Characterization of Somatostatin Receptor 2 Gene Expression and Immune Landscape in Sinonasal Malignancies
Simple Summary
Abstract
1. Introduction
2. Patients and Methods
2.1. Specimens
2.2. Cohort Characteristics
2.3. DNA Next-Generation Sequencing (NGS)
Identification of Genetic Variants
2.4. RNA Whole-Transcriptome Sequencing (WTS)
2.5. Immunotherapy-Related Biomarkers, Signatures, and Immune Cell Infiltration
2.6. Epstein–Barr Virus and Human Papillomavirus Status
2.7. Statistical Analysis
3. Results
3.1. SSTR2 Expression
3.2. Genomic Alterations
3.3. Immune Features
3.4. Transcriptomic Differences in High vs. Low SSTR2-Expressing ONB
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Denaro, N.; Merlano, M.; Numico, G.; Garrone, O.; Bossi, P. Complete response to immunotherapy in sinonasal undifferentiated carcinoma. Tumori J. 2021, 107, NP101–NP104. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Gao, A.X.; He, Y.L.; Xu, M.J.; Lu, H.J. Immunotherapy in SMARCB1 (INI-1)-deficient sinonasal carcinoma: Two case reports. World J. Clin. Cases 2023, 11, 7911–7919. [Google Scholar] [CrossRef] [PubMed]
- Gay, L.M.; Kim, S.; Fedorchak, K.; Kundranda, M.; Odia, Y.; Nangia, C.; Battiste, J.; Colon-Otero, G.; Powell, S.; Russell, J.; et al. Comprehensive Genomic Profiling of Esthesioneuroblastoma Reveals Additional Treatment Options. Oncologist 2017, 22, 834–842. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Wan, Z.; Zhang, E.; Piao, Y. Genomic profiling and immune landscape of olfactory neuroblastoma in China. Front. Oncol. 2023, 13, 1226494. [Google Scholar] [CrossRef] [PubMed]
- Barnes, E. (Ed.) Nasal Cavity, Paranasal Sinuses, and Nasopharynx. In Surgical Pathology of the Head and Neck, 3rd ed.; CRC Press: Boca Raton, FL, USA, 2009. [Google Scholar]
- Finlay, J.B.; Ireland, A.S.; Hawgood, S.B.; Reyes, T.; Ko, T.; Olsen, R.R.; Abi Hachem, R.; Jang, D.W.; Bell, D.; Chan, J.M.; et al. Olfactory neuroblastoma mimics molecular heterogeneity and lineage trajectories of small-cell lung cancer. Cancer Cell 2024, 42, 1086–1105.e13. [Google Scholar] [CrossRef] [PubMed]
- Jurmeister, P.; Gloss, S.; Roller, R.; Leitheiser, M.; Schmid, S.; Mochmann, L.H.; Paya Capilla, E.; Fritz, R.; Dittmayer, C.; Friedrich, C.; et al. DNA methylation-based classification of sinonasal tumors. Nat. Commun. 2022, 13, 7148. [Google Scholar] [CrossRef] [PubMed]
- Classe, M.; Yao, H.; Mouawad, R.; Creighton, C.J.; Burgess, A.; Allanic, F.; Wassef, M.; Leroy, X.; Verillaud, B.; Mortuaire, G.; et al. Integrated Multi-omic Analysis of Esthesioneuroblastomas Identifies Two Subgroups Linked to Cell Ontogeny. Cell Rep. 2018, 25, 811–821.e5. [Google Scholar] [CrossRef] [PubMed]
- Capper, D.; Jones, D.T.W.; Sill, M.; Hovestadt, V.; Schrimpf, D.; Sturm, D.; Koelsche, C.; Sahm, F.; Chavez, L.; Reuss, D.E.; et al. DNA methylation-based classification of central nervous system tumours. Nature 2018, 555, 469–474. [Google Scholar] [CrossRef] [PubMed]
- Antunes, P.; Ginj, M.; Zhang, H.; Waser, B.; Baum, R.P.; Reubi, J.C.; Maecke, H. Are radiogallium-labelled DOTA-conjugated somatostatin analogues superior to those labelled with other radiometals? Eur. J. Nucl. Med. Mol. Imaging 2007, 34, 982–993. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.; Tann, M. Highly variable biodistribution of (68)Ga labeled somatostatin analogues (68)Ga-DOTA-NOC and (68)Ga-DOTA-TATE in neuroendocrine tumors: Clinical implications for somatostatin receptor directed PET/CT. Hepatobiliary Surg. Nutr. 2022, 11, 654–661. [Google Scholar] [CrossRef] [PubMed]
- Delpassand, E.S.; Samarghandi, A.; Zamanian, S.; Wolin, E.M.; Hamiditabar, M.; Espenan, G.D.; Erion, J.L.; O’Dorisio, T.M.; Kvols, L.K.; Simon, J.; et al. Peptide receptor radionuclide therapy with 177Lu-DOTATATE for patients with somatostatin receptor-expressing neuroendocrine tumors: The first US phase 2 experience. Pancreas 2014, 43, 518–525. [Google Scholar] [CrossRef] [PubMed]
- Si, Y.; Kim, S.; Ou, J.; Lu, Y.; Ernst, P.; Chen, K.; Whitt, J.; Carter, A.M.; Markert, J.M.; Bibb, J.A.; et al. Anti-SSTR2 antibody-drug conjugate for neuroendocrine tumor therapy. Cancer Gene Ther. 2021, 28, 799–812. [Google Scholar] [CrossRef] [PubMed]
- Mandriani, B.; Pelle, E.; Mannavola, F.; Palazzo, A.; Marsano, R.M.; Ingravallo, G.; Cazzato, G.; Ramello, M.C.; Porta, C.; Strosberg, J.; et al. Development of anti-somatostatin receptors CAR T cells for treatment of neuroendocrine tumors. J. Immunother. Cancer 2022, 10, e004854. [Google Scholar] [CrossRef] [PubMed]
- Lechner, M.; Takahashi, Y.; Turri-Zanoni, M.; Liu, J.; Counsell, N.; Hermsen, M.; Kaur, R.P.; Zhao, T.; Ramanathan, M., Jr.; Schartinger, V.H.; et al. Clinical outcomes, Kadish-INSICA staging and therapeutic targeting of somatostatin receptor 2 in olfactory neuroblastoma. Eur. J. Cancer 2022, 162, 221–236. [Google Scholar] [CrossRef] [PubMed]
- Liu, K.Y.; Goldrich, D.Y.; Ninan, S.J.; Filimonov, A.; Lam, H.; Govindaraj, S.; Iloreta, A.M. The value of (68) Gallium-DOTATATE PET/CT in sinonasal neuroendocrine tumor management: A case series. Head Neck 2021, 43, E30–E40. [Google Scholar] [CrossRef] [PubMed]
- Cracolici, V.; Wang, E.W.; Gardner, P.A.; Snyderman, C.; Gargano, S.M.; Chiosea, S.; Singhi, A.D.; Seethala, R.R. SSTR2 Expression in Olfactory Neuroblastoma: Clinical and Therapeutic Implications. Head Neck Pathol. 2021, 15, 1185–1191. [Google Scholar] [CrossRef] [PubMed]
- Czapiewski, P.; Kunc, M.; Gorczynski, A.; Haybaeck, J.; Okon, K.; Reszec, J.; Lewczuk, A.; Dzierzanowski, J.; Karczewska, J.; Biernat, W.; et al. Frequent expression of somatostatin receptor 2a in olfactory neuroblastomas: A new and distinctive feature. Hum. Pathol. 2018, 79, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Roytman, M.; Tassler, A.B.; Kacker, A.; Schwartz, T.H.; Dobri, G.A.; Strauss, S.B.; Capalbo, A.M.; Magge, R.S.; Barbaro, M.; Lin, E.; et al. [68Ga]-DOTATATE PET/CT and PET/MRI in the diagnosis and management of esthesioneuroblastoma: Illustrative cases. J. Neurosurg. Case Lessons 2021, 1, CASE2058. [Google Scholar] [CrossRef] [PubMed]
- Hasan, O.K.; Ravi Kumar, A.S.; Kong, G.; Oleinikov, K.; Ben-Haim, S.; Grozinsky-Glasberg, S.; Hicks, R.J. Efficacy of Peptide Receptor Radionuclide Therapy for Esthesioneuroblastoma. J. Nucl. Med. 2020, 61, 1326–1330. [Google Scholar] [CrossRef] [PubMed]
- Adnan, A.; Basu, S. Combined (177)Lu-DOTATATE Peptide Receptor Radionuclide Therapy and Platinum-Based Chemotherapy in Recurrent, Metastatic Sinonasal Neuroendocrine Carcinoma: A Promising Therapeutic Option. J. Nucl. Med. Technol. 2020, 48, 292–294. [Google Scholar] [CrossRef] [PubMed]
- Kundra, R.; Zhang, H.; Sheridan, R.; Sirintrapun, S.J.; Wang, A.; Ochoa, A.; Wilson, M.; Gross, B.; Sun, Y.; Madupuri, R.; et al. OncoTree: A Cancer Classification System for Precision Oncology. JCO Clin. Cancer Inf. 2021, 5, 221–230. [Google Scholar] [CrossRef] [PubMed]
- Muzellec, B.; Telenczuk, M.; Cabeli, V.; Andreux, M. PyDESeq2, a python package for bulk RNA-seq differential expression analysis. Bioinformatics 2023, 39, btad547. [Google Scholar] [CrossRef] [PubMed]
- Subramanian, A.; Tamayo, P.; Mootha, V.K.; Mukherjee, S.; Ebert, B.L.; Gillette, M.A.; Paulovich, A.; Pomeroy, S.L.; Golub, T.R.; Lander, E.S.; et al. Gene set enrichment analysis: A knowledge-based approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 2005, 102, 15545–15550. [Google Scholar] [CrossRef] [PubMed]
- Liberzon, A.; Birger, C.; Thorvaldsdottir, H.; Ghandi, M.; Mesirov, J.P.; Tamayo, P. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 2015, 1, 417–425. [Google Scholar] [CrossRef] [PubMed]
- Finotello, F.; Mayer, C.; Plattner, C.; Laschober, G.; Rieder, D.; Hackl, H.; Krogsdam, A.; Loncova, Z.; Posch, W.; Wilflingseder, D.; et al. Molecular and pharmacological modulators of the tumor immune contexture revealed by deconvolution of RNA-seq data. Genome Med. 2019, 11, 34. [Google Scholar] [CrossRef] [PubMed]
- Bao, R.; Stapor, D.; Luke, J.J. Molecular correlates and therapeutic targets in T cell-inflamed versus non-T cell-inflamed tumors across cancer types. Genome Med. 2020, 12, 90. [Google Scholar] [CrossRef] [PubMed]
- Baraban, E.; Tong, C.C.L.; Adappa, N.D.; Cooper, K. A subset of sinonasal undifferentiated carcinoma is associated with transcriptionally active high-risk human papillomavirus by in situ hybridization: A clinical and pathologic analysis. Hum. Pathol. 2020, 101, 64–69. [Google Scholar] [CrossRef] [PubMed]
- De Cecco, L.; Serafini, M.S.; Facco, C.; Granata, R.; Orlandi, E.; Fallai, C.; Licitra, L.; Marchesi, E.; Perrone, F.; Pilotti, S.; et al. A functional gene expression analysis in epithelial sinonasal cancer: Biology and clinical relevance behind three histological subtypes. Oral. Oncol. 2019, 90, 94–101. [Google Scholar] [CrossRef] [PubMed]
- Cerilli, L.A.; Holst, V.A.; Brandwein, M.S.; Stoler, M.H.; Mills, S.E. Sinonasal undifferentiated carcinoma: Immunohistochemical profile and lack of EBV association. Am. J. Surg. Pathol. 2001, 25, 156–163. [Google Scholar] [CrossRef] [PubMed]
- Gallo, O.; Di Lollo, S.; Graziani, P.; Gallina, E.; Baroni, G. Detection of Epstein-Barr virus genome in sinonasal undifferentiated carcinoma by use of in situ hybridization. Otolaryngol. Head Neck Surg. 1995, 112, 659–664. [Google Scholar] [CrossRef] [PubMed]
- Larkin, R.M.; Lopez, D.C.; Robbins, Y.L.; Lassoued, W.; Canubas, K.; Warner, A.; Karim, B.; Vulikh, K.; Hodge, J.W.; Floudas, C.S.; et al. Augmentation of tumor expression of HLA-DR, CXCL9, and CXCL10 may improve olfactory neuroblastoma immunotherapeutic responses. J. Transl. Med. 2024, 22, 524. [Google Scholar] [CrossRef] [PubMed]
- Zorko, N.A.; Makovec, A.; Elliott, A.; Kellen, S.; Lozada, J.R.; Arafa, A.T.; Felices, M.; Shackelford, M.; Barata, P.; Zakharia, Y.; et al. Natural Killer Cell Infiltration in Prostate Cancers Predict Improved Patient Outcomes. Prostate Cancer Prostatic Dis. 2024, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Jeng, Y.M.; Sung, M.T.; Fang, C.L.; Huang, H.Y.; Mao, T.L.; Cheng, W.; Hsiao, C.H. Sinonasal undifferentiated carcinoma and nasopharyngeal-type undifferentiated carcinoma: Two clinically, biologically, and histopathologically distinct entities. Am. J. Surg. Pathol. 2002, 26, 371–376. [Google Scholar] [CrossRef] [PubMed]
- Stelow, E.B.; Bellizzi, A.M.; Taneja, K.; Mills, S.E.; Legallo, R.D.; Kutok, J.L.; Aster, J.C.; French, C.A. NUT rearrangement in undifferentiated carcinomas of the upper aerodigestive tract. Am. J. Surg. Pathol. 2008, 32, 828–834. [Google Scholar] [CrossRef] [PubMed]
- Popa, O.; Taban, S.M.; Pantea, S.; Plopeanu, A.D.; Barna, R.A.; Cornianu, M.; Pascu, A.A.; Dema, A.L.C. The new WHO classification of gastrointestinal neuroendocrine tumors and immunohistochemical expression of somatostatin receptor 2 and 5. Exp. Ther. Med. 2021, 22, 1179. [Google Scholar] [CrossRef] [PubMed]
- Wang, A.; Yuan, Y.; Chu, H.; Gao, Y.; Jin, Z.; Jia, Q.; Zhu, B. Somatostatin Receptor 2, A Potential Predictive Biomarker for Immune Checkpoint Inhibitor Treatment. Pathol. Oncol. Res. 2022, 28, 1610196. [Google Scholar] [CrossRef] [PubMed]
- Zorko, N.; Hwang, J.; Lozada, J.R.; Seifert, H.; Elliott, A.; Radovich, M.; Sledge, G.W.; Felices, M.; Heath, E.I.; Hoon, D.S.; et al. Pan-cancer analysis of natural killer (NK) cell infiltration in human malignancies: Molecular features and clinical implications. ASCO J. 2023, 41, 2563. [Google Scholar] [CrossRef]
- Bald, T.; Krummel, M.F.; Smyth, M.J.; Barry, K.C. The NK cell-cancer cycle: Advances and new challenges in NK cell-based immunotherapies. Nat. Immunol. 2020, 21, 835–847. [Google Scholar] [CrossRef] [PubMed]
- Donnelly, R.P.; Loftus, R.M.; Keating, S.E.; Liou, K.T.; Biron, C.A.; Gardiner, C.M.; Finlay, D.K. mTORC1-dependent metabolic reprogramming is a prerequisite for NK cell effector function. J. Immunol. 2014, 193, 4477–4484. [Google Scholar] [CrossRef] [PubMed]
- Strosberg, J.; El-Haddad, G.; Wolin, E.; Hendifar, A.; Yao, J.; Chasen, B.; Mittra, E.; Kunz, P.L.; Kulke, M.H.; Jacene, H.; et al. Phase 3 Trial of (177)Lu-Dotatate for Midgut Neuroendocrine Tumors. N. Engl. J. Med. 2017, 376, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Sharma, R.; Earla, B.; Baidoo, K.E.; Zeiger, M.A.; Madigan, J.P.; Escorcia, F.E.; Sadowski, S.M. Upregulation of Somatostatin Receptor Type 2 Improves 177Lu-DOTATATE Therapy in Receptor-Deficient Pancreatic Neuroendocrine Tumor Model. Mol. Cancer Ther. 2023, 22, 1052–1062. [Google Scholar] [CrossRef] [PubMed]
- Shah, R.G.; Merlin, M.A.; Adant, S.; Zine-Eddine, F.; Beauregard, J.M.; Shah, G.M. Chemotherapy-Induced Upregulation of Somatostatin Receptor-2 Increases the Uptake and Efficacy of (177)Lu-DOTA-Octreotate in Neuroendocrine Tumor Cells. Cancers 2021, 13, 232. [Google Scholar] [CrossRef] [PubMed]
- Karaca, B.; Degirmenci, M.; Ozveren, A.; Atmaca, H.; Bozkurt, E.; Karabulut, B.; Sanli, U.A.; Uslu, R. Docetaxel in combination with octreotide shows synergistic apoptotic effect by increasing SSTR2 and SSTR5 expression levels in prostate and breast cancer cell lines. Cancer Chemother. Pharmacol. 2015, 75, 1273–1280. [Google Scholar] [CrossRef] [PubMed]
- Feijtel, D.; Reuvers, T.G.A.; van Tuyll-van Serooskerken, C.; de Ridder, C.M.A.; Stuurman, D.C.; de Blois, E.; Verkaik, N.S.; de Bruijn, P.; Koolen, S.L.W.; de Jong, M.; et al. In Vivo Efficacy Testing of Peptide Receptor Radionuclide Therapy Radiosensitization Using Olaparib. Cancers 2023, 15, 915. [Google Scholar] [CrossRef] [PubMed]
- Patel, R.B.; Hernandez, R.; Carlson, P.; Grudzinski, J.; Bates, A.M.; Jagodinsky, J.C.; Erbe, A.; Marsh, I.R.; Arthur, I.; Aluicio-Sarduy, E.; et al. Low-dose targeted radionuclide therapy renders immunologically cold tumors responsive to immune checkpoint blockade. Sci. Transl. Med. 2021, 13, eabb3631. [Google Scholar] [CrossRef] [PubMed]
- Malamas, A.S.; Gameiro, S.R.; Knudson, K.M.; Hodge, J.W. Sublethal exposure to alpha radiation (223Ra dichloride) enhances various carcinomas’ sensitivity to lysis by antigen-specific cytotoxic T lymphocytes through calreticulin-mediated immunogenic modulation. Oncotarget 2016, 7, 86937–86947. [Google Scholar] [CrossRef] [PubMed]
- Esfahani, S.A.; De Aguiar Ferreira, C.; Summer, P.; Mahmood, U.; Heidari, P. Addition of Peptide Receptor Radiotherapy to Immune Checkpoint Inhibition Therapy Improves Outcomes in Neuroendocrine Tumors. J. Nucl. Med. 2023, 64, 1056–1061. [Google Scholar] [CrossRef] [PubMed]
- Ferdinandus, J.; Fendler, W.P.; Lueckerath, K.; Berliner, C.; Kurzidem, S.; Hadaschik, E.; Klode, J.; Zimmer, L.; Livingstone, E.; Schadendorf, D.; et al. Response to Combined Peptide Receptor Radionuclide Therapy and Checkpoint Immunotherapy with Ipilimumab Plus Nivolumab in Metastatic Merkel Cell Carcinoma. J. Nucl. Med. 2022, 63, 396–398. [Google Scholar] [CrossRef] [PubMed]
ONB | SNUC | SNEC | p | |
---|---|---|---|---|
Sample Size | N = 26 | N = 13 | N = 8 | |
Age | ||||
Median age at diagnosis—years, (range) | 59 (37–78) | 54 (20–76) | 61 (35–76) | 0.35 |
Sex | ||||
Male N (%) | 13 (50.0%) | 5 (38.5%) | 5 (62.5%) | 0.62 |
Female N (%) | 13 (50.0%) | 8 (61.5%) | 3 (37.5%) | |
Tumor site | ||||
Metastatic site | 8 (30.8%) | 10 (76.9%) | 6 (75.0%) | 0.03 |
Primary tumor | 15 (57.7%) | 2 (15.4%) | 2 (25.0%) | |
Unknown | 3 (11.5%) | 1 (7.7%) | 0 (0.0%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xue, E.; Bracken-Clarke, D.; Krause, H.; Adeyelu, T.; Evans, M.G.; Akbulut, D.; Quezado, M.; Gandhi, N.; Farrell, A.; Soares, H.P.; et al. Characterization of Somatostatin Receptor 2 Gene Expression and Immune Landscape in Sinonasal Malignancies. Cancers 2024, 16, 3931. https://doi.org/10.3390/cancers16233931
Xue E, Bracken-Clarke D, Krause H, Adeyelu T, Evans MG, Akbulut D, Quezado M, Gandhi N, Farrell A, Soares HP, et al. Characterization of Somatostatin Receptor 2 Gene Expression and Immune Landscape in Sinonasal Malignancies. Cancers. 2024; 16(23):3931. https://doi.org/10.3390/cancers16233931
Chicago/Turabian StyleXue, Elisabetta, Dara Bracken-Clarke, Harris Krause, Tolulope Adeyelu, Mark G. Evans, Dilara Akbulut, Martha Quezado, Nishant Gandhi, Alex Farrell, Heloisa P. Soares, and et al. 2024. "Characterization of Somatostatin Receptor 2 Gene Expression and Immune Landscape in Sinonasal Malignancies" Cancers 16, no. 23: 3931. https://doi.org/10.3390/cancers16233931
APA StyleXue, E., Bracken-Clarke, D., Krause, H., Adeyelu, T., Evans, M. G., Akbulut, D., Quezado, M., Gandhi, N., Farrell, A., Soares, H. P., Lou, E., Phan, M., Patel, R., Vanderwalde, A. M., Elliott, A., Steuer, C. E., Saba, N. F., Lubin, D. J., London, N. R., Jr., ... Floudas, C. S. (2024). Characterization of Somatostatin Receptor 2 Gene Expression and Immune Landscape in Sinonasal Malignancies. Cancers, 16(23), 3931. https://doi.org/10.3390/cancers16233931