |
Female, n (%) | 45 (45%) | 31 (30%) | 33 (31%) | 19 (33%) | 128 (35%) |
Age in years, median [Q1–Q3] | 75 [69–80] | 73 [66–78] | 72 [68–78] | 74 [70–77] | 73 [68–78] |
60–69 years, n (%) | 30 (30%) | 40 (38%) | 36 (34%) | 14 (24%) | 120 (32%) |
70–79 years, n (%) | 44 (44%) | 43 (41%) | 49 (47%) | 35 (60%) | 171 (46%) |
>80 years, n (%) | 27 (27%) | 23 (22%) | 20 (49%) | 9 (16%) | 79 (21%) |
WHO/ECOG score | |||||
0–1, n (%) | 62 (61%) | 69 (65%) | 88 (84%) | 50 (86%) | 269 (73%) |
2–4, n (%) | 22 (22%) | 24 (23%) | 15 (14%) | 8 (14%) | 69 (19%) |
Unknown, n (%) | 17 (17%) | 13 (12%) | 2 (2%) | 0 | 32 (9%) |
HCT-CI | |||||
0, n (%) | 21 (21%) | 17 (16%) | 19 (18%) | 5 (9%) | 62 (17%) |
1, n (%) | 12 (12%) | 10 (10%) | 10 (10%) | 12 (21%) | 44 (12%) |
2–3, n (%) | 11 (11%) | 20 (19%) | 39 (37%) | 19 (33%) | 89 (21%) |
>3, n (%) | 17 (17%) | 21 (20%) | 36 (34%) | 22 (38%) | 97 (26%) |
Unknown, n (%) | 40 (40%) | 38 (36%) | 1 (1%) | 0 | 78 (21%) |
Diagnosis | |||||
De novo AML, n (%) | 74 (73%) | 77 (73%) | 91 (87%) | 41 (71%) | 283 (76%) |
sAML, n (%) | 20 (20%) | 17 (16%) | 9 (9%) | 12 (21%) | 58 (16%) |
tAML, n (%) | 7 (7%) | 12 (11%) | 5 (5%) | 5 (9%) | 29 (8%) |
ELN2017 classification | |||||
Favorable, n (%) | 4 (4%) | 8 (8%) | 9 (9%) C | 4 (7%) D | 25 (7%) |
Intermediate, n (%) | 16 (16%) | 29 (27%) | 28 (27%) C | 12 (21%) D | 85 (23%) |
Adverse, n (%) | 29 (29%) | 34 (32%) | 51 (49%) C | 34 (59%) D | 148 (40%) |
Unknown, n (%) | 52 (51%) | 35 (33%) | 17 (16%) | 8 (14%) | 112 (30%) |
First-line therapy | |||||
7+3 A, n (%) | 13 (13%) | 29 (27%) | 28 (27%) | 3 (5%) | 73 (20%) |
BSC only, n (%) | 82 (81%) | 38 (36%) | 26 (25%) | 15 (26%) | 161 (44%) |
HMA mono, n (%) | 6 (6%) | 39 (37%) | 48 (46%) | 5 (9%) | 98 (26%) |
HMA+VEN, n (%) | 0 | 0 | 1 (1%) | 34 (59%) | 35 (9%) |
Other B, n (%) | 0 | 0 | 2 (2%) | 1 (2%) | 3 (1%) |
Period | 2005–2011 | 2012–2016 | 2017–2021 | 2022–2023 | Total |
---|---|---|---|---|---|
n (%) | 101 (27%) | 106 (29%) | 105 (28%) | 58 (16%) | 370 (100%) |
Remission | |||||
Reached CRi, n (%) | N/A A | N/A A | 21 (20%) | 26 (45%) | 47 (35%) |
Time to CRi in months, median | N/A A | N/A A | 1.9 | 1.2 | 1.6 |
Reached CR, n (%) | 6 (6%) | 15 (14%) | 25 (24%) | 10 (17%) | 56 (15%) |
Time to CR in months, median | 1.5 | 2.6 | 1.3 | 1.0 | 1.6 |
Reached CR/CRi, n (%) | 6 (6%) | 15 (14%) | 38 (36%) | 31 (53%) | 90 (24%) |
Time to CR/CRi in months, median | 1.5 A | 2.6 A | 1.5 | 1.2 | 2.0 |
Transplantation | |||||
HSCT, n (%) | 3 (3%) | 9 (9%) | 28 (27%) | 8 (14%) | 48 (13%) |
Time to HSCT in months, median | 4.2 | 3.8 | 3.8 | 3.8 | 4.0 |
Survival | |||||
Overall survival in months, median | 3.7 | 7.3 | 8.0 | 9.4 | 6.2 |
OS of 60–69 year olds, median | 6.2 | 12.6 | 34.9 | Not reached B | 13.5 |
OS of 70–79 year olds, median | 4.6 | 5.4 | 7.7 | 11.8 B | 6.8 |
OS of 80+ year olds, median | 2.8 | 5.6 | 2.5 | 1.9 | 2.5 |
1-year survival overall, % | 19.6% | 36.8% | 38.1% | 48.1% B | 34.3% B |
1-year survival 60–69, % | 33.3% | 51.9% | 63.3% | 71.4% B | 53.0% B |
1-year survival 70–79, % | 19.3% | 30.1% | 34.0% | 48.4% B | 32.3% B |
1-year survival 80+, % | 4.0% | 20.3% | 0% | 11.1% | 8.5% |
2-year survival, % | 8.3% | 27.6% | 33.0% | 31.4% B | 25.1% B |
2-year survival 60–69, % | 20.0% | 44.1% | 57.5% | N/E B | 44.8% B |
2-year survival 70–79, % | 4.8% | 20.1% | 27.6% | 23.5% B | 20.3% B |
2-year survival 80+, % | 0% | 10.1% | 0% | 0% | 2.8% |
Early death, n (%) | 33 (32.7%) | 32 (30.2%) | 25 (23.8%) | 14 (24.1%) | 104 (28.1%) |
Follow-up time in months, median | 3.6 | 6.1 | 7.4 | 10.1 | 5.6 |
Followed until death, n (%) | 96 (95%) | 88 (83%) | 78 (74%) | 34 (59%) | 296 (80%) |
BSC | |||||
Received only BSC, n (%) | 82 (81%) | 38 (36%) | 26 (25%) | 15 (26%) | 161 (44%) |
Age in years, median [Q1–Q3] | 76 [71–82] | 76 [73–83] | 80 [73–84] | 78 [73–84] | 78 [72–83] |
Overall survival in months, median | 2.9 | 1.6 | 2.1 | 0.7 | 2.2 |
BSC | HMA | HMA+VEN | 7+3 | |
---|---|---|---|---|
Period | ||||
Total, n (%) | 161 (44%) | 98 (23%) | 35 (9%) | 73 (20%) |
2005–2011, n (%) | 82 (81%) | 6 (6%) | 0 | 13 (13%) |
2012–2016, n (%) | 38 (36%) | 39 (37%) | 0 | 29 (27%) |
2017–2022, n (%) | 26 (25%) | 48 (46%) | 1 (1%) | 28 (27%) |
2022–2023, n (%) | 15 (26%) | 5 (9%) | 34 (59%) | 3 (5%) |
Remission | ||||
Reached CRi, n (%) | 0 | 18 (18%) A | 23 (66%) A | 7 (10%) A |
Time to CRi in months, median | N/A | 3.3 A | 1.2 A | 1.3 A |
Reached CR, n (%) | 0 | 14 (14%) | 8 (23%) | 34 (47%) |
Time to CR in months, median | N/A | 3.4 | 1.7 | 1.3 |
Reached CR/CRi, n (%) | 0 | 25 (25%) A | 27 (77%) A | 38 (52%) A |
Time to CR/CRi in months, median | N/A | 3.4 A | 1.7 A | 1.3 A |
Transplantation | ||||
HSCT, n (%) | 1 (1%) | 11 (11%) | 5 (14%) B | 31 (42%) |
Time to HSCT in months, median | 3.8 | 4.8 | 4.1 | 3.7 |
Survival | ||||
Overall survival in months, median | 2.1 | 10.0 | 17.3 | 20.7 |
1-year survival, % | 10.3% | 46.2% | 62.2% B | 56.9% |
2-year OS, % | 3.0% | 36.5% | 34.8% B | 48.2% |
Early death, n (%) | 76 (47.2%) | 16 (16.3%) | 3 (8.5%) | 10 (13.6%) |
Follow-up time in months, median | 2.2 | 10.5 | 14.5 | 13.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diekmann, B.; Veeger, N.; Rozema, J.; Kibbelaar, R.; Franken, B.; Güler, Y.; Adema, B.; van Roon, E.; Hoogendoorn, M., on behalf of the HemoBase Population Registry Consortium. The Evolution of Treatment Policies and Outcomes for Patients Aged 60 and Older with Acute Myeloid Leukemia: A Population-Based Analysis over Two Decades. Cancers 2024, 16, 3907. https://doi.org/10.3390/cancers16233907
Diekmann B, Veeger N, Rozema J, Kibbelaar R, Franken B, Güler Y, Adema B, van Roon E, Hoogendoorn M on behalf of the HemoBase Population Registry Consortium. The Evolution of Treatment Policies and Outcomes for Patients Aged 60 and Older with Acute Myeloid Leukemia: A Population-Based Analysis over Two Decades. Cancers. 2024; 16(23):3907. https://doi.org/10.3390/cancers16233907
Chicago/Turabian StyleDiekmann, Benno, Nic Veeger, Johanne Rozema, Robby Kibbelaar, Bas Franken, Yasemin Güler, Bram Adema, Eric van Roon, and Mels Hoogendoorn on behalf of the HemoBase Population Registry Consortium. 2024. "The Evolution of Treatment Policies and Outcomes for Patients Aged 60 and Older with Acute Myeloid Leukemia: A Population-Based Analysis over Two Decades" Cancers 16, no. 23: 3907. https://doi.org/10.3390/cancers16233907
APA StyleDiekmann, B., Veeger, N., Rozema, J., Kibbelaar, R., Franken, B., Güler, Y., Adema, B., van Roon, E., & Hoogendoorn, M., on behalf of the HemoBase Population Registry Consortium. (2024). The Evolution of Treatment Policies and Outcomes for Patients Aged 60 and Older with Acute Myeloid Leukemia: A Population-Based Analysis over Two Decades. Cancers, 16(23), 3907. https://doi.org/10.3390/cancers16233907