Correlation Between Antihypertensive Drugs and Survival Among Patients with Pancreatic Ductal Adenocarcinoma
Simple Summary
Abstract
1. Introduction
2. Resistance Mechanisms in PDAC: Key Pathways in Chemotherapy Resistance
2.1. Molecular/Genetic Patterns of Chemoresistance
2.2. EMT-Mediated Resistance
2.3. Tumor Microenvironment
3. Repurposing Drugs for the Treatment of Pancreatic Cancer
3.1. Renin Pathway Inhibitors—ACEIs and ARBs
3.2. Calcium Channel Blockers—CCBs
3.3. Beta-Blockers—BBs
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
Abbreviations
KRAS | Kirsten rat sarcoma viral oncogene |
GTP | guanosine triphosphate |
GDP | guanosine diphosphate |
NRF2 | nuclear factor erythroid 2-related factor 2 |
CDKN2A | cyclin-dependent kinase inhibitor 2A |
SMAD4 | mothers against decapentaplegic homolog 4 |
TP53 | transformation-related protein 53 |
TGF | transforming growth factor |
CES2 | carboxylesterase 2 |
SN-38 | 7-ethyl-10-hydroxycamptothecin (active metabolite of the chemotherapy drug Irinotecan) |
RAS | rat sarcoma (family of related proteins involved in transmitting signals within cells) |
PI3K/AKT | phosphoinositide 3-kinase/protein kinase B |
NF-κB | nuclear factor kappa-light-chain-enhancer of activated B cells |
JAK/STAT | Janus kinase/signal transducer and activator of transcription |
Hippo/YAP | Hippo pathway/Yes-associated protein |
Wnt | wingless/integrated (signaling pathway) |
STAT3 | signal transducer and activator of transcription 3 |
MEK/ERK | mitogen-activated protein kinase kinase/extracellular signal-regulated kinase |
PI3KALFA | phosphoinositide 3-kinase alpha |
ILK | integrin-linked kinase |
RTK | receptor tyrosine kinase |
EGFR | epidermal growth factor receptor |
CSCs | cancer stem cells |
EMT | epithelial–mesenchymal transition |
ENTs | equilibrative nucleoside transporters |
CNTs | concentrative nucleoside transporters |
SOCs | store-operated channels |
ORAI1 | ORAI calcium release-activated calcium modulator 1 |
STIM1 | stromal interaction molecule 1 |
Snail | zinc finger protein SNAI1 (a transcription factor involved in EMT) |
Slug | zinc finger protein SNAI2 (another transcription factor involved in EMT) |
Zeb-1 | zinc finger E-box binding homeobox 1 |
EVA1 | epididymal secretory protein E1 (also known as epithelial V-like antigen 1) |
MAL2 | myelin and lymphocyte protein 2 |
ENT1 | equilibrative nucleoside transporter 1 |
MDSCs | myeloid-derived suppressor cells |
CD8+ | cluster of differentiation 8 (a marker for a subset of T cells) |
ECM | extracellular matrix |
CAFs | cancer-associated fibroblasts |
PSCs | pancreatic stellate cells |
Hedgehog | Hedgehog signaling pathway |
SDF-1α/CXCR4 | stromal-derived factor 1 alpha/C-X-C chemokine receptor type 4 |
MCT-4 | monocarboxylate transporter 4 |
HIF-1α | mypoxia-inducible factor 1-alpha |
MYC | myelocytomatosis (a family of regulator genes and proto-oncogenes involved in cell cycle progression, apoptosis, and cellular transformation) |
TANs | tumor-associated neutrophils |
IL1β | interleukin-1β |
Tregs | regulatory T cells |
HA | hyaluronic acid |
Hippo/YAP1/TAZ | Hippo pathway/Yes-associated protein 1/transcriptional co-activator with PDZ-binding motif |
RAS/ERK | rat sarcoma/extracellular signal-regulated kinase |
CALM2 | calmodulin 2 |
MAPK | mitogen-activated protein kinase |
PKA | protein kinase A |
CREB | response element binding protein |
AP-1 | activator protein 1 |
MMP-2 | matrix metalloproteinase 2 |
MMP-9 | matrix metalloproteinase 9 |
VEGF | vascular endothelial growth factor |
BCL2 | B cell CLL/lymphoma 2 |
BAX | BCL2-associated X, apoptosis regulator |
References
- Yamada, M.; Sugiura, T.; Okamura, Y.; Ito, T.; Yamamoto, Y.; Ashida, R.; Ohgi, K.; Aramaki, T.; Endo, M.; Uesaka, K. Clinical Implication of Node-negative Resectable Pancreatic Cancer. Ann. Surg. Oncol. 2021, 28, 2257–2264. [Google Scholar] [CrossRef] [PubMed]
- Available online: https://www.esmo.org/guidelines/guidelines-by-topic/gastrointestinal-cancers/pancreatic-cancer (accessed on 26 July 2024).
- Available online: https://old-prod.asco.org/sites/new-www.asco.org/files/content-files/advocacy-and-policy/documents/2020-Metastatic-Pancreatic-Cancer-Summary-Table.pdf (accessed on 26 July 2024).
- Available online: https://www.nice.org.uk/guidance/ng85 (accessed on 27 July 2024).
- Available online: https://seom.org/images/SEOM_CLINICAL_GUIDELINE_PANCREATIC_AND_BILIARY_TRACT_CANCER_2020.pdf (accessed on 28 July 2024).
- Von Hoff, D.D.; Ervin, T.; Arena, F.P.; Chiorean, E.G.; Infante, J.; Moore, M.; Seay, T.; Tjulandin, S.A.; Ma, W.W.; Saleh, M.N.; et al. Increased Survival in Pancreatic Cancer with nab-Paclitaxel plus Gemcitabine. N. Engl. J. Med. 2013, 369, 1691–1703. [Google Scholar] [CrossRef] [PubMed]
- Wang-Gillam, A.; Hubner, R.A.; Siveke, J.T.; Von Hoff, D.D.; Belanger, B.; de Jong, F.A.; Mirakhur, B.; Chen, L.-T. NAPOLI-1 phase 3 study of liposomal irinotecan in metastatic pancreatic cancer: Final overall survival analysis and characteristics of long-term survivors. Eur. J. Cancer 2019, 108, 78–87. [Google Scholar] [CrossRef] [PubMed]
- Jones, S.; Zhang, X.; Parsons, D.W.; Lin, J.C.; Leary, R.J.; Angenendt, P.; Mankoo, P.; Carter, H.; Kamiyama, H.; Jimeno, A.; et al. Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science 2008, 321, 1801–1806. [Google Scholar] [CrossRef]
- Collisson, E.A.; Sadanandam, A.; Olson, P.; Gibb, W.J.; Truitt, M.; Gu, S.; Cooc, J.; Weinkle, J.; Kim, G.E.; Jakkula, L.; et al. Subtypes of pancreatic ductal adenocarcinoma and their differing responses to therapy. Nat. Med. 2011, 17, 500–503. [Google Scholar] [CrossRef]
- Quiñonero, F.; Mesas, C.; Doello, K.; Cabeza, L.; Perazzoli, G.; Jimenez-Luna, C.; Rosa Rama, A.; Melguizo, C.; Prados, J. The challenge of drug resistance in pancreatic ductal adenocarcinoma: A current overview. Cancer Biol. Med. 2019, 16, 688–699. [Google Scholar] [CrossRef]
- Dreyer, S.B.; Upstill-Goddard, R.; Legrini, A.; Biankin, A.V.; Glasgow Precision Oncology Laboratory; Jamieson, N.B.; Chang, D.K.; Australian Pancreatic Genome Initiative; Jamieson, N.B.; Chang, D.K. Genomic and Molecular Analyses Identify Molecular Subtypes of Pancreatic Cancer Recurrence. Gastroenterology 2022, 162, 320–324.e4. [Google Scholar] [CrossRef]
- Maisonneuve, P.; Lowenfels, A.B. Risk factors for pancreatic cancer: A summary review of meta-analytical studies. Int. J. Epidemiol. 2015, 44, 186–198. [Google Scholar] [CrossRef]
- Rosato, V.; Polesel, J.; Bosetti, C.; Serraino, D.; Negri, E.; La Vecchia, C. Population attributable risk for pancreatic cancer in Northern Italy. Pancreas 2015, 44, 216–220. [Google Scholar] [CrossRef]
- Anand, P.; Kunnumakkara, A.B.; Sundaram, C.; Harikumar, K.B.; Tharakan, S.T.; Lai, O.S.; Sung, B.; Aggarwal, B.B. Cancer is a preventable disease that requires major lifestyle changes. Pharm. Res. 2008, 25, 2097–2116, Erratum in Pharm. Res. 2008, 25, 2200. [Google Scholar] [CrossRef]
- Dugnani, E.; Balzano, G.; Pasquale, V.; Ruiter, T.; Dou, Y.; Yang, J.C.C.; de Winter, T.J.J.; Chhuor, J.; Wang, S.; Flibotte, S.; et al. Insulin resistance is associated with the aggressiveness of pancreatic ductal carcinoma. Acta Diabetol. 2016, 53, 945–956. [Google Scholar] [CrossRef] [PubMed]
- McWilliams, R.R.; Maisonneuve, P.; Bamlet, W.R.; Petersen, G.M.; Li, D.; Risch, H.A.; Yu, H.; Fontham, E.T.; Luckett, B.; Bosetti, C.; et al. Risk Factors for Early-Onset and Very-Early-Onset Pancreatic Adenocarcinoma: A Pancreatic Cancer Case-Control Consortium (PanC4) Analysis. Pancreas 2016, 45, 311–316. [Google Scholar] [CrossRef] [PubMed]
- Zhang, A.M.Y.; Chu, K.H.; Daly, B.F.; Ruiter, T.; Dou, Y.; Yang, J.C.C.; de Winter, T.J.J.; Chhuor, J.; Wang, S.; Flibotte, S.; et al. Effects of hyperinsulinemia on pancreatic cancer development and the immune microenvironment revealed through single-cell transcriptomics. Cancer Metab. 2022, 10, 5. [Google Scholar] [CrossRef] [PubMed]
- National Heart, Lung and Blood Institute. What Is Metabolic Syndrome? Available online: https://www.nhlbi.nih.gov/health/health-topics/topics/ms (accessed on 30 July 2024).
- Rosato, V.; Tavani, A.; Bosetti, C.; Pelucchi, C.; Talamini, R.; Polesel, J.; Serraino, D.; Negri, E.; La Vecchia, C. Metabolic syndrome and pancreatic cancer risk: A case-control study in Italy and meta-analysis. Metabolism 2011, 60, 1372–1378. [Google Scholar] [CrossRef] [PubMed]
- Xia, B.; He, Q.; Pan, Y.; Gao, F.; Liu, A.; Tang, Y.; Chong, C.; Teoh, A.Y.B.; Li, F.; He, Y.; et al. Metabolic syndrome and risk of pancreatic cancer: A population-based prospective cohort study. Int. J. Cancer 2020, 147, 3384–3393. [Google Scholar] [CrossRef]
- Park, S.K.; Oh, C.M.; Kim, M.H.; Ha, E.; Choi, Y.S.; Ryoo, J.H. Metabolic syndrome, metabolic components, and their relation to the risk of pancreatic cancer. Cancer 2020, 126, 1979–1986. [Google Scholar] [CrossRef]
- Pushpakom, S.; Iorio, F.; Eyers, P.A.; Escott, K.J.; Hopper, S.; Wells, A.; Doig, A.; Guilliams, T.; Latimer, J.; McNamee, C.; et al. Drug repurposing: Progress, challenges and recommendations. Nat. Rev. Drug Discov. 2019, 18, 41–58. [Google Scholar] [CrossRef]
- Yang, Y.; Ma, L.; Xu, Y.; Liu, Y.; Li, W.; Cai, J.; Zhang, Y. Enalapril Overcomes Chemoresistance and Potentiates Antitumor Efficacy of 5-FU in Colorectal Cancer by Suppressing Proliferation, Angiogenesis, and NF-κb/STAT3-Regulated Proteins. Cell Death Dis. 2020, 11, 477. [Google Scholar] [CrossRef]
- Wong, B.S.; Chiu, L.Y.; Tu, D.G.; Sheu, G.T.; Chan, T.T. Anticancer Effects of Antihypertensive L-Type Calcium Channel Blockers on Chemoresistant Lung Cancer Cells Via Autophagy and Apoptosis. Cancer Manag. Res. 2020, 12, 1913–1927. [Google Scholar] [CrossRef]
- De Souza, V.B.; Silva, E.N.; Ribeiro, M.L.; De Martins, W.A. Hypertension in Patients with Cancer. Arq. Bras. Cardiol. 2015, 104, 246–252. [Google Scholar] [CrossRef]
- Wegman-Ostrosky, T.; Soto-Reyes, E.; Vidal-Millán, S.; Sánchez-Corona, J. The Renin-Angiotensin System Meets the Hallmarks of Cancer. JRAAS—J. Renin-Angiotensin-Aldosterone Syst. 2015, 16, 227–233. [Google Scholar] [CrossRef] [PubMed]
- George, A.J.; Allen, A.; Chand, A.L. Repurposing ARBs as Treatments for Breast Cancer. Aging 2017, 9, 1357–1358. [Google Scholar] [CrossRef] [PubMed]
- Aung, K.L.; Fischer, S.E.; Denroche, R.E.; Jang, G.H.; Dodd, A.; Creighton, S.; Southwood, B.; Liang, S.B.; Chadwick, D.; Zhang, A.; et al. Genomics-Driven Precision Medicine for Advanced Pancreatic Cancer: Early Results from the COMPASS Trial. Clin. Cancer Res. 2018, 24, 1344–1354. [Google Scholar] [CrossRef] [PubMed]
- Buscail, L.; Bournet, B.; Cordelier, P. Role of oncogenic KRAS in the diagnosis, prognosis and treatment of pancreatic cancer. Nat. Rev. Gastroenterol. Hepatol. 2020, 17, 153–168. [Google Scholar] [CrossRef]
- Mukhopadhyay, S.; Goswami, D.; Adiseshaiah, P.P.; Burgan, W.; Yi, M.; Guerin, T.M.; Kozlov, S.V.; Nissley, D.V.; McCormick, F. Undermining Glutaminolysis Bolsters Chemotherapy While NRF2 Promotes Chemoresistance in KRAS-Driven Pancreatic Cancers. Cancer Res. 2020, 80, 1630–1643. [Google Scholar] [CrossRef]
- Christenson, E.S.; Jaffee, E.; Azad, N.S. Current and emerging therapies for patients with advanced pancreatic ductal adenocarcinoma: A bright future. Lancet Oncol. 2020, 21, e135–e145. [Google Scholar] [CrossRef]
- Connor, A.A.; Denroche, R.E.; Jang, G.H.; Lemire, M.; Zhang, A.; Chan-Seng-Yue, M.; Wilson, G.; Grant, R.C.; Merico, D.; Lungu, I.; et al. Integration of Genomic and Transcriptional Features in Pancreatic Cancer Reveals Increased Cell Cycle Progression in Metastases. Cancer Cell 2019, 35, 267–282.e7. [Google Scholar] [CrossRef]
- Waddell, N.; Pajic, M.; Patch, A.M.; Chang, D.K.; Kassahn, K.S.; Bailey, P.; Johns, A.L.; Miller, D.; Nones, K.; Quek, K.; et al. Whole genomes redefine the mutational landscape of pancreatic cancer. Nature 2015, 518, 495–501. [Google Scholar] [CrossRef]
- Voutsadakis, I.A. Mutations of p53 associated with pancreatic cancer and therapeutic implications. Ann. Hepatobiliary Pancreat. Surg. 2021, 25, 315–327. [Google Scholar] [CrossRef]
- McCubrey, J.A.; Yang, L.V.; Abrams, S.L.; Steelman, L.S.; Follo, M.Y.; Cocco, L.; Ratti, S.; Martelli, A.M.; Augello, G.; Cervello, M.; et al. Effects of TP53 Mutations and miRs on Immune Responses in the Tumor Microenvironment Important in Pancreatic Cancer Progression. Cells 2022, 11, 2155. [Google Scholar] [CrossRef]
- Capello, M.; Lee, M.; Wang, H.; Babel, I.; Katz, M.H.; Fleming, J.B.; Maitra, A.; Wang, H.; Tian, W.; Taguchi, A.; et al. Carboxylesterase 2 as a Determinant of Response to Irinotecan and Neoadjuvant FOLFIRINOX Therapy in Pancreatic Ductal Adenocarcinoma. J. Natl. Cancer Inst. 2015, 107, djv132. [Google Scholar] [CrossRef] [PubMed]
- Ying, H.; Dey, P.; Yao, W.; Kimmelman, A.C.; Draetta, G.F.; Maitra, A.; DePinho, R.A. Genetics and biology of pancreatic ductal adenocarcinoma. Genes. Dev. 2016, 30, 355–385. [Google Scholar] [CrossRef] [PubMed]
- Pylayeva-Gupta, Y.; Grabocka, E.; Bar-Sagi, D. RAS oncogenes: Weaving a tumorigenic web. Nat. Rev. Cancer 2011, 11, 761–774. [Google Scholar] [CrossRef] [PubMed]
- Ren, X.; Chen, C.; Luo, Y.; Liu, M.; Li, Y.; Zheng, S.; Ye, H.; Fu, Z.; Li, M.; Li, Z.; et al. lncRNA-PLACT1 sustains activation of NF-κB pathway through a positive feedback loop with IκBα/E2F1 axis in pancreatic cancer. Mol. Cancer 2020, 19, 35, Erratum in Mol. Cancer 2022, 21, 128. [Google Scholar] [CrossRef] [PubMed]
- Song, Y.; Tang, M.Y.; Chen, W.; Wang, Z.; Wang, S.L. High JAK2 Protein Expression Predicts a Poor Prognosis in Patients with Resectable Pancreatic Ductal Adenocarcinoma. Dis. Markers 2020, 2020, 7656031. [Google Scholar] [CrossRef]
- Loncle, C.; Bonjoch, L.; Folch-Puy, E.; Lopez-Millan, M.B.; Lac, S.; Molejon, M.I.; Chuluyan, E.; Cordelier, P.; Dubus, P.; Lomberk, G.; et al. IL17 Functions through the Novel REG3β-JAK2-STAT3 Inflammatory Pathway to Promote the Transition from Chronic Pancreatitis to Pancreatic Cancer. Cancer Res. 2015, 75, 4852–4862. [Google Scholar] [CrossRef]
- Baumgart, S.; Chen, N.M.; Zhang, J.S.; Billadeau, D.D.; Gaisina, I.N.; Kozikowski, A.P.; Singh, S.K.; Fink, D.; Ströbel, P.; Klindt, C.; et al. GSK-3β Governs Inflammation-Induced NFATc2 Signaling Hubs to Promote Pancreatic Cancer Progression. Mol. Cancer Ther. 2016, 15, 491–502. [Google Scholar] [CrossRef]
- Kimmelman, A.C. Metabolic Dependencies in RAS-Driven Cancers. Clin. Cancer Res. 2015, 21, 1828–1834. [Google Scholar] [CrossRef]
- Zhang, M.; Jang, H.; Gaponenko, V.; Nussinov, R. Phosphorylated Calmodulin Promotes PI3K Activation by Binding to the SH2 Domains. Biophys. J. 2017, 113, 1956–1967. [Google Scholar] [CrossRef]
- Bondar, V.M.; Sweeney-Gotsch, B.; Andreeff, M.; Mills, G.B.; McConkey, D.J. Inhibition of the phosphatidylinositol 3’-kinase-AKT pathway induces apoptosis in pancreatic carcinoma cells in vitro and in vivo. Mol. Cancer Ther. 2002, 1, 989–997. [Google Scholar]
- Duxbury, M.S.; Ito, H.; Benoit, E.; Waseem, T.; Ashley, S.W.; Whang, E.E. RNA interference demonstrates a novel role for integrin-linked kinase as a determinant of pancreatic adenocarcinoma cell gemcitabine chemoresistance. Clin. Cancer Res. 2005, 11, 3433–3438. [Google Scholar] [CrossRef] [PubMed]
- Eibl, G.; Rozengurt, E. KRAS, YAP, and obesity in pancreatic cancer: A signaling network with multiple loops. Semin. Cancer Biol. 2019, 54, 50–62. [Google Scholar] [CrossRef] [PubMed]
- Ng, S.S.; Tsao, M.S.; Nicklee, T.; Hedley, D.W. Effects of the epidermal growth factor receptor inhibitor OSI-774, Tarceva, on downstream signaling pathways and apoptosis in human pancreatic adenocarcinoma. Mol. Cancer Ther. 2002, 1, 777–783. [Google Scholar] [PubMed]
- Moore, M.J.; Goldstein, D.; Hamm, J.; Figer, A.; Hecht, J.R.; Gallinger, S.; Au, H.J.; Murawa, P.; Walde, D.; Wolff, R.A.; et al. Erlotinib plus gemcitabine compared with gemcitabine alone in patients with advanced pancreatic cancer: A phase III trial of the National Cancer Institute of Canada Clinical Trials Group. J. Clin. Oncol. 2007, 25, 1960–1966. [Google Scholar] [CrossRef] [PubMed]
- Mohammed, M.K.; Shao, C.; Wang, J.; Wei, Q.; Wang, X.; Collier, Z.; Tang, S.; Liu, H.; Zhang, F.; Huang, J. Wnt/β-catenin signaling plays an ever-expanding role in stem cell self-renewal, tumorigenesis and cancer chemoresistance. Genes. Dis. 2016, 3, 11–40. [Google Scholar] [CrossRef]
- Quint, K.; Tonigold, M.; Di Fazio, P.; Montalbano, R.; Lingelbach, S.; Rückert, F.; Alinger, B.; Ocker, M.; Neureiter, D. Pancreatic cancer cells surviving gemcitabine treatment express markers of stem cell differentiation and epithelial-mesenchymal transition. Int. J. Oncol. 2012, 41, 2093–2102. [Google Scholar] [CrossRef]
- Di Carlo, C.; Brandi, J.; Cecconi, D. Pancreatic cancer stem cells: Perspectives on potential therapeutic approaches of pancreatic ductal adenocarcinoma. World J. Stem Cells 2018, 10, 172–182. [Google Scholar] [CrossRef]
- Park, C.Y.; Hoover, P.J.; Mullins, F.M.; Bachhawat, P.; Covington, E.D.; Raunser, S.; Walz, T.; Garcia, K.C.; Dolmetsch, R.E.; Lewis, R.S. STIM1 clusters and activates CRAC channels via direct binding of a cytosolic domain to Orai1. Cell 2009, 136, 876–890. [Google Scholar] [CrossRef]
- Abdullaev, I.F.; Bisaillon, J.M.; Potier, M.; Gonzalez, J.C.; Motiani, R.K.; Trebak, M. Stim1 and Orai1 mediate CRAC currents and store-operated calcium entry important for endothelial cell proliferation. Circ. Res. 2008, 103, 1289–1299. [Google Scholar] [CrossRef]
- Bisaillon, J.M.; Motiani, R.K.; Gonzalez-Cobos, J.C.; Potier, M.; Halligan, K.E.; Alzawahra, W.F.; Barroso, M.; Singer, H.A.; Jourd’heuil, D.; Trebak, M. Essential role for STIM1/Orai1-mediated calcium influx in PDGF-induced smooth muscle migration. Am. J. Physiol. Cell Physiol. 2010, 298, C993–C1005. [Google Scholar] [CrossRef]
- Potier, M.; Gonzalez, J.C.; Motiani, R.K.; Abdullaev, I.F.; Bisaillon, J.M.; Singer, H.A.; Trebak, M. Evidence for STIM1- and Orai1-dependent store-operated calcium influx through ICRAC in vascular smooth muscle cells: Role in proliferation and migration. FASEB J. 2009, 23, 2425–2437. [Google Scholar] [CrossRef] [PubMed]
- Vashisht, A.; Trebak, M.; Motiani, R.K. STIM and Orai proteins as novel targets for cancer therapy. A Review in the Theme: Cell and Molecular Processes in Cancer Metastasis. Am. J. Physiol. Cell Physiol. 2015, 309, C457–C469. [Google Scholar] [CrossRef] [PubMed]
- Kutschat, A.P.; Hamdan, F.H.; Wang, X.; Wixom, A.Q.; Najafova, Z.; Gibhardt, C.S.; Kopp, W.; Gaedcke, J.; Ströbel, P.; Ellenrieder, V.; et al. STIM1 Mediates Calcium-Dependent Epigenetic Reprogramming in Pancreatic Cancer. Cancer Res. 2021, 81, 2943–2955. [Google Scholar] [CrossRef] [PubMed]
- Kondratska, K.; Kondratskyi, A.; Yassine, M.; Lemonnier, L.; Lepage, G.; Morabito, A.; Skryma, R.; Prevarskaya, N. Orai1 and STIM1 mediate SOCE and contribute to apoptotic resistance of pancreatic adenocarcinoma. Biochim. Biophys. Acta. 2014, 1843, 2263–2269. [Google Scholar] [CrossRef] [PubMed]
- Krebs, A.M.; Mitschke, J.; Lasierra Losada, M.; Schmalhofer, O.; Boerries, M.; Busch, H.; Boettcher, M.; Mougiakakos, D.; Reichardt, W.; Bronsert, P.; et al. The EMT-activator Zeb1 is a key factor for cell plasticity and promotes metastasis in pancreatic cancer. Nat. Cell Biol. 2017, 19, 518–529. [Google Scholar] [CrossRef]
- Arumugam, T.; Ramachandran, V.; Fournier, K.F.; Wang, H.; Marquis, L.; Abbruzzese, J.L.; Gallick, G.E.; Logsdon, C.D.; McConkey, D.J.; Choi, W. Epithelial to mesenchymal transition contributes to drug resistance in pancreatic cancer. Cancer Res. 2009, 69, 5820–5828. [Google Scholar] [CrossRef]
- Tsukasa, K.; Ding, Q.; Yoshimitsu, M.; Miyazaki, Y.; Matsubara, S.; Takao, S. Slug contributes to gemcitabine resistance through epithelial-mesenchymal transition in CD133(+) pancreatic cancer cells. Hum. Cell 2015, 28, 167–174. [Google Scholar] [CrossRef]
- DuFort, C.C.; DelGiorno, K.E.; Hingorani, S.R. Mounting pressure in the microenvironment: Fluids, solids, and cells in pancreatic ductal adenocarcinoma. Gastroenterology 2016, 150, 1545–1557.e2. [Google Scholar] [CrossRef]
- Itoh, Y.; Takehara, Y.; Kawase, T.; Terashima, K.; Ohkawa, Y.; Hirose, Y.; Koda, A.; Hyodo, N.; Ushio, T.; Hirai, Y.; et al. Feasibility of magnetic resonance elastography for the pancreas at 3T. J. Magn. Reson. Imaging 2016, 43, 384–390. [Google Scholar] [CrossRef]
- Fujimura, T.; Ring, S.; Umansky, V.; Mahnke, K.; Enk, A.H. Regulatory T cells stimulate B7-H1 expression in myeloid-derived suppressor cells in ret melanomas. J. Investig. Dermatol. 2012, 132, 1239–1246. [Google Scholar] [CrossRef]
- Ribatti, D.; Pezzella, F. Overview on the different patterns of tumor vascularization. Cells 2021, 10, 639. [Google Scholar] [CrossRef] [PubMed]
- Balachandran, V.P.; Łuksza, M.; Zhao, J.N.; Makarov, V.; Moral, J.A.; Remark, R.; Herbst, B.; Askan, G.; Bhanot, U.; Senbabaoglu, Y.; et al. Identification of unique neoantigen qualities in long-term survivors of pancreatic cancer. Nature 2017, 551, 512–516. [Google Scholar] [CrossRef] [PubMed]
- Provenzano, P.P.; Cuevas, C.; Chang, A.E.; Goel, V.K.; Von Hoff, D.D.; Hingorani, S.R. Enzymatic targeting of the stroma ablates physical barriers to treatment of pancreatic ductal adenocarcinoma. Cancer Cell 2012, 21, 418–429. [Google Scholar] [CrossRef] [PubMed]
- Nielsen, S.R.; Quaranta, V.; Linford, A.; Emeagi, P.; Rainer, C.; Santos, A.; Ireland, L.; Sakai, T.; Sakai, K.; Kim, Y.S.; et al. Macrophage-secreted granulin supports pancreatic cancer metastasis by inducing liver fibrosis. Nat Cell Biol. 2016, 18, 549–560. [Google Scholar] [CrossRef] [PubMed]
- Ishiguro, S.; Yoshimura, K.; Tsunedomi, R.; Oka, M.; Takao, S.; Inui, M.; Kawabata, A.; Wall, T.; Magafa, V.; Cordopatis, P.; et al. Involvement of angiotensin II type 2 receptor (AT2R) signaling in human pancreatic ductal adenocarcinoma (PDAC): A novel AT2R agonist effectively attenuates growth of PDAC grafts in mice. Cancer Biol. Ther. 2015, 16, 307–316. [Google Scholar] [CrossRef]
- Palamaris, K.; Felekouras, E.; Sakellariou, S. Epithelial to Mesenchymal Transition: Key Regulator of Pancreatic Ductal Adenocarcinoma Progression and Chemoresistance. Cancers 2021, 13, 5532. [Google Scholar] [CrossRef]
- Hu, X.; Chen, W. Role of epithelial-mesenchymal transition in chemoresistance in pancreatic ductal adenocarcinoma. World J. Clin. Cases 2021, 9, 4998–5006. [Google Scholar] [CrossRef]
- Komar, G.; Kauhanen, S.; Liukko, K.; Seppänen, M.; Kajander, S.; Ovaska, J.; Nuutila, P.; Minn, H. Decreased blood flow with increased metabolic activity: A novel sign of pancreatic tumor aggressiveness. Clin. Cancer Res. 2009, 15, 5511–5517. [Google Scholar] [CrossRef]
- Vander Heiden, M.G.; Cantley, L.C.; Thompson, C.B. Understanding the Warburg effect: The metabolic requirements of cell proliferation. Science 2009, 324, 1029–1033. [Google Scholar] [CrossRef]
- Romero-Garcia, S.; Moreno-Altamirano, M.M.; Prado-Garcia, H.; Sánchez-García, F.J. Lactate Contribution to the Tumor Microenvironment: Mechanisms, Effects on Immune Cells and Therapeutic Relevance. Front. Immunol. 2016, 7, 52. [Google Scholar] [CrossRef]
- Eales, K.L.; Hollinshead, K.E.; Tennant, D.A. Hypoxia and metabolic adaptation of cancer cells. Oncogenesis 2016, 5, e190. [Google Scholar] [CrossRef] [PubMed]
- Feron, O. Pyruvate into lactate and back: From the Warburg effect to symbiotic energy fuel exchange in cancer cells. Radiother. Oncol. 2009, 92, 329–333. [Google Scholar] [CrossRef] [PubMed]
- Cairns, R.A.; Harris, I.S.; Mak, T.W. Regulation of cancer cell metabolism. Nat. Rev. Cancer 2011, 11, 85–95. [Google Scholar] [CrossRef] [PubMed]
- Riemann, A.; Rauschner, M.; Giesselmann, M.; Reime, S.; Haupt, V.; Thews, O. Extracellular Acidosis Modulates the Expression of Epithelial-Mesenchymal Transition (EMT) Markers and Adhesion of Epithelial and Tumor Cells. Neoplasia 2019, 21, 450–458. [Google Scholar] [CrossRef] [PubMed]
- Mc Menamin, Ú.C.; Murray, L.J.; Cantwell, M.M.; Hughes, C.M. Angiotensin-Converting Enzyme Inhibitors and Angiotensin Receptor Blockers in Cancer Progression and Survival: A Systematic Review. Cancer Causes Control. 2012, 23, 221–230. [Google Scholar] [CrossRef]
- Incio, J.; Liu, H.; Suboj, P.; Chin, S.M.; Chen, I.X.; Pinter, M.; Ng, M.R.; Nia, H.T.; Grahovac, J.; Kao, S.; et al. Obesity-Induced Inflammation and Desmoplasia Promote Pancreatic Cancer Progression and Resistance to Chemotherapy. Cancer Discov. 2016, 6, 852–869. [Google Scholar] [CrossRef]
- Arnold, S.A.; Rivera, L.B.; Carbon, J.G.; Toombs, J.E.; Chang, C.L.; Bradshaw, A.D.; Brekken, R.A. Losartan slows pancreatic tumor progression and extends survival of SPARC-null mice by abrogating aberrant TGFβ activation. PLoS ONE 2012, 7, e31384. [Google Scholar] [CrossRef]
- Nakai, Y.; Isayama, H.; Ijichi, H.; Sasaki, T.; Sasahira, N.; Hirano, K.; Kogure, H.; Kawakubo, K.; Yagioka, H.; Yashima, Y.; et al. Inhibition of Renin-Angiotensin System Affects Prognosis of Advanced Pancreatic Cancer Receiving Gemcitabine. Br. J. Cancer 2010, 103, 1644–1648. [Google Scholar] [CrossRef]
- Nakai, Y.; Isayama, H.; Ijichi, H.; Sasaki, T.; Kogure, H.; Yagioka, H.; Miyabayashi, K.; Mizuno, S.; Yamamoto, K.; Mouri, D.; et al. Phase I Trial of Gemcitabine and Candesartan Combination Therapy in Normotensive Patients With Advanced Pancreatic Cancer: GECA1. Cancer Sci. 2012, 103, 1489–1492. [Google Scholar] [CrossRef]
- Nakai, Y.; Isayama, H.; Ijichi, H.; Sasaki, T.; Takahara, N.; Ito, Y.; Matsubara, S.; Uchino, R.; Yagioka, H.; Arizumi, T.; et al. A Multicenter Phase II Trial of Gemcitabine and Candesartan Combination Therapy in Patients With Advanced Pancreatic Cancer: GECA2. Investig. New Drugs 2013, 31, 1294–1299. [Google Scholar] [CrossRef]
- Murphy, J.E.; Wo, J.Y.; Ryan, D.P.; Clark, J.W.; Jiang, W.; Yeap, B.Y.; Drapek, L.C.; Ly, L.; Baglini, C.V.; Blaszkowsky, L.S.; et al. Total Neoadjuvant Therapy With FOLFIRINOX in Combination With Losartan Followed by Chemoradiotherapy for Locally Advanced Pancreatic Cancer: A Phase 2 Clinical Trial. JAMA Oncol. 2019, 5, 1020–1027. [Google Scholar] [CrossRef] [PubMed]
- Boucher, Y.; Posada, J.M.; Subudhi, S.; Kumar, A.S.; Rosario, S.R.; Gu, L.; Kumra, H.; Mino-Kenudson, M.; Talele, N.P.; Duda, D.G.; et al. Addition of Losartan to FOLFIRINOX and Chemoradiation Reduces Immunosuppression-Associated Genes, Tregs, and FOXP3+ Cancer Cells in Locally Advanced Pancreatic Cancer. Clin. Cancer Res. 2023, 29, 1605–1619. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, V.P.; Martin, J.D.; Liu, H.; Lacorre, D.A.; Jain, S.R.; Kozin, S.V.; Stylianopoulos, T.; Mousa, A.S.; Han, X.; Adstamongkonkul, P.; et al. Angiotensin inhibition enhances drug delivery and potentiates chemotherapy by decompressing tumour blood vessels. Nat. Commun. 2013, 4, 2516. [Google Scholar] [CrossRef] [PubMed]
- Zhou, T.; Xie, Y.; Hou, X.; Bai, W.; Li, X.; Liu, Z.; Man, Q.; Sun, J.; Fu, D.; Yan, J.; et al. Irbesartan overcomes gemcitabine resistance in pancreatic cancer by suppressing stemness and iron metabolism via inhibition of the Hippo/YAP1/c-Jun axis. J. Exp. Clin. Cancer Res. 2023, 42, 111. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Naxerova, K.; Pinter, M.; Incio, J.; Lee, H.; Shigeta, K.; Ho, W.W.; Crain, J.A.; Jacobson, A.; Michelakos, T.; et al. Use of Angiotensin System Inhibitors is Associated With Immune Activation and Longer Survival in Nonmetastatic Pancreatic Ductal Adenocarcinoma. Clin. Cancer Res. 2017, 23, 5959–5969. [Google Scholar] [CrossRef]
- Principe, D.R.; Aissa, A.F.; Kumar, S.; Pham, T.N.D.; Underwood, P.W.; Nair, R.; Ke, R.; Rana, B.; Trevino, J.G.; Munshi, H.G.; et al. Calcium channel blockers potentiate gemcitabine chemotherapy in pancreatic cancer. Proc. Natl. Acad. Sci. USA 2022, 119, e2200143119. [Google Scholar] [CrossRef]
- Woods, N.; Trevino, J.; Coppola, D.; Chellappan, S.; Yang, S.; Padmanabhan, J. Fendiline inhibits proliferation and invasion of pancreatic cancer cells by interfering with ADAM10 activation and β-catenin signaling. Oncotarget 2015, 6, 35931–35948. [Google Scholar] [CrossRef]
- Zhao, L.; Zhao, Y.; Schwarz, B.; Mysliwietz, J.; Hartig, R.; Camaj, P.; Bao, Q.; Jauch, K.W.; Guba, M.; Ellwart, J.W.; et al. Verapamil Inhibits Tumor Progression of Chemotherapyresistant Pancreatic Cancer Side Population Cells. Int. J. Oncol. 2016, 49, 99–110. [Google Scholar] [CrossRef]
- El-Mahdy, H.A.; El-Husseiny, A.A.; Kandil, Y.I.; Gamal El-Din, A.M. Diltiazem potentiates the cytotoxicity of gemcitabine and 5-fluorouracil in PANC-1 human pancreatic cancer cells through inhibition of P-glycoprotein. Life Sci. 2020, 262, 118518. [Google Scholar] [CrossRef]
- Tingle, S.J.; Severs, G.R.; Moir, J.A.G.; White, S.A. Calcium channel blockers in pancreatic cancer: Increased overall survival in a retrospective cohort study. Anticancer. Drugs 2020, 31, 737–741. [Google Scholar] [CrossRef]
- LKraj, A.; Śliwczyński, J.; Krawczyk-Lipiec, K.; Woźniak, A.; Waszczuk-Gajda, A.; Rybski, S.; Wyrwicz, L. Calcium channel blockers use and overall survival in pancreatic cancer patients receiving gemcitabine. J. Clin. Oncol. 2017, 35, e15756. [Google Scholar] [CrossRef]
- Fong, Z.V.; Severs, G.; Moir, J.; White, S.; Qadan, M.; Tingle, S. Calcium channel blockers are associated with improved survival in pancreatic cancer patients undergoing neoadjuvant chemotherapy and resection. HPB 2024, 26, 418–425. [Google Scholar] [CrossRef] [PubMed]
- Shan, T.; Ma, Q.; Zhang, D.; Guo, K.; Liu, H.; Wang, F.; Wu, E. β2-adrenoceptor blocker synergizes with gemcitabine to inhibit the proliferation of pancreatic cancer cells via apoptosis induction. Eur. J. Pharmacol. 2011, 665, 1–7. [Google Scholar] [CrossRef] [PubMed]
- National Cancer Institute. What Is Cancer? 2015. Available online: https://www.cancer.gov/about-cancer/understanding/what-is-cancer (accessed on 30 July 2024).
- Faris, J.E.; Blaszkowsky, L.S.; McDermott, S.; Guimaraes, A.R.; Szymonifka, J.; Huynh, M.A.; Ferrone, C.R.; Wargo, J.A.; Allen, J.N.; Dias, L.E.; et al. FOLFIRINOX in locally advanced pancreatic cancer: The Massachusetts General Hospital Cancer Center experience. Oncologist 2013, 18, 543–548. [Google Scholar] [CrossRef] [PubMed]
- Mellon, E.A.; Hoffe, S.E.; Springett, G.M.; Frakes, J.M.; Strom, T.J.; Hodul, P.J.; Malafa, M.P.; Chuong, M.D.; Shridhar, R. Long-term outcomes of induction chemotherapy and neoadjuvant stereotactic body radiotherapy for borderline resectable and locally advanced pancreatic adenocarcinoma. Acta Oncol. 2015, 54, 979–985. [Google Scholar] [CrossRef]
- Murphy, J.E.; Wo, J.Y.; Ryan, D.P.; Jiang, W.; Yeap, B.Y.; Drapek, L.C.; Blaszkowsky, L.S.; Kwak, E.L.; Allen, J.N.; Clark, J.W.; et al. Total Neoadjuvant Therapy With FOLFIRINOX Followed by Individualized Chemoradiotherapy for Borderline Resectable Pancreatic Adenocarcinoma: A Phase 2 Clinical Trial. JAMA Oncol. 2018, 4, 963–969. [Google Scholar] [CrossRef]
- Godugu, C.; Patel, A.R.; Doddapaneni, R.; Marepally, S.; Jackson, T.; Singh, M. Inhalation delivery of Telmisartan enhances intratumoral distribution of nanoparticles in lung cancer models. J. Control. Release 2013, 172, 86–95. [Google Scholar] [CrossRef]
- Pinter, M.; Jain, R.K. Targeting the renin-angiotensin system to improve cancer treatment: Implications for immunotherapy. Sci. Transl. Med. 2017, 9, eaan5616. [Google Scholar] [CrossRef]
- Aquina, C.T.; Ejaz, A.; Tsung, A.; Pawlik, T.M.; Cloyd, J.M. National Trends in the Use of Neoadjuvant Therapy Before Cancer Surgery in the US From 2004 to 2016. JAMA Netw. Open 2021, 4, e211031. [Google Scholar] [CrossRef]
- Zheng, C.; Jiao, X.; Jiang, Y.; Sun, S. ERK1/2 activity contributes to gemcitabine resistance in pancreatic cancer cells. J. Int. Med. Res. 2013, 41, 300–306. [Google Scholar] [CrossRef]
- Su, Y.H.; Hsu, T.W.; Chen, H.A.; Su, C.M.; Huang, M.T.; Chuang, T.H.; Leo Su, J.; Hsieh, C.L.; Chiu, C.F. ERK-mediated transcriptional activation of Dicer is involved in gemcitabine resistance of pancreatic cancer. J. Cell Physiol. 2021, 236, 4420–4434. [Google Scholar] [CrossRef] [PubMed]
- Jin, X.; Pan, Y.; Wang, L.; Ma, T.; Zhang, L.; Tang, A.H.; Billadeau, D.D.; Wu, H.; Huang, H. Fructose-1,6-bisphosphatase Inhibits ERK Activation and Bypasses Gemcitabine Resistance in Pancreatic Cancer by Blocking IQGAP1-MAPK Interaction. Cancer Res. 2017, 77, 4328–4341. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.X.; Li, C.H.; Li, G.; Feng, H.; Xia, T.; Wong, C.H.; Fung, F.K.C.; Tong, J.H.; To, K.F.; Chen, R.; et al. LLGL1 Regulates Gemcitabine Resistance by Modulating the ERK-SP1-OSMR Pathway in Pancreatic Ductal Adenocarcinoma. Cell Mol. Gastroenterol. Hepatol. 2020, 10, 811–828. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Lv, F.; Zhou, L.; Li, X.; Wu, X.X.; Hoffman, R.M. Effect of verapamil on the expression of EGFR and NM23 in A549 human lung cancer cells. Anticancer. Res. 2009, 29, 27–32. [Google Scholar]
- Rouette, J.; McDonald, E.G.; Schuster, T.; Brophy, J.M.; Azoulay, L. Dihydropyridine Calcium Channel Blockers and Risk of Pancreatic Cancer: A Population-Based Cohort Study. J. Am. Heart Assoc. 2022, 11, e026789. [Google Scholar] [CrossRef]
- Schuller, H.M. Neurotransmission and cancer: Implications for prevention and therapy. Anticancer. Drugs 2008, 19, 655–671. [Google Scholar] [CrossRef]
- Molinoff, P.B. Alpha- and beta-adrenergic receptor subtypes properties, distribution and regulation. Drugs 1984, 28 (Suppl. S2), 1–15. [Google Scholar] [CrossRef]
- Johnson, M. Molecular mechanisms of beta(2)-adrenergic receptor function, response, and regulation. J. Allergy Clin. Immunol. 2006, 117, 18–25. [Google Scholar] [CrossRef]
- Philipson, L.H. Beta-Agonists and metabolism. J. Allergy Clin. Immunol. 2002, 110 (Suppl. S6), S313–S317. [Google Scholar] [CrossRef]
- Zhang, D.; Ma, Q.; Wang, Z.; Zhang, M.; Guo, K.; Wang, F.; Wu, E. β2-adrenoceptor blockage induces G1/S phase arrest and apoptosis in pancreatic cancer cells via Ras/Akt/NFκB pathway. Mol. Cancer 2011, 10, 146. [Google Scholar] [CrossRef]
- Guo, K.; Ma, Q.; Wang, L.; Hu, H.; Li, J.; Zhang, D.; Zhang, M. Norepinephrine-induced invasion by pancreatic cancer cells is inhibited by propranolol. Oncol. Rep. 2009, 22, 825–830. [Google Scholar] [CrossRef] [PubMed]
- Partecke, L.I.; Speerforck, S.; Käding, A.; Seubert, F.; Kühn, S.; Lorenz, E.; Schwandke, S.; Sendler, M.; Keßler, W.; Trung, D.N.; et al. Chronic stress increases experimental pancreatic cancer growth, reduces survival and can be antagonised by beta-adrenergic receptor blockade. Pancreatology 2016, 16, 423–433. [Google Scholar] [CrossRef] [PubMed]
- Chang, A.; Kim-Fuchs, C.; Le, C.P.; Hollande, F.; Sloan, E.K. Neural Regulation of Pancreatic Cancer: A Novel Target for Intervention. Cancers 2015, 7, 1292–1312. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Bai, Y.Y.; Yang, Y.; Hu, F.; Wang, Y.; Yu, Z.; Cheng, Z.; Zhou, J. Diabetes mellitus stimulates pancreatic cancer growth and epithelial-mesenchymal transition-mediated metastasis via a p38 MAPK pathway. Oncotarget 2016, 7, 38539–38550. [Google Scholar] [CrossRef] [PubMed]
- Polette, M.; Nawrocki-Raby, B.; Gilles, C.; Clavel, C.; Birembaut, P. Tumour invasion and matrix metalloproteinases. Crit. Rev. Oncol. Hematol. 2004, 49, 179–186. [Google Scholar] [CrossRef]
- Yang, E.V.; Sood, A.K.; Chen, M.; Li, Y.; Eubank, T.D.; Marsh, C.B.; Jewell, S.; Flavahan, N.A.; Morrison, C.; Yeh, P.E.; et al. Norepinephrine up-regulates the expression of vascular endothelial growth factor, matrix metalloproteinase (MMP)-2, and MMP-9 in nasopharyngeal carcinoma tumor cells. Cancer Res. 2006, 66, 10357–10364. [Google Scholar] [CrossRef]
- Huang, X.Y.; Wang, H.C.; Yuan, Z.; Huang, J.; Zheng, Q. Norepinephrine stimulates pancreatic cancer cell proliferation, migration and invasion via β-adrenergic receptor-dependent activation of P38/MAPK pathway. Hepatogastroenterology 2012, 59, 889–893. [Google Scholar] [CrossRef]
- Kim-Fuchs, C.; Le, C.P.; Pimentel, M.A.; Shackleford, D.; Ferrari, D.; Angst, E.; Hollande, F.; Sloan, E.K. Chronic stress accelerates pancreatic cancer growth and invasion: A critical role for beta-adrenergic signaling in the pancreatic microenvironment. Brain Behav. Immun. 2014, 40, 40–47. [Google Scholar] [CrossRef]
- Zhang, D.; Ma, Q.; Shen, S.; Hu, H. Inhibition of pancreatic cancer cell proliferation by propranolol occurs through apoptosis induction: The study of beta-adrenoceptor antagonist’s anticancer effect in pancreatic cancer cell. Pancreas 2009, 38, 94–100. [Google Scholar] [CrossRef]
- Udumyan, R.; Montgomery, S.; Fang, F.; Almroth, H.; Valdimarsdottir, U.; Ekbom, A.; Smedby, K.E.; Fall, K. Beta-Blocker Drug Use and Survival among Patients with Pancreatic Adenocarcinoma. Cancer Res. 2017, 77, 3700–3707. [Google Scholar] [CrossRef]
- Springate, D.A.; Ashcroft, D.M.; Kontopantelis, E.; Doran, T.; Ryan, R.; Reeves, D. Can analyses of electronic patient records be independently and externally validated? Study 2--the effect of β-adrenoceptor blocker therapy on cancer survival: A retrospective cohort study. BMJ Open 2015, 5, e007299. [Google Scholar] [CrossRef] [PubMed]
- Na, Z.; Qiao, X.; Hao, X.; Fan, L.; Xiao, Y.; Shao, Y.; Sun, M.; Feng, Z.; Guo, W.; Li, J.; et al. The effects of beta-blocker use on cancer prognosis: A meta-analysis based on 319,006 patients. Onco Targets Ther. 2018, 11, 4913–4944. [Google Scholar] [CrossRef] [PubMed]
Research Type | Type of Therapy | Antihypertensive Drug | Antitumoral Mechanism | Outcomes | Reference |
---|---|---|---|---|---|
Original research (non-human study) | AT2R agonist | Stimulation of PI3K/AKT pathway increase in PDAC cell survival | - | Ishiguro S, et al., 2015 [70] | |
Original research (non-human study) | 5-FU | Losartan | Inhibition of the protumorigenic activity of TANs and IL1β, which modulated the recruitment/activity of CD8-positive T cells and Tregs | Losartan-induced decrease in SNAIL-chemosensitizing effect | Incio J et al., 2016 [81] |
Original research (non-human study) | Losartan | Abrogating aberrant TGFβ activation, decreasing microvessel density in tumors grown, reducing the activation of regulatory T cells | Inhibiting tumor growth | Arnold SA et al., 2012 [82] | |
Retrospective study | Gemcitabine | ACEI/ARB | - | PFS = 8.7 months in the ACEI/ARB group vs. 4.5 months in the non-ACEI/ARB group, | Nakai Y et al., 2010 [83] |
Clinical trial (phase I) | Gemcitabine | Cadesartan (16 mg) | - | RR = 0%, disease control rate = 79%, respectively. PFS = 7.6 months, OS = 22.9 months | Nakai Y et al., 2012 [84] |
Clinical trial (phase II) | Gemcitabine | Cadesartan (16 mg vs. 8 mg) | - | RR = 11.4%, disease control rate = 62.9%, PFS = 4.3 months, OS = 9.1 months (1-year survival rate 34,2%), PFS (16 mg) = 4.6 months vs. PFS (8 mg) = 3.5 months (p = 0.031) | Nakai Y et al., 2013 [85] |
Clinical trial (phase II) | Neoadjuvant FOLFIRINOX+CRT | Losartan | - | R0 resection rate = 61%; PFS = 21.3 months, OS = 33.0 months | Murphy JE et al., 2019 [86] |
Original research (human study) | FOLFIRINOX+CRT vs. Losartan+FOLFIRINOX+CRT | Losartan | Maturation of blood vessels and transendothelial migration of leukocytes, activation of T cells, cytolytic activity of T cells and NK cells, and DC cell activity | In comparison with FFX+CRT, LOS+FFX+CRT downregulated immunosuppression and pro-invasion genes | Boucher Y et al., 2023 [87] |
Original research (non-human study) | 5-FU | Losartan | Reducing stromal activity and production of matrix components and targeting all stromal components (CAFs, hyaluronan, and collagen) | Improved effectiveness of small-molecule chemotherapeutics through antimatrix effects | Chauhan VP et al., 2013 [88] |
Original research (non-human study) | Gemcitabine | Irbesartan | Suppressing stemness and iron metabolism via inhibition of the Hippo/YAP1/c-Jun axis | Zhou T et al., 2023 [89] | |
Original research (human study) | - | Lisinopril | Reduced expression of genes involved in PDAC progression-Wnt and Notch signaling, an increased expression of genes linked with the activity of T cells and antigen-presenting cells | Longer OS independently of chemotherapy | Liu H et al., 2017 [90] |
Original research (non-human study) | Gemcitabine | Amlodipine | Inhibition of prosurvival ERK and MAPK signaling—decrease in the expression of CALM2 | Restoring gemcitabine sensitivity in orthotopic xenografts of GR tumor cells, reducing metastases, and extending OS enhancement of the antineoplastic effects of gemcitabine | Principe DR et al., 2022 [91] |
Original research (non-human study) | - | Fendiline | Inducing G1 arrest, enhancement of intercellular adhesions, contributing to reduced cell migration and invasion | Decrease in proliferation and inhibiting tumor growth | Woods N et al., 2015 [92] |
Original research (non-human study) | Gemcitabine | Verapamil | Inhibiting P-gp transporters and inducing apoptosis of stem-like SP cells in PDAC cells | Enhancement of cytotoxic effects of chemotherapeutic drugs | Zhao L et al., 2016 [93] |
Original research (non-human study) | Gemcitabine/5-FU | Dilitiazem | Decrease in the expressions of stem cell markers CD24 and CD44, increase in the expressions of Bax and cleaved caspase 3, enhanced DNA fragmentation, and attenuated cyclin D1 and P-gp expressions | Enhancement of cytotoxic effects of chemotherapeutic drugs | El-Mahdy et al., 2020 [94] |
Retrospective study | Gemcitabine/FOLFIRINOX | CCBs | - | Adjusted Cox regression revealed significantly improved OS—HR 0.496 (95% CI = 0.297–0.827; p = 0.007). Kaplan–Meier estimated median survival = 15.3 months for patients prescribed CCBs versus 10.1 months for patients not prescribed CCBs (p = 0.131). | Tingle SJ et al., 2020 [95] |
Retrospective study | Gemcitabine | CCBs | - | A significant difference (p < 0.001) was observed in the median OS between patients who were prescribed CCB (n = 380; OS 9.3 months; 95% CI: 7.8–11.0) and those who were not (n = 4214; OS 7.6 months; 95% CI: 7.3–7.8), with a hazard ratio for death of 0.70 (95% CI: 0.62–0.79). | Kraj L. et al., 2017 [96] |
Retrospective study | Neoadjuvant therapy: FOLFIRINOX/vgemcitabine with nab-paclitaxel/ 5-FU/gemcitabine-based regimen. | CCBs | - | Median OS = 27.5 months in those receiving neoadjuvant chemotherapy (30.7 months for those prescribed CCB, 26.5 for those not prescribed CCB) | Fong ZV et al., 2024 [97] |
Original research (non-human study) | Gemcitabine | BBs | Regulation of pro-apoptotic (Bax) and anti-apoptotic (Bcl-2) molecules; downstream of NF-κB signaling pathway | Enhanced apoptosis in pancreatic cancer cells—superior tumor suppression compared to gemcitabine alone, highlighting a potential for synergy in chemotherapy | Shan T et al., 2011 [98] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kluz, N.; Kraj, L.; Chmiel, P.; Przybyłkowski, A.M.; Wyrwicz, L.; Stec, R.; Szymański, Ł. Correlation Between Antihypertensive Drugs and Survival Among Patients with Pancreatic Ductal Adenocarcinoma. Cancers 2024, 16, 3945. https://doi.org/10.3390/cancers16233945
Kluz N, Kraj L, Chmiel P, Przybyłkowski AM, Wyrwicz L, Stec R, Szymański Ł. Correlation Between Antihypertensive Drugs and Survival Among Patients with Pancreatic Ductal Adenocarcinoma. Cancers. 2024; 16(23):3945. https://doi.org/10.3390/cancers16233945
Chicago/Turabian StyleKluz, Natalia, Leszek Kraj, Paulina Chmiel, Adam M. Przybyłkowski, Lucjan Wyrwicz, Rafał Stec, and Łukasz Szymański. 2024. "Correlation Between Antihypertensive Drugs and Survival Among Patients with Pancreatic Ductal Adenocarcinoma" Cancers 16, no. 23: 3945. https://doi.org/10.3390/cancers16233945
APA StyleKluz, N., Kraj, L., Chmiel, P., Przybyłkowski, A. M., Wyrwicz, L., Stec, R., & Szymański, Ł. (2024). Correlation Between Antihypertensive Drugs and Survival Among Patients with Pancreatic Ductal Adenocarcinoma. Cancers, 16(23), 3945. https://doi.org/10.3390/cancers16233945